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SOME FORMULAS FOR THE ACTION OF STEENROD POWERS ON

COHOMOLOGY RING OF K
(
Zn
p , 2

)
BEKİR TANAY and TARKAN ÖNER

Abstract. In this study we give some formulas for the action of Steenrod powers on certain
monomials and some polynomials having these monomials as a factor in the polynomial algebra
P (n) = Zp [x1, . . . , xn], deg (xi) = 2, i = 1, . . . , n and p is an odd prime. We also give some
new family of hit polynomials.

1. Introduction and Preliminaries

Steenrod square Sqk : Hn(X;Z2) −→ Hn+k(X;Z2) and Steenrod power P k : Hn(X;Zp) −→
Hn+2k(p−1)(X;Zp) operations are cohomology operations. They were introduced by Nor-

man Steenrod [1, 2]. These operations are used to solve some problems in algebraic topology

[3, 4]. Steenrod algebra is generated by these operations and the structure of this algebra

was studied by various mathematicians [5]-[10]. This algebra acts on the cohomology ring

H∗(X;Zp). These actions are determined by the following propositions.

Proposition 1.1. [11] For α, α1, α2 ∈ H∗(X;Z2),

i) Sq0 is the identity morphism,

ii) Sqk (α) = α2 if k = deg (α) ,

iii) Sqk (α) = 0 if k > deg (α) ,

iv) The Cartan formula

Sqk (α1 ∪ α2) =
∑

i+j=k

Sqi (α1)Sq
j (α2)

holds.

Proposition 1.2. [11] For α, α1, α2 ∈ H∗(X;Zp),

i) P 0 is the identity morphism,

ii) P k (α) = αp if 2k = deg (α) ,

iii) P k (α) = 0 if 2k > deg (α),

iv) The Cartan formula

P k (α1 ∪ α2) =
∑

i+j=k

P i (α1)P
j (α2)
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holds.

For the topological space X =
n∏

i=1

RP∞, the cohomology ring H∗(X;Z2) is the polynomial

algebra ℘ (n) = F2 [x1, . . . , xn] = ⊕d≥0℘
d (n) , deg (xi) = 1, i = 1, . . . , n [12] and the action

of Steenrod squares on ℘ (n) as follows by the Proposition 1.1.

Proposition 1.3. For the homogeneous element f in ℘ (n) we have

i) Sq0 is the identity morphism,

ii) Sqk (f) = f2 if k = deg (f),

iii) Sqk (f) = 0 if k > deg (f),

iv) The Cartan formula

Sqk (fg) =
∑

i+j=k

Sqi (f)Sqj (g) ,

where f, g are homogeneous elements in ℘ (n) holds.

Similarly, the cohomology ring H∗(X;Zp) is the polynomial algebra P (n) = Fp [x1, . . . , xn]

= ⊕d≥0P
d (n), deg (xi) = 2, i = 1, . . . , n where X = K

(
Zn
p ; 2

)
[13]. The action of Steenrod

powers on P (n) is given as follows by the Proposition 1.2.

Proposition 1.4. For the homogeneous element f in P (n) we have

i) P 0 is the identity morphism,

ii) P k (f) = fp if 2k = deg (f),

iii) P k (f) = 0 if 2k > deg (f),

iv) The Cartan formula

P k (fg) =
∑

i+j=k

P i (f)P j (g) ,

where f, g are homogeneous elements in P (n) holds.

In [14], Janfada gave useful formulas for the action of Steenrod squares on the monomials

of the polynomial algebra ℘ (n) and by using these formulas, he also gave an application on

hit polynomials.

Aim of this study is to give similar formulas given in [14] for Steenrod powers P k.

To obtain the action of P kon powers of a generator of P (n), we need the followings.

Definition 1.5. [15] Summation of all Steenrod powers

P =
∑
k≥0

P k

is called total Steenrod power.

Lemma 1.6. [15] If f ∈ P2 (n), then we have P (f) = f + fp.

Total Steenrod power defines an action on P (n) by the property (iii) of Proposition 1.4,

since only a finite number of P k can be nonzero on a given polynomial. By using Cartan

formula, it can be shown that P (fg) = P (f)P (g). So P : P (n) −→ P (n) becomes a ring

homomorphism. By using this property we have the following lemma.
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Lemma 1.7. [15] If f ∈ P2 (n), then we have P k (fr) =
(
r
k

)
f (p−1)k+r.

