A- CURVATURES AND A- GEODESIC PRINCiPAL DIRECTIONS OF A
CONGRUENCE OF CURVES IN THE SUBSPACE OF A FINSLER SPACE')

C. M. Prasap

The process ol s-differentiation {4] feads to the use of the Durmy indicatrix in linding out the

principat directions of a congruence. The process of A-differentiation [2] requires the use of

ithe oscolating indicatrix corresponding to a direction Nin finding out the principal direc-

tions of a congruence of curves, In the present paper, by using the process of A-differentialion,

the A-curvatures and the A-geodesic principal directions of a congruence of curves in the

subspace of a FinsLeR space have been obtainced and some of their properties have been
studied.

t. Introduction. Let F(x,.'r) be the fundamental metric function of the FmNSLER space
F, with local coordinates xf (i =1, ..., #) and satisfy the conditions usually imposed upon
a FinsLER metric [*]. Let F,, be a FmnsLER subspace with local coordinates % (e = 1,2, ..., m).

Let I : e = u= (/) be a curve on F,,. The components x{ = dxifdf and we — dya [ df of its
unit tangent vectors with respect to the xf and p# coordinate system are rclated by xi = B’; ne
where Bi == 9xifon . At each point of L, a combination (n=, e Y or {x?, Jé") determines a
line-element of F,,. Quantities in our discussion will be considered for this [ine-element unless

stated otherwise. The fundamental metric tensors &, {x, ) and gap (r, L;) of F; and F,, are
connected by

(LD gap (1) = g3 (x , %) B, Bl
There exists a system of n-m linearly independent unit vectors nzf) (x, ,é), r=m-41, .., n

normal to F, . These vectors are called secondary normal vectors ['] and are defined by the
solutions

(t2) n:v)j B = &1 (%, x) rr::) B =0
and arc normalised by

L3 F(x, n:v)) =& (% nz‘v)) rr;jJ ng) =1
These vectors also satisfy the relation

L4 gij(x, x) ”f5> n: {) = 6‘; Py, (O summation on ¥),

1} The author is extremely grateful to Professor K, B. Lar for his encouragement and guidance.
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The covariant derivative of B; with respect to #8 is given by ['],

i def 4 __ # * i

(1.5) S EQUM R i
W

where _(_?Zﬂ (N,.!:') is defined as the secondary second fundamental tensor of the subspace. The

covariant derivative of the secondary unit normal is given by i

Consider a system of congruences determined by the vector-field lfa) . At a point of the

subspace, it can be expressed as -

4B i () i H

(1.6) Mg = A(v}a B, + Z N(v) w i
o ‘

where E
. . = ok oo

a.n Adgp = — W) Vg 858 — Epge (6, X) BY B ncy g0 :
and
1.8 N o = 60wt B = gy (%) 5
. (g WG ohe Pr » Pyl T E6E X X :

i

(1.9) lég) (u, ) = 10, U, ) B; () -+ 2 Clavy (1, 1) rr:\f) G, ).

¥

It may be noted that at a point of F,, the functions J.ia) (u, &) are single-valued func-

tions of (u, 'lr). Let C:ux = ux (5) be a curve (not in the direction of &% ) of the subspace. The
components, in the x* and w« coordinate system, of the tangent vector to C are such that

(1.10) xi=Blye -
where x'¢{ = dxt and u'# = duz .
ds ds
These vectors satisfy the condition
(1.1D) 81 (r, ) xixd = Lo (U, 0 ' s = 7.
Let

X[V =giand w9/ \p =g
then equation (1.11) gives
(1.12) g1j (v, M gie) = goy (u, u) g% 2B = 1.

In the following section, by using the process of A-differentiation [?], we shall define the

A-curvatures of the congruence J‘i«)'

2. A-curvatures of a congruence

The A-differential of the wvector li @ (given by (1.9)) along C is given by

A . .
@.1) ﬁ = ‘T'zc);a v = ( (G:’) Byt E Dion ":"!)) ’
¥




CURVATURES AND PRINCIPAL DIRECTIONS OF A CONGRUENCE 73

where

2.2) ng) = qz;)ﬂ ye = ( r;‘u);a + E Clavy AZ‘VB))ya

and " ‘

(2.3) Do) = Piovip V6 = ( r‘f;) -Q:q)xs + Z Ces) N((.:))lg I Covin )Pﬂ .
- 2

In analogy to the definiton of the geodesic curvature of a subspace [!], we define the

geodesic curvature of the congruence. AZU) as follows :

Definition (2.1). The quantity Ki»ne defined by

(2.4 Kiyg = gas W WWEWE = Qg v2 o
where
@3 Deorap (it 1) = &va (1, 1) Gy Ty

is called A-geodesic curvature of the congruence d¢n along Cin Fr .

