WEAKLY REGULAR SETS

KONSTANTIN G. MALYUTIN and OKSANA A. BOZHENKO

Abstract

We consider the concept of weakly regular set in complex plane and in complex half-plane. It is proved that such sets are interpolation sets.

1. Introduction

Concept of regular set in complex plane was introduced by B. Ya. Levin [1]. Let $\rho(r)$ be a proximate order, $\lim _{r \rightarrow \infty} \rho(r)=\rho>0$. Let $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a set in \mathbb{C}. We assume that the points cannot come arbitrarily close to each other. More precisely, we assume that one of the following conditions (C) or $\left(C^{\prime}\right)$ holds:
(C) The points a_{n} lie inside of finite numbers of angles with a common vertex at the origin but with no other points in common, which are such that if one arranges the points of the set A within any one of these angles in the order of increasing moduli, then for all points which lie inside same angle it is true that

$$
\left|a_{n+1}\right|-\left|a_{n}\right| \geq r_{n}=d\left|a_{n}\right|^{1-\rho\left(\left|a_{n}\right|\right)}
$$

for some $d>0$.
$\left(C^{\prime}\right)$ There exists a number $d>0$ such that the disks of radii

$$
r_{n}=d\left|a_{n}\right|^{1-\frac{\rho\left(\left|a_{n}\right|\right)}{2}}
$$

with centers at the points a_{n} do not intersect.
A regular point set A satisfying one of the conditions (C) or $\left(C^{\prime}\right)$ is called a regular in sense of Levin, or more briefly an R-set in sense of Levin, while the disks $\left|z-a_{n}\right| \leq r_{n}$ are called the exceptional disks of the R-set $\left(C_{R^{-}}\right.$-disks).
The sets which satisfy the condition (C) play important role in the theory of entire functions, in particular, for constructing canonical products of the sets [2]-[5]. In this paper we generalize this concept by introducing the notions of regular sets and weakly regular sets in complex plane and half-plane. We will show that these sets are interpolation sets.

[^0]In $[\mathbf{6}, \mathbf{7}]$ the regular sets $A=\left\{a_{n}, n=1,2, \ldots\right\}$ in the upper half-plane $\mathbb{C}_{+}=\{z: \Im z>0\}$ with property "For all points it is true that

$$
\left|a_{n+1}\right|-\left|a_{n}\right| \geq r_{n}=d \sin \arg \left(a_{n}\right)\left|a_{n}\right|^{1-\rho\left(\left|a_{n}\right|\right)}
$$

for some $d>0$, "were considered. Such sets were used also for constructing canonical products of the sets in the upper half-plane \mathbb{C}_{+}.

2. Weakly regular sets in complex plane

In this paper, following Titchmarsh, we will use the following definitions and notations. If there is a value which is not depending on the basic variables it is called as a constant. For denoting absolute positive constants, not necessarily same, we use letters A, M, K. Statements like " $|v(z)|<M \gamma(r)$ hence $3|v(z)|<M \gamma(r)$ " should not cause any misunderstanding. Denote the class of entire functions f of order $\rho>0$ by $[\rho, \infty]$ i.e.

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{+} \log ^{+}\left|f\left(r e^{i \theta}\right)\right|}{\log r} \leq \rho
$$

Definition 2.1. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is called an interpolation sequence in the class $[\rho, \infty]$ if for any numerical sequence $\left\{b_{n}, n=1,2, \ldots\right\}$ satisfying the condition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log ^{+} \log ^{+}\left|b_{n}\right|}{\log \left|a_{n}\right|} \leq \rho \tag{1}
\end{equation*}
$$

there exists a function $f \in[\rho, \infty]$ solving the interpolation problem

$$
\begin{equation*}
f\left(a_{n}\right)=b_{n}, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

Let $\rho(r)$ be a proximate order, $\lim _{r \rightarrow \infty} \rho(r)=\rho>0$. Denote the class of entire functions f of at most normal type for $\rho(r)$ by $[\rho(r), \infty)$ i.e.

