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SOME FORMULAS FOR THE ACTION OF STEENROD POWERS ON
COHOMOLOGY RING OF K (ZZ,Q)

BEKIR TANAY anpD TARKAN ONER

ABSTRACT. In this study we give some formulas for the action of Steenrod powers on certain
monomials and some polynomials having these monomials as a factor in the polynomial algebra
P(n) =Zp[z1,...,zn], deg(z;) = 2, ¢ =1,...,n and p is an odd prime. We also give some
new family of hit polynomials.

1. INTRODUCTION AND PRELIMINARIES

Steenrod square Sq* : H"(X;Zs) — H" (X 7Z5) and Steenrod power P* : H"(X;Z,) —
Hn+2k(p=1)(X:7,) operations are cohomology operations. They were introduced by Nor-
man Steenrod [1, 2]. These operations are used to solve some problems in algebraic topology
[3, 4]. Steenrod algebra is generated by these operations and the structure of this algebra
was studied by various mathematicians [5]-[10]. This algebra acts on the cohomology ring
H*(X;Z,). These actions are determined by the following propositions.

Proposition 1.1. [11] For a, a1, as € H*(X;Z2),
i) Sq" is the identity morphism,
ii) Sq* (o) = o? if k = deg (),
iii) Sq* () = 0 if k > deg (),
iv) The Cartan formula
Sq" (on Uap) = Z Sq' (1) S¢’ (a2)
itj=k
holds.

Proposition 1.2. [11] For a, o, a0 € H* (X Zp),
i) PO is the identity morphism,
ii) P* (o) = aP if 2k = deg (),
iii) P* (a) = 0 if 2k > deg (),
iv) The Cartan formula
PF(arUag) = > P'(ar) P ()
itj=k
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holds.

For the topological space X = [[RP*°, the cohomology ring H*(X;Zs) is the polynomial
i=1

algebra p (n) = Fa [21,...,2,] = @az0p0? (n),deg (z;) =1, = 1,...,n [12] and the action

of Steenrod squares on @ (n) as follows by the Proposition 1.1.

Proposition 1.3. For the homogeneous element f in o (n) we have
i) Sq" is the identity morphism,
ii) Sq* (f) = f* if k = deg (f),
iit) S¢* (f) =0 if k > deg (f),
iv) The Cartan formula

Sq* (f9)= > Sq' (£) S (9),

itj=k

where f,g are homogeneous elements in p (n) holds.
Similarly, the cohomology ring H*(X;Z,) is the polynomial algebra P (n) =T, [z1,. .., z,]
= @a>oP? (n), deg (x;) = 2,i =1,...,n where X = K (Z7;2) [13]. The action of Steenrod
powers on P (n) is given as follows by the Proposition 1.2.

Proposition 1.4. For the homogeneous element f in P (n) we have
i) PO is the identity morphism,
i) P*(f) = f7 if 2% = deg (f),
iii) P (f) = 0 if 2k > deg (f),
iv) The Cartan formula

P(fg)= S PP (),

itj=k

where f,g are homogeneous elements in P (n) holds.
In [14], Janfada gave useful formulas for the action of Steenrod squares on the monomials
of the polynomial algebra p (n) and by using these formulas, he also gave an application on
hit polynomials.
Aim of this study is to give similar formulas given in [14] for Steenrod powers P*.
To obtain the action of P*on powers of a generator of P (n), we need the followings.

Definition 1.5. [15] Summation of all Steenrod powers
p=> P*
k>0

is called total Steenrod power.
Lemma 1.6. [15] If f € P?(n), then we have P (f) = f + fP.

Total Steenrod power defines an action on P (n) by the property (iii) of Proposition 1.4,
since only a finite number of P* can be nonzero on a given polynomial. By using Cartan
formula, it can be shown that P (fg) = P (f) P(g). So P : P (n) — P (n) becomes a ring
homomorphism. By using this property we have the following lemma.
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Lemma 1.7. [15] If f € P%(n), then we have P* (f7) = (}) f®-Drr
In particular, if we take f = z; € P? (n) in Lemma 1.7, we have the following corollary.