In particular, if we take f = xi ∈ P2 (n) in Lemma 1.7, we have the following corollary.

Corollary 1.8. If x ∈ P2 (n), then we have

P k(xr
i ) =

(
r

k

)
x
(p−1)k+r
i .

Hence we have a formula for the action of P k on powers of generators. But since Steenrod

power operations are not ring homomorphisms, we cannot extend this corollary to any

monomial.

The aim of this study is to give a formula for the action of P k on the monomials xm1p
t

1 ... xmnp
t

n

where mi ≥ 0 and t ≥ 1 for some special values of k. Moreover if a polynomial

(1) g =
(
xm1p

t

1 . . . xmnp
t

n

)
f

is given, by using Cartan formula we have

P k (g) =
∑

i+j=k

P i
(
xm1p

t

1 . . . xmnp
t

n

)
P j (f) .

After having formulas on P i
(
xm1p

t

1 . . . xmnp
t

n

)
for some special values of k, we only need to

know the value of P j (f) to calculate monomial P k (g).

This result will be used to obtain new hit polynomials by using certain hit polynomials.

If we take g as a monomial xe1
1 . . . xen

n , then for mi ≥ 0 and certain ti we have

g = xe1
1 . . . xen

n =
(
xm1p

t

1 . . . xmnp
t

n

)
(xa1

1 . . . xan
n ) ,

where xa1
1 . . . xan

n corresponds f in the equation (1). We will use this result in applications.

Throughout the paper, we will use the following notations for simplicity:

xa = xa1
1 . . . xan

n ,

xm(pt) = xm1p
t

1 . . . xmnp
t

n .

2. Results

We start with the following results which can be found in [16] for the action of Steenrod

squares on Z2 [x1, . . . , xn].

Theorem 2.1. For f ∈ P (n) and k, s ≥ 0,

P k (fp) =

{
[P s (f)]

p
, k = sp,

0 , otherwise.

Proof. Since P is a ring homomorphism we have P (fp) = [P (f)]
p
. From the left hand side,

we have

P (fp) =
∑
k≥0

P k (fp)

= P 0 (fp) + P 1 (fp) + P 2 (fp) + · · · ,
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and from the right hand side, we have

[P (f)]
p
=

∑
k≥0

P k (f)

p

=
∑
k≥0

[
P k (f)

]p
=

[
P 0 (f)

]p
+

[
P 1 (f)

]p
+
[
P 2 (f)

]p
+ · · · .

Since the terms having the same exponents must be equal, the claim is true. �

Theorem 2.2. For f ∈ P (n) and k, t ≥ 0,

P k
(
fpt

)
=

{
[P s (f)]

pt

, k = spt,
0 , otherwise.

Proof. We prove by induction on t. For t = 0, the result is obvious. For t = 1, it is true by

Theorem 2.1. Assume that the result is true for smaller values than t. Since we can write

P k
(
fpt

)
= P k

(
fpt−1p

)
= P k

([
fpt−1

]p)
for t, by Theorem 2.1 we have

P k
(
fpt

)
=

{ [
P s1

(
fpt−1

)]p
, k = s1p

0 , otherwise

Then we have

P s1
(
fpt−1

)
=

{
[P s (f)]

pt−1

, s1 = spt−1

0 , otherwise

by the assumption of induction. These prove the theorem. �

Theorem 2.3. For f, g ∈ P (n) and k, s ≥ 0,

P k
(
gfpt

)
=

∑
i+spt=k

P i (g) [P s (f)]
pt

.

Proof. This is a consequence of the Cartan formula and Theorem 2.2. �

Theorem 2.4. Let n ∈ Z+. The following relation

P k (xe1
1 . . . xen

n ) =
∑

i1+···+in=k

P i1 (xe1
1 ) . . . P in (xen

n )

holds.

Proof. We prove by induction on n. For n = 2, it is true by Cartan formula. Assume that

the following is true for n.

P k (xe1
1 . . . xen

n ) =
∑

i1+···+in=k

P i1 (xe1
1 ) . . . P in (xen

n ) .
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For n+ 1, we can write

P k
(
xe1
1 . . . xen

n x
en+1

n+1

)
=

∑
i+in+1=k

P i (xe1
1 . . . xen

n )P in+1
(
x
en+1

n+1

)
=

∑
i+in+1=k

[ ∑
i1+···+in=i

P i1 (xe1
1 ) . . . P in (xen

n )

]
P in+1

(
x
en+1

n+1

)
=

∑
i1+···+in+1=k

P i1 (xe1
1 ) . . . P in+1

(
x
en+1

n+1

)
.