$$
\log ^{+}\left|f\left(r e^{i \theta}\right)\right| \leq C_{f} V(r),
$$

where $V(r)=r^{\rho(r)}$, and $C_{f}>0$ is a finite constant.
Definition 2.2. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is called an interpolation sequence in the class $[\rho(r), \infty)$ if for any numerical sequence $\left\{b_{n}, n=1,2, \ldots\right\}$ satisfying the condition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log ^{+}\left|b_{n}\right|}{V\left(\left|a_{n}\right|\right)}<\infty \tag{3}
\end{equation*}
$$

there exists a function $f \in[\rho(r), \infty)$ solving the interpolation problem (2).
Let $C(a, r)$ be an open disc of radius r about a point a. From the set A we define the measure $n(G)=\sum_{a_{n} \in G} 1$ and the family of functions

$$
\Phi_{z}(\alpha)=\frac{\max \{n(C(z, \alpha|z|))-1 ; 0\}}{V(|z|)}
$$

The following theorems were obtained in [8].

Theorem 2.3. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is an interpolation sequence in the class $[\rho, \infty]$ if and only if there exists a proximate order $\rho(r), \lim _{r \rightarrow \infty} \rho(r) \leq \rho$, such that

$$
\begin{equation*}
\Phi_{z}(\alpha) \leq(\ln 1 / \alpha)^{-1} \tag{4}
\end{equation*}
$$

Theorem 2.4. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is an interpolation sequence in the class $[\rho(r), \infty)$ if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{C}} \int_{0}^{1 / 2} \frac{\Phi_{z}(\alpha)}{\alpha} d \alpha<\infty \tag{5}
\end{equation*}
$$

Now we will introduce the following definitions.
Definition 2.5. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is called a weakly regular sequence of an order $\rho>0$ or more briefly an $W R(\rho)$-set, if there exists a proximate order $\rho(r)$, $\lim _{r \rightarrow \infty} \rho(r)=\rho$ such that one of the conditions (C) or $\left(C^{\prime}\right)$ is true and

$$
\begin{equation*}
n(C(0, r)) \leq K V(r), \quad K>0 \tag{6}
\end{equation*}
$$

Definition 2.6. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is called a weakly regular sequence of a proximate order $\rho(r)$ or more briefly a $W R(\rho(r))$-set, if it satisfies (6) and one of the conditions (C) or (C^{\prime}) holds.

Let us give the following two theorems.
Theorem 2.7. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a weakly regular sequence of a proximate order $\rho(r)$. Then A is an interpolation sequence in the class $[\rho(r), \infty)$.

Theorem 2.8. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a weakly regular sequence of an order ρ. Then A is an interpolation sequence in the class $[\rho, \infty]$.

We will use the following lemma from [1].
Lemma 2.9. Let ρ be a proximate order, $\lim _{r \rightarrow \infty} \rho(r)=\rho>0$. Then asymptotic inequality

$$
(1-\varepsilon) k^{\rho} V(r)<V(k r)<(1+\varepsilon) k^{\rho} V(r)
$$

holds uniformly with respect to $k, 0<a \leq k \leq b$, as $r \rightarrow \infty$.
We now obtain some consequences of conditions (C) and $\left(C^{\prime}\right)$.
Lemma 2.10. If a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ satisfies the condition (C) then there exists a number $d_{1}>0$ such that the disks of radii $d_{1}\left|a_{n}\right| / V\left(\left|a_{n}\right|\right.$ with centers a_{n} do not intersect.

We will prove the analogous lemma below (see Lemma 3.9). First we give a definition.
Definition 2.11. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a weakly regular sequence of a proximate order $\rho(r)$ (of an order ρ). Then exceptional disks are called $C_{R}(\rho(r))$-disks ($C_{R}(\rho)$-disks).