Corollary 1.8. If z € P?(n), then we have

Pk(a::) — (;) xz(_pfl)k+r.

Hence we have a formula for the action of P* on powers of generators. But since Steenrod
power operations are not ring homomorphisms, we cannot extend this corollary to any
monomial.

The aim of this study is to give a formula for the action of P* on the monomials x;nlpt x;""pt
where m; > 0 and ¢t > 1 for some special values of k. Moreover if a polynomial

(1) g= (a7 aprt)
is given, by using Cartan formula we have
Pk (g) _ Z Pl (I?lnlpt B .xznnp‘) P] (f) .
itj=k
After having formulas on P* (a:;n“’ L zzlnpt) for some special values of k, we only need to

know the value of P’ (f) to calculate monomial P* (g).
This result will be used to obtain new hit polynomials by using certain hit polynomials.
If we take g as a monomial z{* ... z¢", then for m; > 0 and certain ¢; we have

— g gen — (pmpt map’ (2% ... 2%
g=ait . .air = (2P ol ooty

where z{* ... 2% corresponds f in the equation (1). We will use this result in applications.

Throughout the paper, we will use the following notations for simplicity:

x® =t ahn
t t t
m(p __ ,.mip MnpP
2. REsSuULTS

We start with the following results which can be found in [16] for the action of Steenrod

squares on Zsz [T1, ..., %y
Theorem 2.1. For f € P (n) and k,s > 0,
ey IPEDI k= sp,
PE(f7) = { 0 , otherwise.

Proof. Since P is a ring homomorphism we have P (f?) = [P (f)]”. From the left hand side,
we have

P(fr) =% P (/")

£>0
= PO(f7) + PL(fP) + P2 (f7) + -+,
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and from the right hand side, we have

P
PO =D PHH| =D [PHN])”
k>0 k>0
= [PPO)" + [PHDO]T+ [P (D] + -
Since the terms having the same exponents must be equal, the claim is true. |

Theorem 2.2. For f € P (n) and k,t >0,

P () = { PP k=,

0 , otherwise.

Proof. We prove by induction on t. For ¢ = 0, the result is obvious. For ¢t = 1, it is true by
Theorem 2.1. Assume that the result is true for smaller values than ¢. Since we can write

P ) () = ()

for t, by Theorem 2.1 we have
t—1\ 1P
t S1 P =
() { [ () k=
0 , otherwise

Then we have

po (577 —{ P e st

0 , otherwise
by the assumption of induction. These prove the theorem. O

Theorem 2.3. For f,g € P (n) and k,s > 0,

Pr(gf”) = >0 Plg) P ().

i+spt=k

Proof. This is a consequence of the Cartan formula and Theorem 2.2. O
Theorem 2.4. Let n € Z+. The following relation

Pr@s i)=Y Ph(afh).. P (a)

holds.

Proof. We prove by induction on n. For n = 2, it is true by Cartan formula. Assume that
the following is true for n.

PR o) = > Ph(afh).. P (aln).
i1 fin=k
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For n + 1, we can write

‘Plc (l‘il A J:Z”xf;j:ll) = Z Pl (x‘il . x%n) Pin+1 (xen+1)

n+1
itin 1=k
= Z Z P (x§Y)... P (zé) | Pinet (z
itiny1=k Lizt+-+in=t
= Y P P (2.
i1+ tint1=k

Hence proof is completed.
Lemma 2.5. Let f € P?(n),t>1and 0<r <p—1. Then

ko erpt\ ((T)f(pfl)kerpt k=spt,1<s<r,
P <f >_{ ) 0 , otherwise.

