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WEAKLY REGULAR SETS

KONSTANTIN G. MALYUTIN and OKSANA A. BOZHENKO

Abstract. We consider the concept of weakly regular set in complex plane and in complex

half-plane. It is proved that such sets are interpolation sets.

1. Introduction

Concept of regular set in complex plane was introduced by B. Ya. Levin [1]. Let ρ(r) be

a proximate order, limr→∞ ρ(r) = ρ > 0. Let A = {an, n = 1, 2, . . . } be a set in C. We

assume that the points cannot come arbitrarily close to each other. More precisely, we as-

sume that one of the following conditions (C) or (C ′) holds:

(C) The points an lie inside of finite numbers of angles with a common vertex at the origin

but with no other points in common, which are such that if one arranges the points of the

set A within any one of these angles in the order of increasing moduli, then for all points

which lie inside same angle it is true that

|an+1| − |an| ≥ rn = d|an|1−ρ(|an|)

for some d > 0.

(C ′) There exists a number d > 0 such that the disks of radii

rn = d|an|1−
ρ(|an|)

2

with centers at the points an do not intersect.

A regular point set A satisfying one of the conditions (C) or (C ′) is called a regular in sense

of Levin, or more briefly an R-set in sense of Levin, while the disks |z − an| ≤ rn are called

the exceptional disks of the R-set (CR-disks).

The sets which satisfy the condition (C) play important role in the theory of entire func-

tions, in particular, for constructing canonical products of the sets [2]-[5]. In this paper we

generalize this concept by introducing the notions of regular sets and weakly regular sets in

complex plane and half-plane. We will show that these sets are interpolation sets.
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In [6, 7] the regular sets A = {an, n = 1, 2, . . . } in the upper half-plane C+ = {z : ℑz > 0}
with property ”For all points it is true that

|an+1| − |an| ≥ rn = d sin arg(an)|an|1−ρ(|an|)

for some d > 0, ” were considered. Such sets were used also for constructing canonical

products of the sets in the upper half-plane C+.

2. Weakly regular sets in complex plane

In this paper, following Titchmarsh, we will use the following definitions and notations. If

there is a value which is not depending on the basic variables it is called as a constant. For

denoting absolute positive constants, not necessarily same, we use letters A, M , K. State-

ments like ”|v(z)| < Mγ(r) hence 3|v(z)| < Mγ(r)” should not cause any misunderstanding.

Denote the class of entire functions f of order ρ > 0 by [ρ,∞] i.e.

lim sup
r→∞

log+ log+ |f(reiθ)|
log r

≤ ρ .

Definition 2.1. A sequence A = {an, n = 1, 2, . . . } is called an interpolation sequence in

the class [ρ,∞] if for any numerical sequence {bn, n = 1, 2, . . . } satisfying the condition

(1) lim sup
n→∞

log+ log+ |bn|
log |an|

≤ ρ,

there exists a function f ∈ [ρ,∞] solving the interpolation problem

(2) f(an) = bn, n = 1, 2, . . . .

Let ρ(r) be a proximate order, limr→∞ ρ(r) = ρ > 0. Denote the class of entire functions

f of at most normal type for ρ(r) by [ρ(r),∞) i.e.

log+ |f(reiθ)| ≤ CfV (r) ,

where V (r) = rρ(r), and Cf > 0 is a finite constant.

Definition 2.2. A sequence A = {an, n = 1, 2, . . . } is called an interpolation sequence in

the class [ρ(r),∞) if for any numerical sequence {bn, n = 1, 2, . . . } satisfying the condition

(3) lim sup
n→∞

log+ |bn|
V (|an|)

< ∞,

there exists a function f ∈ [ρ(r),∞) solving the interpolation problem (2).

Let C(a, r) be an open disc of radius r about a point a. From the set A we define the

measure n(G) =
∑

an∈G 1 and the family of functions

Φz(α) =
max{n(C(z, α|z|))− 1; 0}

V (|z|)
.

The following theorems were obtained in [8].
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Theorem 2.3. A sequence A = {an, n = 1, 2, . . . } is an interpolation sequence in the class

[ρ,∞] if and only if there exists a proximate order ρ(r), lim
r→∞

ρ(r) ≤ ρ, such that

(4) Φz(α) ≤ (ln 1/α)−1 .