Hence proof is completed. �

Lemma 2.5. Let f ∈ P2 (n), t ≥ 1 and 0 ≤ r ≤ p− 1. Then

P k
(
frpt

)
=

{ (
r
s

)
f (p−1)k+rpt

, k = spt, 1 ≤ s ≤ r,
0 , otherwise.

Proof. By Theorem 2.2 and Lemma 1.7, we have

P k
(
frpt

)
= P k

(
[fr]

pt
)
=

{
[P s (fr)]

pt

, k = spt, 1 ≤ s ≤ r
0 , otherwise

=

{ [(
r
s

)
f (p−1)s+r

]pt
, k = spt, 1 ≤ s ≤ r

0 , otherwise

=

{ (
r
s

)
f (p−1)spt+rpt

, k = spt, 1 ≤ s ≤ r
0 , otherwise

=

{ (
r
s

)
f (p−1)k+rpt

, k = spt, 1 ≤ s ≤ r
0 , otherwise.

�

By Lemma 2.5, we have the following corollary.

Corollary 2.6. Let xi ∈ P2 (n), t ≥ 1 and 0 ≤ r ≤ p− 1. Then

P k
(
xrpt

i

)
=

{ (
r
s

)
x
(p−1)k+rpt

i , k = spt, 1 ≤ s ≤ r,
0 , otherwise.

Next corollary is an extension of Corollary 2.6 to n variables.

Corollary 2.7. Let t ≥ 1, 0 ≤ ri ≤ p− 1 and xr1p
t

1 . . . xrnp
t

n ∈ P (n). Then

Pk
(
xr(pt)

)
=


∑

s1+···+sn=s

(
r1
s1

)
x
(p−1)s1pt+r1pt

1 ...
(
rn
sn

)
x
(p−1)snpt+rnpt

n , k=spt, 1≤sj≤rj ,

0 , otherwise.

Proof. By Theorem 2.4 and Corollary 2.6, we have the followings:
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Pk
(
xr(pt)

)
=

∑
i1+···+in=k

P i1
(
xr1p

t

1

)
. . . P in

(
xrnpt

n

)

=


∑

i1+···+in=k

(
r1
s1

)
x
(p−1)s1pt+r1pt

1 ...
(
rn
sn

)
x
(p−1)snpt+rnpt

n , ij=sjp
t,1≤sj≤rj ,

0 , otherwise.

=


∑

s1+···+sn=s

(
r1
s1

)
x
(p−1)s1pt+r1pt

1 ...
(
rn
sn

)
x
(p−1)snpt+rnpt

n ,k=spt,1≤sj≤rj ,

0 , otherwise.

�

Remark. If we take k = pt(s = 1) in Corollary 2.7, we have

P pt
(
xr(pt)

)
=

∑
s1+···+sn=1

(
r1
s1

)
x
(p−1)s1p

t+r1p
t

1 . . .

(
rn
sn

)
x(p−1)snp

t+rnp
t

n

=

(
r1
1

)
x
(p−1)1pt+r1p

t

1

(
r1
0

)
x
(p−1)0pt+r2p

t

2 . . .

(
rn
0

)
x(p−1)0pt+rnp

t

n +

...

+

(
r1
0

)
x
(p−1)0pt+r1p

t

1 . . .

(
rn−1

0

)
x
(p−1)0pt+rn−1p

t

n−1

(
rn
1

)
x(p−1)1pt+rnp

t

n

= r1x
(p−1)pt+r1p

t

1 .xr2p
t

2 . . . xrnp
t

n +

...

+ xr1p
t

1 . . . x
rn−1p

t

n−1 rnx
(p−1)pt+rnp

t

n

= xr1p
t

1 . . . xrnp
t

n

(
r1x

(p−1)pt

1 + · · ·+ rnx
(p−1)pt

n

)
.(2)

Theorem 2.8. Let t ≥ 1, mi = qip , qi ≥ 1, 1 < i < n. Then

P k
(
xm(pt)

)
=

{
[P s (xq1

1 . . . xqn
n )]

pt+1

, k = spt+1, 1 ≤ s ≤ m1 + · · ·+mn,
0 , otherwise.

Proof. Since mi = qip for all i,

xm1p
t

1 . . . xmnp
t

n = xq1pp
t

1 . . . xqnpp
t

n = xq1p
t+1

1 . . . xqnp
t+1

n = (xq1
1 . . . xqn

n )
pt+1

.