Definition (2.2.). If the d-geodesic curvature of the ceongruence ¢ in the subspace
vanishes at every point of the curve C, the curve is called a A-geodesic,

The differential equation of a A-geodesic of the congruence is given by

dui b -0

(26) !J(q)ag (ll, H) “‘ds _d.'S"_ 5 '

If 4t = i« , (he {-geodesic is called the i-geodesic and its differential cquation is given by

@D ol (, w7 dus dus = 0,

If the space F,, is a Riemannian space, (2.7) reduces to A-geodesic [°].
Since the A-geodesic curvature of the congruence ).iu) in F,, vanishes along a J-geodesic

(i.e. “’fc) = 0), the equation (2.1} reduces to

(2.8) ’ Po) 2 Dy g
o As Ja e
A"

In view of the definition of the secondary normal curvature of the subspace['], we define
the following :

Definition (2.3). The scalar Ku%s defined by

: .4 AXt
(2.9) Ky & gy (s x)( (‘”)G ( “")G

As

As
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is called the A-secondary normal curvature of the congruence in the subspace and since n: o) &re

unit vectors, it follows from (2,8) that the curvature of this A-geodesic (regarded as a curve of F)
is represented by (2.9).

Simiplifying the equation (2.9), wc have

{2.10) ' Icf;l*(,,) = }_22{6}0:5 (u, t}) gq gk
where
@.11) Dy = 2, WO Pl plori

v

Definition (2.4). The scalar Ko defined by

Al Adf
2 o ¢ x _.-—(i) _,_gf_J
@12 Koy = £2; (x, ) ( ds ) ( A5 )
is called the A -absolute curvature of the congruence in the subspace.,

Theorem (2.1). Jf the conguruence léﬁ) does not lie in a variety Spamied by the secon-
dary normals, the /-geodesic curvature of the congruence is the magnitnde of the A-derived
vector of the tangential component of the cougruence along C.

*i

Proof, If li(a) does not lie in a variety spanned by the vectors Mgy »

Cflov) = 0 and

A 1 .
Wiy = - and the equation (2.4) reduces to
A At
2 . (s} (s)
@13) Ko =0 @, T) (T) ’

which is the required result, Moreover, if du®/dt = du/ds, the equation (2.13) yields

delr, dr¥
2 , (@ " (=)
(2.14) Ky = gas (. u") Fe 55
Theorem (2.2). If the components of the congruence '125) tangential to F,, are tangential

to the curve C and du®lds = du®ldt, the A -abselute curvature, the A -geodesic curvature
and, the A -secondary normal curvature are respectively the geodesic curvature with respect to
F, , the geodesic curvature with respect to Fy and the secondary normal curvature of the
subspace.

Proof. Since Azn) = x'i = B,’; a’%, the proof of the theorem follows from the defini-
tions (2.4), (2.1) and (2.3).

From theorem (2.2) obviously the A -curvatures of the congruence may be considered as

. ~ ¥ *
the generalised curvatures of the subspace and as such we may regard Lioyap (4, 1) du® duf as
the generalised secondary second fundamental form of the subspace.
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Definition (2.5). A direction along which the /-secondary normal curvature of the cong-
ruence in Fm vanishes, is called the A-asymptotic direction and a curve whose direction at each
point of it is A-asymptotic, is called a d-asymptotic line of the congruence in ¥,,. Tts differen-
tial eguation is given by

(2.15) Dayug (1, 1) due dus. — 0 for all s.

3. A-geodesic principal directions
Definition (3.1). For a preassigned (4« , e ), a direction dux [ ds is said to be A-geodesic
principal direction with repect to ng) provided that K (ZG)G (i, t.f, 1’y assumes an extreme value.

The corresponding value of K(zCr G is called a A-geodesic principal curvature of the congru-
ence in the subspace,

We now give the following propositions.

Fheorem (3.1) The A-geodesic principal directions and the A-geodesic principal cur-
vatures (with respect fo na‘;)) of the congruence are respectively the eigenvectors and eigen-
values of the rensor .a(c)ms.

Theorem (3.2), There exist m A-geodesic principal divections EE;} (r=12,....m of
the congruence in ¥, satisfying the conditions

3.1 (a)ap (o, ) 'g?‘u) E?p) =0
aid
(3.2 Bua (u, ll) E((i,_) E(Bp) =0 (o "‘?&‘ ).

The proofs of the above theorems are similar fo those of the corresponding propositions
in [31.