Theorem 2.4. A sequence A = {an, n = 1, 2, . . . } is an interpolation sequence in the class

[ρ(r),∞) if and only if

(5) sup
z∈C

∫ 1/2

0

Φz(α)

α
dα < ∞ .

Now we will introduce the following definitions.

Definition 2.5. A sequence A = {an, n = 1, 2, . . . } is called a weakly regular sequence

of an order ρ > 0 or more briefly an WR(ρ)-set, if there exists a proximate order ρ(r),

limr→∞ ρ(r) = ρ such that one of the conditions (C) or (C ′) is true and

(6) n(C(0, r)) ≤ KV (r), K > 0 .

Definition 2.6. A sequence A = {an, n = 1, 2, . . . } is called a weakly regular sequence

of a proximate order ρ(r) or more briefly a WR(ρ(r))-set, if it satisfies (6) and one of the

conditions (C) or (C′) holds.

Let us give the following two theorems.

Theorem 2.7. Let a sequence A = {an, n = 1, 2, . . . } be a weakly regular sequence of a

proximate order ρ(r). Then A is an interpolation sequence in the class [ρ(r),∞).

Theorem 2.8. Let a sequence A = {an, n = 1, 2, . . . } be a weakly regular sequence of an

order ρ. Then A is an interpolation sequence in the class [ρ,∞].

We will use the following lemma from [1].

Lemma 2.9. Let ρ be a proximate order, limr→∞ ρ(r) = ρ > 0. Then asymptotic inequality

(1− ε)kρV (r) < V (kr) < (1 + ε)kρV (r)

holds uniformly with respect to k, 0 < a ≤ k ≤ b, as r → ∞.

We now obtain some consequences of conditions (C) and (C ′).

Lemma 2.10. If a sequence A = {an, n = 1, 2, . . . } satisfies the condition (C) then there

exists a number d1 > 0 such that the disks of radii d1|an|/V (|an| with centers an do not

intersect.

We will prove the analogous lemma below (see Lemma 3.9). First we give a definition.

Definition 2.11. Let a sequence A = {an, n = 1, 2, . . . } be a weakly regular sequence of

a proximate order ρ(r) (of an order ρ). Then exceptional disks are called CR(ρ(r))-disks

(CR(ρ)-disks).
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Lemma 2.12. Let a sequence A = {an, n = 1, 2, . . . } be a weakly regular sequence of a

proximate order ρ(r). If the condition (C) holds then

(7) Φz(α) ≤ Kα ,

and if the condition (C ′) is true then

(8) Φz(α) ≤ Kα2 ,

fore some K > 0.

Proof. Let us assume that the condition (C) holds and the point z does not belong to any

of CR([ρ(r),∞))-disks of an exceptional set. Let us take the disk C(z, α|z|) with center at

the point z of the radius α|z|. If the points an = rne
iθn ∈ C(z, α|z|) denoted by [αn, βn]

circular projection of a segment [an, an+eiθnd|an|1−ρ(|an|)] is on the ray arg ξ = arg z. Since

the point z does not belong to the exceptional disk corresponding to the point an, [αn, βn]

belong to the disk C(z, 2α|z|). The condition (C) implies that all such segments do not

intersect and therefore ∑
an∈C(z,α|z|)

d|an|1−ρ(|an|) ≤ 4α|z| .

From this inequality and lemma 2.9 we get

(9) n(C(z, α|z|)) ≤ MαV (|z|),

for α ≤ 1/2. The inequality (9) holds for all points z which do not belong to exceptional

disks. If the point z belongs to an exceptional disk then right part of the inequality (9) can

increase no more than by unit. Therefore, for all z ∈ C, Φ(zα) ≤ Mα, α ≤ 1/2.

Estimation of (8) under the condition (C ′) can be obtained by comparing the areas of the

disks [1]. �

The proof of Theorem 2.7 follows from Lemma 2.12 and (5).

The proof of Theorem 2.8 follows from Theorem 2.7.