P k
(
xm(pt)

)
= P k

(
(xq1

1 . . . xqn
n )

pt+1
)

then by Theorem 2.2 we have

P k
(
xm(pt)

)
=

{
[P s (xq1

1 . . . xqn
n )]

pt+1

, k = spt+1, 1 ≤ s ≤ m1 + · · ·+mn

0 , otherwise.

The condition 1 ≤ s ≤ m1 + · · ·+mn comes from Proposition 1.4 (iii). �
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Theorem 2.9. Let t ≥ 1, qi ≥ 1, mi = qip + ri, 1 ≤ ri ≤ p − 1 for i = 1, . . . , h, and
mi = qip for i = h+ 1, . . . , n. Then

Pk
(
xm(pt)

)
=


∑

s1pt+1+s2pt=k

[Ps1 (x
q1
1 ...xqn

n )]p
t+1 [

Ps2
(
x
r1
1 ...x

rh
h

)]pt , 1≤s1≤q1+···+qn

, 0≤s2≤r1+···+rh

0 , otherwise.

Proof. Since mi = qip+ ri, 1 ≤ ri ≤ p− 1 for i = 1, . . . , h and mi = qip for i = h+1, . . . , n,

we have

xm1p
t

1 . . . xmnp
t

n = x
(q1p+r1)p

t

1 . . . x
(qhp+rh)p

t

h x
qh+1pp

t

h+1 xqnpp
t

n

= xq1p
t+1

1 . . . xqnp
t+1

n xr1p
t

1 . . . xrhp
t

h = (xq1
1 . . . xqn

n )
pt+1

(xr1
1 . . . xrh

h )
pt

then by Cartan formula we have

P k
(
xm(pt)

)
=

∑
i+j=k

P i
(
(xq1

1 . . . xqn
n )

pt+1
)
P j

(
(xr1

1 . . . xrh
h )

pt
)
.

By Theorem 2.2

Pk
(
xm(pt)

)
=


∑

s1pt+1+s2pt=k

[Ps1 (x
q1
1 ...xqn

n )]p
t+1[

Ps2
(
x
r1
1 ...x

rh
h

)]pt , 1≤s1≤q1+···+qn

, 0≤s2≤r1+···+rh

0 , otherwise.

The conditions 1 ≤ s1 ≤ q1 + · · ·+ qn and 0 ≤ s2 ≤ r1 + · · ·+ rh yield from Proposition 1.4

(iii). �

From Theorem 2.8, we have the following corollary for k ≤ pt+1.

Corollary 2.10. Let t ≥ 1,mi = qip ,qi ≥ 1. Then

for k = 0

P 0
(
xm(pt)

)
= xm1p

t

1 . . . xmnp
t

n ,

for 0 < k < pt+1

P k
(
xm(pt)

)
= 0,

for k = pt+1

P pt+1
(
xm(pt)

)
=

[
P 1 (xq1

1 . . . xqn
n )

]pt+1

.

From Theorem 2.9 and equation (2), we have the following corollary for k ≤ pt.

Corollary 2.11. Let t ≥ 1, qi ≥ 1, mi = qip + ri, 1 ≤ ri ≤ p − 1 for i = 1, . . . , h, and

mi = qip for i = h+ 1, . . . , n. Then

for k = 0

P 0
(
xm(pt)

)
= xm1p

t

1 . . . xmnp
t

n ,

for 0 < k < pt

P k
(
xm(pt)

)
= 0,

for k = pt

P pt
(
xm(pt)

)
= xm1p

t

1 . . . xmnp
t

n

(
r1x

(p−1)pt

1 + · · ·+ rhx
(p−1)pt

h

)
.
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Following theorem is one of the main results mentioned in the introduction.

Theorem 2.12. Let f ∈ P (n). Then for xm(pt)f ∈ P (n), we have the following formulas:

i)

P 0
(
xm(pt)f

)
= xm(pt)f,

ii) t ≥ 1,mi = qip, qi ≥ 1

P k
(
xm(pt)f

)
=

{
xm(pt)P k (f) , 0 < k < pt+1

xm(pt)P pt+1

(f) +
[
P 1 (xq1

1 . . . xqn
n )

]pt+1

f , k = pt+1

iii) t ≥ 1, qi ≥ 1 for i = 1, . . . , h, mi = qip + ri, 1 ≤ ri ≤ p − 1 and for i = h + 1, . . . , n,
mi = qip,

Pk
(
xm(pt)f

)
=

 x
m(pt)Pk(f) , 0<k<pt

x
m(pt)Ppt (f)+x

m(pt)
(
r1x

(p−1)pt

1 +...+rhx
(p−1)pt

h

)
f , k=pt

Proof. The equality i) is obvious. Let us analyze ii) in two cases.