Lemma 2.12. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a weakly regular sequence of a proximate order $\rho(r)$. If the condition (C) holds then

$$
\begin{equation*}
\Phi_{z}(\alpha) \leq K \alpha \tag{7}
\end{equation*}
$$

and if the condition $\left(C^{\prime}\right)$ is true then

$$
\begin{equation*}
\Phi_{z}(\alpha) \leq K \alpha^{2} \tag{8}
\end{equation*}
$$

fore some $K>0$.
Proof. Let us assume that the condition (C) holds and the point z does not belong to any of $C_{R}([\rho(r), \infty))$-disks of an exceptional set. Let us take the disk $C(z, \alpha|z|)$ with center at the point z of the radius $\alpha|z|$. If the points $a_{n}=r_{n} e^{i \theta_{n}} \in C(z, \alpha|z|)$ denoted by [α_{n}, β_{n}] circular projection of a segment $\left[a_{n}, a_{n}+e^{i \theta_{n}} d\left|a_{n}\right|^{1-\rho\left(\left|a_{n}\right|\right)}\right]$ is on the ray $\arg \xi=\arg z$. Since the point z does not belong to the exceptional disk corresponding to the point $a_{n},\left[\alpha_{n}, \beta_{n}\right]$ belong to the disk $C(z, 2 \alpha|z|)$. The condition (C) implies that all such segments do not intersect and therefore

$$
\sum_{a_{n} \in C(z, \alpha|z|)} d\left|a_{n}\right|^{1-\rho\left(\left|a_{n}\right|\right)} \leq 4 \alpha|z|
$$

From this inequality and lemma 2.9 we get

$$
\begin{equation*}
n(C(z, \alpha|z|)) \leq M \alpha V(|z|) \tag{9}
\end{equation*}
$$

for $\alpha \leq 1 / 2$. The inequality (9) holds for all points z which do not belong to exceptional disks. If the point z belongs to an exceptional disk then right part of the inequality (9) can increase no more than by unit. Therefore, for all $z \in \mathbb{C}, \Phi(z \alpha) \leq M \alpha, \alpha \leq 1 / 2$.
Estimation of (8) under the condition $\left(C^{\prime}\right)$ can be obtained by comparing the areas of the disks [1].

The proof of Theorem 2.7 follows from Lemma 2.12 and (5). The proof of Theorem 2.8 follows from Theorem 2.7.

3. Weakly Regular sets in half-plane

Let $\mathbb{C}_{+}=\{z: \Im z>0\}$ be the upper half-plane. Denote the class of analytic functions f of order $\rho>0$ in \mathbb{C}_{+}by $[\rho, \infty]^{+}[\mathbf{9}]$.

Definition 3.1. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is called an interpolation sequence in the class $[\rho, \infty]^{+}$if for any numerical sequence $\left\{b_{n}, n=1,2, \ldots\right\}$ satisfying the condition (1) there exists a function $f \in[\rho, \infty]^{+}$solving the interpolation problem (2).

Let $\rho(r)$ be a proximate order, $\lim _{r \rightarrow \infty} \rho(r)=\rho>0$. Denote the class of analytic functions f of half-formal order $\rho(r)$ in sense of Grishin [10] by $[\rho(r), \infty)^{+}$.

Definition 3.2. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is called an interpolation sequence in the class $[\rho(r), \infty)^{+}$if for any numerical sequence $\left\{b_{n}, n=1,2, \ldots\right\}$ satisfying the condition condition (3) there exists a function $f \in[\rho(r), \infty)^{+}$solving the interpolation problem (2).

From the set A we define the measure $n^{+}(G)=\sum_{a_{n} \in G} \sin \left(\arg a_{n}\right)$ and the family of functions

$$
\Phi_{z}^{+}(\alpha)=\frac{\max \left\{n^{+}(C(z, \alpha|z|))-\sin \arg a_{n} ; 0\right\}}{V(|z|)}
$$

where a_{n} is the point closest to z (if there are several such points, then we choose the one with the largest $\left.\sin \arg a_{n}\right)$.
The following theorem was obtained in [8].
Theorem 3.3. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is an interpolation sequence in the class $[\rho, \infty]^{+}$if and only if there exists a proximate order $\rho(r), \lim _{r \rightarrow \infty} \rho(r) \leq \rho$ such that

$$
\begin{gather*}
\Phi_{z}^{+}(\alpha) \leq 2 \alpha, \quad \alpha \geq(\sin (\arg z)) / 2 \tag{10}\\
\Phi_{z}^{+}(\alpha) \leq \frac{\sin (\arg z)}{\ln (e \sin (\arg z)) /(2 \alpha))}, \quad \alpha<(\sin (\arg z)) / 2 \tag{11}
\end{gather*}
$$

Necessary and sufficient criteria of solvability of interpolation problem in the class $[\rho(r), \infty)^{+}$ were obtained in [11].