Proof. By Theorem 2.2 and Lemma 1.7, we have

0 , otherwise

P (79) = P4 (11) = { P () k—spli<s<r

{[Cﬁ”*”“ft,kzsﬁﬁgsgr
0 , otherwise

_ [ @)t =spti<s<vr
0 , otherwise

[ () ekt k= spt 1< s <7
0 , otherwise.

By Lemma 2.5, we have the following corollary.

Corollary 2.6. Let z; € P2(n), t>1and 0 <r <p—1. Then

t
Pk (xfpt) = (Z)wgpil)k+rp ) k= Spt7 1<s< T,
' 0 , otherwise.

Next corollary is an extension of Corollary 2.6 to n variables.

Corollary 2.7. Lett>1,0<r;<p—1 and qupt .. .xgnpt € P(n). Then

t t t t
r1),(pP—1)s1p"+rip (rn (p—1)spp"+rnp —ept <g:<
pk (Ir(pt)> _ { Sl+“§sn:5 (Sl)zl Sn)zn y k=sp®, 1<s;<

0 , otherwise.

Proof. By Theorem 2.4 and Corollary 2.6, we have the followings:

€en41
n+1

T,

)

19
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Pk (xr(pt)> = Z pPh (xglpt> ... Pin (I;"pt)

i1+ tin=k
_ t t _ t t
(fl)z(p )sy1p+rip (T’n,)zfnp snpp"+rnp , ij:Sjpt,lgsj'S’l‘j,
_ . . sq sn J
= i1+ Fin=k
0 , otherwise.
_ t t _ ot t
(rl)x(lp syp'+rip (rn)xglp snp'+rnp JcZSpt,lSsJ-Srj,
— S1 sn
= s1+-Fen=s

0 , otherwise.

Remark. If we take k = p'(s =1) in Corollary 2.7, we have

Ppt (xr(pt)) — Z <T1>x(1171)51pt+7’1pt o (T”> xglp—l)(enﬁt—i-rnpt
S1

S
s1t+-+sp=1 "

_ (ql)xgp—l)lp%npt <7;)1>$ép—1)0p‘+rzp‘ o (7"(;1) x%p*l)opt+Tnpt+

+ (%) l,gpfl)Op"Jrnp" o (Tn0—1> xglp_—ll)Opt+mf1pt <T1n> xglp—l)lp‘+rnpt

—1p*+rip’ _rapt ¢
= PP grapt gty

t t t t
T1p Tn—1D (p—1)p"+rnp
‘T, Thy, "

2) =l (T ),

Theorem 2.8. Lett>1, m; =¢qp,q >1,1<i<n. Then

t+1
Pk (‘rm(pt)) = [Pé (m‘{l“_w%ﬂ)]p ) k:spt+171§8§m1+"'+mn;
0 , otherwise.

Proof. Since m; = ¢;p for all i,

t+1 t+1

mipt mapt xt{lppt PP’ 2 01P

t+1
anp'™ _ (m an\P
x ool = (a7 ...xd")

n

Pk (xm(pt)) = p* ((33(1“ ...mq"’)pt“)

n

then by Theorem 2.2 we have

t+1
pk (:L,m(pt)> _ ) Pt yk=spm1<s<mi+--+m,
0 , otherwise.

The condition 1 < s < mjy + - -+ + m,, comes from Proposition 1.4 (ii3).
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Theorem 2.9. Lett > 1, ¢ > 1, mi =qp+7r;, 1 <r;, <p—1fori=1,...,h, and
m; =q;p fori=h+1,...,n. Then

t+1 t 1<s1 <
k (,m(p?) > [Pot(zft...xdn))P [PS2 (z:lz;h)]p s 1Ss1iSaittan
P (:p p ) = sypttlisopt=k L 0<so<ri -t
0 , otherwise.