Case 1: Let 0 < k < pt+1. By Cartan formula, we have the following equation

P k
(
xm(pt)f

)
=

∑
i+j=k

P i
(
xm(pt)

)
P j (f)

= P 0
(
xm(pt)

)
P k (f) +

∑
i+j=k
0<i<k

P i
(
xm(pt)

)
P j (f)

and then by Corollary 2.10, we have P i
(
xm(pt)

)
= 0 for 0 < i < pt+1. Hence we can write

P k
(
xm(pt)f

)
= xm(pt)P k (f) .

Case 2: Let k = pt+1. By Cartan formula, we have the following equation

P pt+1
(
xm(pt)f

)
=

∑
i+j=pt+1

P i
(
xm(pt)

)
P j (f)

= P 0
(
xm(pt)

)
P pt+1

(f) +
∑

i+j=pt+1

0<i<pt+1

P i
(
xm(pt)

)
P j (f) +

+P pt+1
(
xm(pt)

)
P 0 (f)

and then by Corollary 2.10, we have P i
(
xm(pt)

)
= 0 for 0 < i < pt+1. For i = pt+1, we

have P pt+1
(
xm(pt)

)
=

[
P 1 (xq1

1 . . . xqn
n )

]pt+1

. Hence we get

P pt+1
(
xm(pt)f

)
= xm(pt)P pt+1

(f) +
[
P 1 (xq1

1 . . . xqn
n )

]pt+1

f.

We also analyze iii) in two cases.
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Case 1: Let 0 < k < pt. By Cartan formula, we have the following equation

P k
(
xm(pt)f

)
=

∑
i+j=k

P i
(
xm(pt)

)
P j (f)

= P 0
(
xm(pt)

)
P k (f) +

∑
i+j=k
0<i<k

P i
(
xm(pt)

)
P j (f)

and then by Corollary 2.11, we have P i
(
xm(pt)

)
= 0 for 0 < i < pt. Hence we get

P k
(
xm(pt)f

)
= xm(pt)P k (f) .

Case 2 : Let k = pt. By Cartan formula, we have the following equation

P t
(
xm(pt)f

)
=

∑
i+j=pt

P i
(
xm(pt)

)
P j (f)

= P 0
(
xm(pt)

)
P pt

(f) +
∑

i+j=pt+
0<i<pt

P i
(
xm(pt)

)
P j (f)

+P pt
(
xm(pt)

)
P 0 (f)

and then by Corollary 2.11, for 0 < i < pt we have P i
(
xm(pt)

)
= 0. For i = pt, we have

P pt
(
xm(pt)

)
= xm1p

t

1 . . . xmnp
t

n

(
r1x1

(p−1)pt

+ · · ·+ rhxh
(p−1)pt

)
. Hence we can write

P pt
(
xm(pt)f

)
= xm(pt)P pt

(f) + xm(pt)
(
r1x

(p−1)pt

1 + . . .+ rhx
(p−1)pt

h

)
f.

�

In particular, if we take f = xa ∈ P (n) in Theorem 2.12, we have the following corollary.

Corollary 2.13. For the monomial xe = xm(pt)xa ∈ P (n), we have

i)

P 0
(
xm(pt)xa

)
= xm(pt)xa,

ii) t ≥ 1,mi = qip, qi ≥ 1,

Pk
(
xm(pt)xa

)
=

{
x
m(pt)Pk(xa) , 0<k<pt+1

x
m(pt)Ppt+1

(xa)+[P1(x
q1
1 ...xqn

n )]p
t+1

xa , k=pt+1

iii) t ≥ 1, qi ≥ 1 for i = 1, . . . , h, mi = qip + ri, 1 ≤ ri ≤ p − 1 and for i = h + 1, . . . , n,
mi = qip,

Pk
(
xm(pt)xa

)
=

 x
m(pt)Pk(xa) , 0<k<pt

x
m(pt)Ppt (xa)+x

m(pt)
(
r1x

(p−1)pt

1 +...+rhx
(p−1)pt

h

)
xa , k=pt

Example. Let p = 3 and x55y31z81 ∈ P (3). Write this monomial as

x55y31z81 =
(
x1+2.33y4+1.33z3.3

3
)

=
(
x2.33y1.3

3

z3.3
3
) (

x1y4
)
.
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Here t = 3. Then by Corollary 2.13.iii, for 0 < k < 27 = 33

P k
(
x55y31z81

)
= P k

((
x2.33y1.3

3

z3.3
3
) (

x1y4
))

=
(
x6.32y3.3

2

z9.3
2
)
P k

(
x1y4

)
.