Theorem 3.4. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ is an interpolation sequence in the class $[\rho(r), \infty)^{+}$if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{C}_{+}} \sin (\arg z) \int_{0}^{1 / 2} \frac{\Phi_{z}^{+}(\alpha) d \alpha}{\alpha(\alpha+\sin (\arg z))^{2}}<\infty \tag{12}
\end{equation*}
$$

We will introduce the following definitions.
Definition 3.5. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}, A \in \mathbb{C}_{+}$, is called a weakly regular sequence in \mathbb{C}_{+}at a proximate order $\rho(r)$, or more briefly an $W R^{+}(\rho(r))$-set, if one of the conditions $\left(\mathrm{C}_{+}\right)$or $\left(\mathrm{C}_{+}{ }^{\prime}\right)$ holds:
$\left(\mathrm{C}_{+}\right)$1) Among points of a set of A there are no multiple points and there are no points with identical modulus;
2) $A \cap C(0,2)=\emptyset$;
3) the condition

$$
n^{+}(C(0, r)) \leq K V(r), \quad K>0
$$

holds;
4) there exists a number $d>0$ such that for all points a_{n} and a_{k} of A satisfying the inequality $\left|a_{n}\right| \geq\left|a_{k}\right|$ we have

$$
\begin{equation*}
\left|a_{n}\right| \geq\left|a_{k}\right|+d \Im a_{k} / V\left(\left|a_{k}\right|\right) . \tag{13}
\end{equation*}
$$

$\left(\mathrm{C}_{+}^{\prime}\right) 1$) Among points of a set of A there are no multiple points and there are no points with identical modulus;
2) $A \cap C(0,2)=\emptyset$;
3) the condition

$$
n^{+}(C(0, r)) \leq K V(r), \quad K>0
$$

holds;
4) there exists a number $d>0$ such that the disks of radii

$$
r_{n}=d\left(\sin \left(\arg a_{n}\right)\right)^{1 / 2}\left|a_{n}\right|^{1-\frac{\rho\left(\left|a_{n}\right|\right)}{2}}
$$

with centers at the points a_{n} do not intersect.
Definition 3.6. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}, A \in \mathbb{C}_{+}$, is called a weakly regular sequence in \mathbb{C}_{+}of an order ρ, or more briefly a $W R^{+}(\rho)$-set, if there exists a proximate order $\rho(r), \lim _{r \rightarrow \infty} \rho(r)=\rho$, such that one of the conditions $\left(\mathrm{C}_{+}\right)$or $\left(\mathrm{C}_{+}{ }^{\prime}\right)$ holds.

Let us give the following two theorems.
Theorem 3.7. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a weakly regular sequence in \mathbb{C}_{+} of a proximate order $\rho(r)$. Then A is an interpolation sequence in the class $[\rho(r), \infty)^{+}$.

Theorem 3.8. A sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}, A \in \mathbb{C}_{+}$, is called a weakly regular sequence in \mathbb{C}_{+}of an order ρ. Then A is an interpolation sequence in the class $[\rho, \infty]^{+}$.

We now obtain some consequences of conditions $\left(\mathrm{C}_{+}\right)$and $\left(\mathrm{C}_{+}{ }^{\prime}\right)$.
Lemma 3.9. If a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}, A \in \mathbb{C}_{+}$, satisfies condition $\left(\mathrm{C}_{+}\right)$then there exists a number $d_{1}>0$ such that the disks of radii $d_{1} \Im a_{n} / V\left(\left|a_{n}\right|\right)$ with centers at the points a_{n} do not intersect.