Proof. Since m; = q¢p+r;, 1 <r;<p—1fori=1,...,hand m; =¢gpfori=h+1,...,n,

we have
+ + t t t t
m1p myp' _ (qap+ri)p (qnp+7rn)P" qn+1PP" _qnpp
xP e =g Sz x0T
t+1 t41 t t t+1 t
— 1P qnp T1p ThP  __ q1 qn\P T1 Th\P
=zf coxit gt = (2t ) (. ..ap)

then by Cartan formula we have

PR (am@) = 30 P () ) P (@)

itj=k
By Theorem 2.2
51 (591 pan P T [pea (pT1 LTh » y 1<s1<q1++qn
Pk (mm(pt)) = s1pt+1§52pf:k[P 1( 1 n )} [P 2( 1 %h )] , 0<so<r1+-+rp
0 , otherwise.
The conditions 1 < s; < g1+ -+ 4+ ¢, and 0 < 55 <7y + -+ + 1, yield from Proposition 1.4
(Z’LZ) O

From Theorem 2.8, we have the following corollary for k < pf*1.

Corollary 2.10. Lett > 1,m; = ¢;p ,q; > 1. Then
for k=0
J2l (xm(pt)) - mg’hpt o w?npt7
for 0 < k < pttt
Pk (xM(Pt)) — 0,
for k = ptt!

41 t+1

pr (gcm(pt)> =[P (a7 ...22)]"
From Theorem 2.9 and equation (2), we have the following corollary for k < pt.

Corollary 2.11. Lett > 1, ¢ > 1, my =qp+r;, 1 <r, <p—1fori=1,...,h, and
m; =q;p fori=h+1,....,n. Then

for k=0
PO (:cm(pt)) = lept . azﬂ"pt,
for 0 < k < pt
P (mm(pt)> =0,
for k = pt

pr' (xm(pt)> _ xvlmpt _._mnmnpf (rlxgpfl)pt T Thxglpfl)p‘) .
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Following theorem is one of the main results mentioned in the introduction.

Theorem 2.12. Let f € P (n). Then for xm(pt)f € P (n), we have the following formulas:
i)

ii) t > 1,m; = qip, ¢; > 1
m(p") pk s
Pk<xm(pt)f>: t t4+1 ! P (f) t+1 ’0<k<p
2@V () [P et f k=t
i) t>1, ¢ >1fori=1,...,h, mi = qp+ri, 1 <r; <p—1and fori=h+1,...,n,

m; = q;p,

P (a0 5) = { (o) 2 P ) , 0<k<pt

PP’ (f)Jrzm(pt) (legpil)pt+.4.+Thz;(zp71)pt)f , k=p’

Proof. The equality ¢) is obvious. Let us analyze i) in two cases.
Case 1: Let 0 < k < p'*t!. By Cartan formula, we have the following equation

Pr (a6 r) = 30 P (a0 P

i+j=k

= PO (amG) PR+ > P (a0 PO
itj=k
0<i<k

and then by Corollary 2.10, we have P? (mm(pt)) =0 for 0 < i < p'*t!. Hence we can write
Pk (mm(pt)f) — xm(pt)Pk (f) )

Case 2: Let k = p'*t!. By Cartan formula, we have the following equation

P (e 0g) = P () P

i+j=pttt
_ po (xm(pt)) PP () + > P (xm(pt)) PI(f)+
et

FPr (e 00) £ )

and then by Corollary 2.10, we have P? (xm(”t)> =0 for 0 < i < p'*tt. For i = p't!, we

t4+1

have PP (xm(pt)> = [P (2] ...29)]" . Hence we get

t+1

(f) + [Pt (2P ...x8m)]” f

t41

prt (xm(pt)f) — om(¢") pr

We also analyze iii) in two cases.
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Case 1: Let 0 < k < pt. By Cartan formula, we have the following equation

Pr (a6 f) = 30 P (am)) Py

i+j=k
=P () PR+ 30 P ()Y P
itj=k
o<i<k

and then by Corollary 2.11, we have P? (xm(pt)> =0 for 0 < i < p'. Hence we get
Pk (xm(Pt)f> — xm(p")Plc (f) )