For k = 27 = 33, we have

P 27
(
x55y31z81

)
= P 27

((
x2.33y1.3

3

z3.3
3
) (

x1y4
))

=
(
x2.33y1.3

3

z3.3
3
)
P 27

(
x1y4

)
+ x2.33y1.3

3

z3.3
3

(2x2.27 +

+ 1y2.27 + 3z2.27)
(
x1y4

)
= 2x109y31z81 + x55y85z81.

If we write x55y31z81 as x55y31z81 =
(
x2.3.32y1.3.3

2

z3.3.3
2
) (

x1y4
)
then t = 2 and by Corol-

lary 2.13.ii, for 0 < k < 27 = 32+1

P k
(
x55y31z81

)
= P k

((
x2.33y1.3

3

z3.3
3
) (

x1y4
))

=
(
x6.32y3.3

2

z9.3
2
)
P k

(
x1y4

)
.

For k = 27 = 32+1

P 27
(
x55y31z81

)
=

(
x6.32y3.3

2

z9.3
2
)
P 27

(
x1y4

)
+

[
P 1

(
x2y1z3

)]27 (
x1y4

)
= (2x4y31z3 + x2y3z3 + 3x2y1z3)27

(
x1y4

)
= 2x109y31z81 + x55y85z81.

3. Application to Hit Problem

Definition 3.1. [Hit Polynomial] A homogeneous element f ∈ Pd (n) is said to be hit if it

can be written as

(3) f =
∑
k>0

P k (fk) ,

where deg (fk) < d and this equation (3) is called the hit equation.

The following propositions are consequences of Theorem 2.12.

Proposition 3.2. Let t ≥ 1 and f ∈ Pd (n). Then f is hit via

f =
∑

0<k<pt+1

P k (fk) ,

if and only if g = xm(pt)f is hit via

g =
∑

0<k<pt+1

P k
(
xm(pt)fk

)
,

where mi = qip, qi ≥ 1.
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Proposition 3.3. Let t ≥ 1 and f ∈ Pd (n). Then f is hit via

f =
∑

0<k<pt

P k (fk) ,

if and only if g = xm(pt)f is hit via

g =
∑

0<k<pt

P k
(
xm(pt)fk

)
,

where qi ≥ 1, mi = qip+ri, 1 ≤ ri ≤ p−1 for i = 1, . . . , h, and mi = qip for i = h+1, . . . , n.

Hence by Proposition 3.2 and 3.3, we can get new hit polynomials from the old ones satisfying

the conditions given in propositions.

Example. Let p = 3. Consider the hit polynomial

f (x, y) = x21y9 + 2x2y28 + 2x4y26

= P 10
(
x7y3

)
+ P 1

(
x2y26

)
.

The polynomial

g (x, y) = x1.3.32y2.3.3
2 (

x21y9 + 2x2y28 + 2x4y26
)

is hit by Proposition 3.2 since 1 < 27 = 32+1 = 3t+1 and 10 < 27 where t = 2. The hit

equation of g is as follows

g (x, y) = x27y54
(
x21y9 + 2x2y28 + 2x4y26

)
= x27y54

(
P 10

(
x7y3

)
+ P 1

(
x2y26

))
= P 10

((
x27y54

) (
x7y3

))
+ P 1

((
x27y54

) (
x2y26

))
= P 10

(
x34y57

)
+ P 1

(
x29y80

)
.

Example. Let p = 3. Consider the hit polynomial

g (x, y) = x54y66 + x51y69

= x5.32y7.3
2 (

x9y3 + x6y6
)

= P 4
(
x48y64

)
+ P 1

(
x51y67

)
.

The polynomial

f (x, y) = x9y3 + x6y6

is hit by Proposition 3.3 since 1 < 9 = 32 = 3t and 4 < 9 where t = 2. The hit equation of

f is as follows

f (x, y) = P 4
(
x3y1

)
+ P 1

(
x6y4

)
.
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