Proof. There exists a number $M_{1}>1$ such that for all r_{1} and $r_{2}, 1 \leq r_{1} \leq r_{2} \leq 2 r_{1}(1+d)$, we have

$$
\begin{equation*}
r_{2} / V\left(r_{2}\right) \leq M_{1} r_{1} / V\left(r_{1}\right) \tag{14}
\end{equation*}
$$

Denote $a_{n}=r_{n} e^{i \theta_{n}}, n \in \mathbb{N}$. Let $r_{j}>r_{i}$ and $\sin \theta_{j} \leq 4 \sin \theta_{i}$. If $r_{j} \geq 2\left(r_{i}+d \Im a_{i} / V\left(r_{i}\right)\right)$ then the disks $C\left(a_{i}, d \Im a_{i} / V\left(r_{i}\right)\right)$ and $C\left(a_{j}, r_{j} / 2\right)$ do not intersect. Because in this case for all points $z \in C\left(a_{j}, r_{j} / 2\right)$ the inequality is carried out

$$
\left|z-a_{i}\right| \geq\left|a_{j}-a_{i}\right|-\left|z-a_{j}\right| \geq r_{j}-r_{i}-r_{j} / 2=r_{j} / 2-r_{i} \geq d \Im a_{i} / V\left(r_{i}\right)
$$

Thus $z \notin C\left(a_{i}, d \Im a_{i} / V\left(r_{i}\right)\right)$. Since $V\left(r_{j}\right) \geq 1$ then the disks $C\left(a_{i}, d \Im a_{i} / V\left(r_{i}\right)\right)$ and $C\left(a_{j}, d \Im a_{j} /\left(2 V\left(r_{j}\right)\right)\right)$ do not intersect.
If $r_{j}<2\left(r_{i}+d \Im a_{i} / V\left(r_{i}\right)\right)$ and $\sin \theta_{j} \leq 4 \sin \theta_{i}$ we have $r_{j}<2 r_{i}(1+d)$. From (14), $d \Im a_{j} /\left(8 M_{1} V\left(r_{j}\right)\right) \leq d \sin \theta_{j} r_{i} /\left(8 V\left(r_{i}\right)\right) \leq d \Im a_{i} /\left(2 V\left(r_{i}\right)\right)$. From (13), we obtain that the disks $C\left(a_{j}, d \Im a_{j} /\left(8 M_{1} V\left(r_{j}\right)\right)\right.$ and $C\left(a_{i}, d \Im a_{i} /\left(2 V\left(r_{i}\right)\right)\right.$ do not intersect.
Let $\sin \theta_{j}>4 \sin \theta_{i}$ and $r_{j}<2\left(r_{i}+d \Im a_{i} / V\left(r_{i}\right)\right)$. Then the disks $C\left(a_{j}, d_{1} \Im a_{j} / V\left(r_{j}\right)\right)$ and $C\left(a_{i}, d_{1} \Im a_{i} / V\left(r_{i}\right)\right)$, where $d_{1}=d / 2(9+d)$, do not intersect.
Really, let us find d_{1} such that

$$
r_{j}-d_{1} \frac{\Im a_{j}}{V\left(r_{j}\right)}>r_{i}+d_{1} \frac{\Im a_{i}}{V\left(r_{i}\right)}
$$

We have

$$
r_{j}-r_{i} \geq d \frac{r_{i} \Im a_{i}}{V\left(r_{i}\right)}
$$

Then

$$
\begin{gathered}
4 d_{1} \frac{r_{j}}{V\left(r_{j}\right)}+d_{1} \frac{r_{i}}{V\left(r_{i}\right)}<d \frac{r_{i}}{V\left(r_{i}\right)} \\
d_{1}\left(8\left(r_{i}+\frac{d \Im a_{i}}{V\left(r_{i}\right)}\right)+r_{i}\right)<d r_{i}
\end{gathered}
$$

From this we get $d_{1}<d /(9+d)$.
It is necessary to take

$$
d_{1}=\min \left\{\frac{d}{2(9+d)} ; \frac{d}{8 M_{1}}\right\}
$$

Definition 3.10. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}, A \in \mathbb{C}_{+}$, be a weakly regular sequence in \mathbb{C}_{+}of a proximate order $\rho(r)$ (of an order ρ). Then exceptional disks are called $C_{R}^{+}(\rho(r))$-disks $\left(C_{R}^{+}(\rho)\right.$-disks).