Case 2 : Let k = p'. By Cartan formula, we have the following equation

Py = 3 P (a0 Pl

i+j=p?
= P (a0 P+ S P (e )) i)
i+j=p'+
0<i<p®

+P7 (20 PO ()
and then by Corollary 2.11, for 0 < i < p* we have P? (mm(pt)) = 0. For i = p, we have
pr' (a:m@t)) = x;”‘pt .. .x?”pt (rlxl(p_l)pt 4+ -+ Thxh(p_l)pt). Hence we can write
pr' (xm(pt)f> = xm(pt)Ppt (H+ xm(pt) (rlx(lp_l)p +...4 T’hxép_l)p ) f
O
In particular, if we take f = 2 € P (n) in Theorem 2.12, we have the following corollary.

Corollary 2.13. For the monomial x¢ = (P ge e P (n), we have
i)
p° (mm(pt)xa) = xm(pt)ma,
i)t = 1m; =qip, ¢; > 1,
t
k (pm(p) g = 2™ (") Pk (z9) , 0<k<pttl
F <$ v > { zm(Pt)Ppt+1 (Ia)w‘»[Pl(zgl...zg,/")]pwrlza , k=ptt?

i)t >1,q>1fori=1,....,h, mi=qp+r, 1<r<p—1and fori=h+1,...,n,
m; = q;p,

h

t
P (fm(pt)ma> = t ztm’(p )Pk(z")t t , o<k<p!
zm(p )Ppt (za)+zm(p (legp—l)p +..A+rhz(p71)p )za , k=p?

Example. Let p=3 and 2°°y3128%1 € P (3). Write this monomial as

203181 — (x1+2,3 Y13 33 )

_ (m2'33y1'33z3'33) (a'y) .
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Here t = 3. Then by Corollary 2.13.iii, for 0 < k < 27 = 33
Pk (25?1 281) = p* ((:1:2'33341'3323‘33) (x1y4)>
_ (x6.32y3.32Z9.32) P* (alyh).
For k = 27 = 33, we have
P (255yP18) = p2T (<x2'33y1'3323‘33> (x1y4))
<x2'33y1'3323'33) p27 (z1y4) 4 x2‘33y1‘3323'33(2x2'27 T
19227 4 3,2:27) (m1y4)

2I109y31281 + $55y852’81

_l_

If we write £25y31281 qs 259931281 = (x2'3'32y1'3'3223'3‘32) (x1y4) then t = 2 and by Corol-
lary 2.13.ii, for 0 < k < 27 = 32+!
Pk (27731 281) = ph ((x2'33y1'33z3'33) (x1y4)>
_ (w6.32y3.32z9.32) P* (alyh).
For k =27 = 321
5 . 2 . 2 . 2 27
p27 (x 5y31Z81) _ <x63 Y33 593 >P27 (x1y4) T [P1 (x2y123)} (x1y4)
— (2243123 1 22328 4 322yt (m1y4)

_ 2x109y31281 + $55y85281

3. APPLICATION TO HIT PROBLEM

Definition 3.1. [Hit Polynomial] A homogeneous element f € P?(n) is said to be hit if it
can be written as

(3) F=> P"(fr),

k>0

where deg (fx) < d and this equation (3) is called the hit equation.
The following propositions are consequences of Theorem 2.12.
Proposition 3.2. Lett > 1 and f € P?(n). Then f is hit via

F=>. P,

0<k<pt+l

if and only if g = atm(pt)f is hit via
g= Z Pk (:rm(pt)fk) ,
0<k<ptt!

where m; = q;p, q; > 1.
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Proposition 3.3. Lett > 1 and f € P?(n). Then f is hit via

f=Y P,

0<k<pt
if and only if g = atm(pt)f is hit via
g = Z Pk (l’m(pt)fk)’
0<k<p?
where ¢; > 1, m; = qip+r;, L <r; <p—1fori=1,... h, andm; = ¢;p fori =h+1,...,n.