4. Some Invariants

Let Eﬁl) (¢ =1,2,...,m) be the A-geodesic principal directions and v be a vector field
of F,, normalised by the condition

4.1 gap (1, i) v vB = 1.
Since E?u) are linearly independent in F,,, we write
@.2) v Y Iy B -
. o

Substituting from (4.1) and using the relation (3.2), we get

2
3 Yo, -t

13

Th square of the A-geodesic curvature Kig)¢ along v« is given by
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I(EU)G (2, 0%, 2 ) = Qayag (1, ) ¥ v8
Substituting from (4.2) and putting

.(—j(a)aﬁ (1, 1) E?p)&) = 840 K(oy) (no summation on z)

we obtain

5 _
4.4 K = Z "?:1) Kw

1]

where E(cu} (g =1,2,...,m) are the A-geodesic pricipal curvatures of the congruence.

Theorem (4.1). The sum of the squares of the A-geodesic curvatures of the congruence
along m mutually orthogonal directions of F,, is an invarviant and is equal to the sum of
A-geodesic principal curvatures of the congruence.

Proof. Consider m mutually orthogonal vectors v?p) (o =1, ..., m) each satisfying the

normalising condition (4.1). We write

4.5 v{up) = Z {ton) Eal) (e=1,.., m.
23
Since gag (v, 1) VZ’JJ P?li) = oy, we get after simplification,

(4.6) Z fiee) Tusy — oy

£

Hence the matrix || %o, || is orthogonal and
@7 YR,—1 for a—12.,m.
P
By (4.4), the square of the A-geodesic curvature K)s in the direction of V‘E‘a) is given by

2 — 2 7
*.8) Kercter = 25 How Reow

73

Hence using the equation (4.7), we get

Z Klyewy = Z’z (op)
[+

which was to be proved.

8. d-absolute geodesics

From the equations (2.4), (2.10) and (2.12), we have

(5.1 Ky = Pioyep (1, 1) 8% 8,
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where

Dlo)ap {.(?(u)mg + i}:a)aﬁ]

is a symmetric covariant tensor,

Defination (5,1}, If the A-absolute curvature of the congiuence vanishes along a curve
C, the curves is called the A-abslote geodesic of the congruence in the subspace. Tts differntial
equation is given by
duf

o du®
(5.2) Plo)ag (0, w} el vl 0.

The principal directions associated with the tensor @jus may be called A -absolute
principal directions and corresponding values of Ky are called the A ~absolute principal

curvatures of the congruence Ji,éq). When dufdt = dnjds, the equation (5.2) gives the equa-
tion of the absolute geodesic of the congruence in F, . |

From the equations (2.4), (2.9} and (2.12}, we have

6.3 K2

2 2
o = Kige T K¢

”(G] .

MNow we prove the following

Theorem (5.1). A necessary and sufficient condition that a cwrve of the subspace be
A-absolute geodesic is that it is a A -geodesic as well as a A -asymptotic line of the congruence in
the subspace.

Proof. From the definition (5.1} and the equation (5.3}, we have K(s) = 0 and then from
the equation (5.3) obviously K = 0 and ana) = 0, Conversely, if K¢ = K,.(’c) = 0, then
K(s) = 0 which completes the proof.

In view of the equation (5.3) and the definitions (2.1)-(2.5) and (5.1), the following propo-
sitions are immediate.

Theorem (5.2). The Jd-absolute curvature and A-<geodesic curvature of the congruence are
equal along the A-asymptotic line of the congruence in Fp .

Theorem (5.3), The A-agbsolute curvature and A-secondary normal cnrvatures are equal
along a A-geodesic curve of the congruence in the subspace.

Tieorem (5.4). If any two of the following hold, the third will also hold .
(i} the cuwrve be a Ad-absolute geodesic,
@iy it is a A-geodesic and

(i) it s a A-asymprotic line of the congrience.
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OZET

A-tiiretme iglemi [H], bir kongriansm esas dogrultularimin belirtifmesi ikin Durin gis-

tergesinin’ kullamlmasina imkéin vermektedir, A-tliretme islemi [} ise, bir kongrilansm esas

dogrultularinm bulunvu{masinda bir X dogrultusuna  tekabiil ¢den oskillatdr gostergenin

kellanitmasing  gercktirmektedir, Bu aragtirmada, A-tiiretme islemini kullanarak bir

Fmusrpr uzaymm bir alt uzayimda bir cgri kengrijansimin  A-egrilikieri ve A-geodezik
csas dogrultunlar elde edilmis ve bunlardan biz1 sonuglar gikarilmagtir.