3. Weakly regular sets in half-plane

Let C+ = {z : ℑz > 0} be the upper half-plane. Denote the class of analytic functions f of

order ρ > 0 in C+ by [ρ,∞]+ [9].

Definition 3.1. A sequence A = {an, n = 1, 2, . . . } is called an interpolation sequence in

the class [ρ,∞]+ if for any numerical sequence {bn, n = 1, 2, . . . } satisfying the condition (1)

there exists a function f ∈ [ρ,∞]+ solving the interpolation problem (2).

Let ρ(r) be a proximate order, limr→∞ ρ(r) = ρ > 0. Denote the class of analytic functions

f of half-formal order ρ(r) in sense of Grishin [10] by [ρ(r),∞)+.

Definition 3.2. A sequence A = {an, n = 1, 2, . . . } is called an interpolation sequence in

the class [ρ(r),∞)+ if for any numerical sequence {bn, n = 1, 2, . . . } satisfying the condition

condition (3) there exists a function f ∈ [ρ(r),∞)+ solving the interpolation problem (2).
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From the set A we define the measure n+(G) =
∑

an∈G sin(arg an) and the family of func-

tions

Φ+
z (α) =

max{n+(C(z, α|z|))− sin arg an; 0}
V (|z|)

,

where an is the point closest to z (if there are several such points, then we choose the one

with the largest sin arg an).

The following theorem was obtained in [8].

Theorem 3.3. A sequence A = {an, n = 1, 2, . . . } is an interpolation sequence in the class

[ρ,∞]+ if and only if there exists a proximate order ρ(r), lim
r→∞

ρ(r) ≤ ρ such that

(10) Φ+
z (α) ≤ 2α, α ≥ (sin(arg z))/2 ,

(11) Φ+
z (α) ≤

sin(arg z)

ln(e sin(arg z))/(2α))
, α < (sin(arg z))/2 .

Necessary and sufficient criteria of solvability of interpolation problem in the class [ρ(r),∞)+

were obtained in [11].

Theorem 3.4. A sequence A = {an, n = 1, 2, . . . } is an interpolation sequence in the class

[ρ(r),∞)+ if and only if

(12) sup
z∈C+

sin(arg z)

∫ 1/2

0

Φ+
z (α) dα

α(α+ sin(arg z))2
< ∞ .

We will introduce the following definitions.

Definition 3.5. A sequence A = {an, n = 1, 2, . . . }, A ∈ C+, is called a weakly regular

sequence in C+ at a proximate order ρ(r), or more briefly an WR+(ρ(r))-set, if one of the

conditions (C+) or (C+
′) holds:

(C+) 1) Among points of a set of A there are no multiple points and there are no points

with identical modulus;

2) A ∩ C(0, 2) = ∅;
3) the condition

n+(C(0, r)) ≤ KV (r), K > 0

holds;

4) there exists a number d > 0 such that for all points an and ak of A satisfying the inequality

|an| ≥ |ak| we have

(13) |an| ≥ |ak|+ dℑak/V (|ak|).

(C′
+) 1) Among points of a set of A there are no multiple points and there are no points

with identical modulus;

2) A ∩ C(0, 2) = ∅;
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3) the condition

n+(C(0, r)) ≤ KV (r), K > 0 ,

holds;

4) there exists a number d > 0 such that the disks of radii

rn = d(sin(arg an))
1/2|an|1−

ρ(|an|)
2

with centers at the points an do not intersect.

Definition 3.6. A sequence A = {an, n = 1, 2, . . . }, A ∈ C+, is called a weakly regular

sequence in C+ of an order ρ, or more briefly a WR+(ρ)-set, if there exists a proximate

order ρ(r), limr→∞ ρ(r) = ρ, such that one of the conditions (C+) or (C+
′) holds.

Let us give the following two theorems.

Theorem 3.7. Let a sequence A = {an, n = 1, 2, . . . } be a weakly regular sequence in C+

of a proximate order ρ(r). Then A is an interpolation sequence in the class [ρ(r),∞)+.

Theorem 3.8. A sequence A = {an, n = 1, 2, . . . }, A ∈ C+, is called a weakly regular

sequence in C+ of an order ρ. Then A is an interpolation sequence in the class [ρ,∞]+.