Hence by Proposition 3.2 and 3.3, we can get new hit polynomials from the old ones satisfying
the conditions given in propositions.

Example. Let p = 3. Consider the hit polynomial

fz,y) = 221y + 202y% 4+ 244y
_ plo (a:7y3) 4+ p! (ny%) _
The polynomial
g (x,y) _ x1'3'32y2'3'32 (x21y9 + 2x2y28 + 2x4y26)
is hit by Proposition 3.2 since 1 < 27 = 32+ = 3'*1 and 10 < 27 where t = 2. The hit
equation of g is as follows
g(x,y) = 22745 (m21y9 4 2u2y? 4 2I4y26)
— 2Ty (PIO (m7y3) 4+ p! ($2y26))
_ plo ((x27y54) (:::73/3)) 4L pt ((m27y54) (x2y26))
_ plo (m34y57) 4+ p! (x29y80) .

Example. Let p = 3. Consider the hit polynomial

g (.I,y) _ 1‘543/66 4 .’1351y69

_ :1:5'323;7'32 (x9y3 +x6y6)

_ pt (x48y64) 4+ p! (x51y67) '
The polynomial

f(z,y) =2’ +a%°

is hit by Proposition 3.3 since 1 < 9 = 32 = 3! and 4 < 9 where t = 2. The hit equation of
f is as follows

f(z,y) =P (a®y") + P (2%).



26

=

(6]

(7]
(8]
[9]

[10]
(1]
[12]
(13]

(14]

(15]
[16]

BEKIR TANAY anp TARKAN ONER

REFERENCES

Steenrod, N.E., Products of cocycles and extensions of mappings, 48 (1947), 290-320.

Steenrod, N.E., Cycles reduced powers of cohomology classes, Proc. Nat. Acad. Sci. U.S.A, 39 (1953),
217-223.

Adams, J. F., On the non-ezistence of elements of Hopf invariant one, Ann. of Math., 72 (1960),
20-104.

Steenrod, N.E., Whitehead, J.H.C., Vector fields on the n-sphere, Proc.Nat. Acad. Sci. U.S.A., 37
(1951), 58-63.

Adams, J.F., On the structure and applications of the Steenrod algebra, Comm. Math. Helv., 32 (1958),
180-214.

Adem, J., The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A, 38
(1952), 720-726.

Cartan, H., Sur les groupes d’Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U.S.A, 40 (1954), 704-707.
Cartan, H., Sur litration des oprations de Steenrod, Comment. Math. Helv., 29(1) (1955), 40-58.
Serre, J.P., Cohomologie modulo 2 des complexes d’Filenberg-Mac Lane, Comment. Math. Helv., 27
(1953), 198-231.

Milnor, J., The Steenrod Algebra and its dual, Ann. Of Math., 67(2) (1958), 150-171.

Steenrod, N.E., Epstein, D.B.A., Cohomology Operations, Princeton University Press, 1962.

Wood, M.W.R., Problems in the Steenrod Algebra, Bull. London Math. Soc., 30 (1998), 499-517.
Clark, A., Ewing, J., The realization of polynomial algebras as cohomology rings, Pasific J.Math., 50
(1974), 425-434.

Janfada, A.S., On the action of the Steenrod squares on polynomial algebra, Miskolc Mathematical
Notes, 8(2) (2007), 157-167.

Hatcher, A., Algebraic Topology, Cambridge University Press, 2002.

Wood, M.W.R., Walker, G., Polynomials and Steenrod Algebra, 2010.

Bekir TANAY, Department of Mathematics, Mugla Sitki Kogman University, Mugla 48000, Turkey, e-mal:
btanay@mu.edu.tr

Tarkan C)NER, Department of Mathematics, Mugla Sitki Kogman University, Mugla 48000, Turkey, e-mail:

tarkanoner@mu.edu.tr