Lemma 3.11. Let a sequence $A=\left\{a_{n}, n=1,2, \ldots\right\}$ be a weakly regular sequence in \mathbb{C}_{+}of a proximate order $\rho(r)$. If the condition $\left(\mathrm{C}_{+}\right)$holds then

$$
\begin{equation*}
\Phi_{z}(\alpha) \leq K \alpha \tag{15}
\end{equation*}
$$

and if the condition $\left(\mathrm{C}_{+}^{\prime}\right)$ is true then

$$
\begin{equation*}
\Phi_{z}(\alpha) \leq K \alpha^{2} \tag{16}
\end{equation*}
$$

for some $K>0$.
Proof. Let us assume that the condition $\left(\mathrm{C}_{+}^{\prime}\right)$ holds and take a point z which does not belong to any of $C_{R}^{+}([\rho(r), \infty))$-disks of an exceptional set. Let us take the disk $C(z, \alpha|z|)$ with center at the point z of the radius $\alpha|z|$. Since the center of this disk does not belong to any of $C_{R}^{+}([\rho(r), \infty))$-disks of the exceptional set then radii of the exceptional disks with centers in this disk are less than $\alpha|z|$. Since the exceptional disks do not intersect then sum of their areas is less than the area of $C(z, 2 \alpha|z|)$, i.e.

$$
\begin{equation*}
\sum_{a_{n} \in C(z, 2 \alpha|z|} d^{2} \sin \left(\arg a_{n}\right)\left|a_{n}\right|^{2-\rho\left(\left|a_{n}\right|\right)} \leq 4 \alpha^{2}|z|^{2} \tag{17}
\end{equation*}
$$

If the point $a_{n}=r_{n} e^{i \theta_{n}} \in C(z, \alpha|z|)$ then

$$
(1-\alpha)|z| \leq\left|a_{n}\right| \leq(1+\alpha)|z|
$$

From this inequality and (17), we obtain (16).
The proof of Theorem 3.7 follows from Lemma 3.11 and (12).
The proof of Theorem 3.8 follows from Theorem 3.7.

References

[1] Levin, B.Ya., Distribution of Zeros of Entire Functions, English revised edition Amer. Math. Soc, Providence, RI, 523pp. MR 81k:30011, 1980.
[2] Leont'ev, A.F., Ryady e'ksponent Nauka, (Russian), 1976.
[3] Firsakova, A.F., Some questions of interpolation with help of entire functions, Dokl. Akad. Nauk SSSR, 120, 3 (1958), 477-480. (Russian)
[4] Uen, N.T., Interpolation problems in half-plane in the class of analytic functions of finite order and normal type, Teoria funksii, functional. Anal. i Prilozhen., 24 (1975), 106-127. (Russian)
[5] Grishin, A.F., About sets of regular growth of entire functions, Teoria funksii, functional. Anal. i Prilozhen., 44 (1984), 32-42. (Russian)
[6] Malyutin, K.G., On sets of regular growth of functions in a half-plane, I, Izvestija: Mathematics, 59, 4 (1995), 785-814.
[7] Malyutin, K.G., On sets of regular growth of functions in a half-plane, I, Izvestija: Mathematics, 59, 5 (1995), 983-1006.
[8] Malyutin, K.G., Interpolation by holomorphic functions, Thesis for the degree of Candidate of Physics and Mathematics, Kharkov, 1980.
[9] Govorov, N.V., Riemann's Boundary Problem With Infinite Index, Moskva: Nauka, 1986.
[10] Grishin, A.F., Subharmonic functions of finite order, Thesis for the degree of Doctor of Physics and Mathematics, Kharkov, 1992.
[11] Malyutin, K.G., The problem of multiple interpolation in the half-plane in the class, Russian Acad. Sci. Sb. Math., 78, 1 (1994), 253-266.

Konstantin G. MALYUTIN, Sumy State University, Department of Mathematical Analysis, 2, RimskogoKorsakova str., UKR-40007, Sumy, Ukraine, e-mail: malyutinkg@yahoo.com,
http://www.mathnet.ru/php/person.phtml
Oksana A. BOZHENKO, Sumy State University, Department of Mathematical Analysis, 2, RimskogoKorsakova str., UKR-40007, Sumy, Ukraine, e-mail: ksu21021012@mail.ru

[^0]: Received May 8, 2013.
 2010 Mathematics Subject Classification. Primary 35R35, 49M15, 49N50.
 Keywords and phrases. Regular set, proximate order, weakly regular set, interpolation sequence.
 The research was carried out on a subject No 0111U002152.