We now obtain some consequences of conditions (C+) and (C+
′).

Lemma 3.9. If a sequence A = {an, n = 1, 2, . . . }, A ∈ C+, satisfies condition (C+) then

there exists a number d1 > 0 such that the disks of radii d1ℑan/V (|an|) with centers at the

points an do not intersect.

Proof. There exists a number M1 > 1 such that for all r1 and r2, 1 ≤ r1 ≤ r2 ≤ 2r1(1 + d),

we have

(14) r2/V (r2) ≤ M1r1/V (r1) .

Denote an = rne
iθn , n ∈ N. Let rj > ri and sin θj ≤ 4 sin θi. If rj ≥ 2(ri + dℑai/V (ri))

then the disks C(ai, dℑai/V (ri)) and C(aj , rj/2) do not intersect. Because in this case for

all points z ∈ C(aj , rj/2) the inequality is carried out

|z − ai| ≥ |aj − ai| − |z − aj | ≥ rj − ri − rj/2 = rj/2− ri ≥ dℑai/V (ri).

Thus z /∈ C(ai, dℑai/V (ri)). Since V (rj) ≥ 1 then the disks C(ai, dℑai/V (ri)) and

C(aj , dℑaj/(2V (rj))) do not intersect.

If rj < 2(ri + dℑai/V (ri)) and sin θj ≤ 4 sin θi we have rj < 2ri(1 + d). From (14),

dℑaj/(8M1V (rj)) ≤ d sin θj ri/(8V (ri)) ≤ dℑai/(2V (ri)). From (13), we obtain that the

disks C(aj , dℑaj/(8M1V (rj)) and C(ai, dℑai/(2V (ri)) do not intersect.

Let sin θj > 4 sin θi and rj < 2(ri + dℑai/V (ri)). Then the disks

C(aj , d1ℑaj/V (rj)) and C(ai, d1ℑai/V (ri)), where d1 = d/2(9 + d), do not intersect.

Really, let us find d1 such that

rj − d1
ℑaj
V (rj)

> ri + d1
ℑai
V (ri)

.
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We have

rj − ri ≥ d
riℑai
V (ri)

.

Then

4d1
rj

V (rj)
+ d1

ri
V (ri)

< d
ri

V (ri)
,

d1

(
8

(
ri +

dℑai
V (ri)

)
+ ri

)
< dri.

From this we get d1 < d/(9 + d).

It is necessary to take

d1 = min

{
d

2(9 + d)
;

d

8M1

}
.

�

Definition 3.10. Let a sequence A = {an, n = 1, 2, . . . }, A ∈ C+, be a weakly regular

sequence in C+ of a proximate order ρ(r) (of an order ρ). Then exceptional disks are called

C+
R (ρ(r))-disks (C+

R (ρ)-disks).

Lemma 3.11. Let a sequence A = {an, n = 1, 2, . . . } be a weakly regular sequence in C+ of

a proximate order ρ(r). If the condition (C+) holds then

(15) Φz(α) ≤ Kα

and if the condition (C′
+) is true then

(16) Φz(α) ≤ Kα2 ,

for some K > 0.

Proof. Let us assume that the condition (C′
+) holds and take a point z which does not

belong to any of C+
R ([ρ(r),∞))-disks of an exceptional set. Let us take the disk C(z, α|z|)

with center at the point z of the radius α|z|. Since the center of this disk does not belong

to any of C+
R ([ρ(r),∞))-disks of the exceptional set then radii of the exceptional disks with

centers in this disk are less than α|z|. Since the exceptional disks do not intersect then sum

of their areas is less than the area of C(z, 2α|z|), i.e.

(17)
∑

an∈C(z,2α|z|

d2 sin(arg an)|an|2−ρ(|an|) ≤ 4α2|z|2 .

If the point an = rne
iθn ∈ C(z, α|z|) then

(1− α)|z| ≤ |an| ≤ (1 + α)|z|.

From this inequality and (17), we obtain (16). �

The proof of Theorem 3.7 follows from Lemma 3.11 and (12).

The proof of Theorem 3.8 follows from Theorem 3.7.
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