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RESULTS ON CERTAIN NON-LINEAR DIFFERENTIAL

POLYNOMIALS SHARING A SMALL FUNCTION

ABHIJIT BANERJEE and MOLLA BASIR AHAMED

Abstract. In the paper we shall mainly concern about the special types of non-linear

differential polynomial sharing a small function as introduced in [20]. Our main result

will improve, unify and generalize a number of recent results.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions

in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite complex

number. We say that f and g share a CM(counting multiplicities), provided that

f − a and g − a have the same zeros with the same multiplicities. Similarly, we say

that f and g share a IM(ignoring multiplicities), provided that f − a and g − a have

the same zeros ignoring multiplicities. In addition we say that f and g share ∞ CM,

if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g

share 0 IM.

Let m be a positive integer or infinity and a ∈ C∪ {∞}. We denote by Em)(a; f) the

set of all a-points of f with multiplicities not exceeding m, where an a-point is counted

according to its multiplicity. Also we denote by Em)(a; f) the set of distinct a-points

of f(z) with multiplicities not greater than m. If α is a small function we define

that Em)(α, f) = Em)(α, g) (Em)(α, f) = Em)(α, g)), which means Em)(0, f − α) =

Em)(0, g − α) (Em)(0, f − α) = Em)(0, g − α)).

If for some a ∈ C ∪ {∞}, Em)(a, f) = Em)(a, g) (Em)(a, f) = Em(a, g)) holds for

m =∞ we say that f , g share the value a CM (IM).

We adopt the standard notations of value distribution theory (see [6]). We denote by

T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes any quantity

satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible exceptional set of finite

linear measure.
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Throughout this paper, we need the following definition.

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.

Yang and Hua [22] made some vital contribution by showing that conclusions similar

to the four value theorem can be obtained when two specific types of non-linear

differential polynomials namely differential monomials share the same value. Below

we state their results.

Theorem A. [22] Let f and g be two non-constant meromorphic functions, n ≥ 11

be a positive integer and a ∈ C−{0}. If fnf ′ and gng′ share a CM, then either f(z) =

c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 =

−1 or f ≡ tg for a constant t such that tn+1 = 1.

This result may be considered as the inception of new era in the direction of value

sharing of differential polynomials and the uniqueness of its generating meromorphic

function. The introduction of the new notion of scaling between CM and IM, known

as weighted sharing of values by I. Lahiri [7]-[8] in 2001 (for further details see [1]-[4],

[11]-[15], [17]-[18]).

Lin and Yi [16] improved the result of Fang and Hong [5] in the following manner.

Theorem B. [16] Let f and g be two non-constant meromorphic functions satisfying

Θ(∞, f) >
2

(n+ 1)
, n(≥ 12) an integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM,

then f ≡ g.

Theorem C. [16] Let f and g be two non-constant meromorphic functions and n(≥
13) be an integer. If fn(f − 1)2f

′
and gn(g − 1)2g

′
share 1 CM, then f ≡ g.

In 2005, Xiong, Lin and Mori [21] considered a new type of non-linear differen-

tial polynomial. Suppose h is a non-constant meromorphic function and ψ1(h) =

hn+1(gm + a) + α, where a is a constant and α 6≡ 0,∞ is a small function. They

proved the following theorem.

Theorem D. [21] Let f and g be two transcendental meromorphic functions. Let m,

n, k are positive integers such that (k−1)n > 14+3m+k(10+m) and Ek)(0, ψ
′

1(f)) =

Ek)(0, ψ
′

1(g)), then

(i) if m ≥ 2, then f(z) = g(z);

(ii) if m = 1, then either f(z) ≡ g(z), or f and g satisfy the algebraic equation

R(f, g) ≡ 0, where R(ω1, ω2) = (n+ 1)(ωn+2
1 − ωn+2

2 )− (n+ 2)(ωn+1
1 − ωn+1

2 ).

In 2007, Shen and Li [20] improved and supplemented Theorem D. In 2008, C. Meng

[18], improved and supplemented Theorem D by the notion of weighted sharing. Here

we mention the following theorem of Meng.



RESULTS ON CERTAIN NON-LINEAR DIFFERENTIAL POLYNOMIALS 19

Theorem E. [18] Let f and g be two transcendental meromorphic functions. Let

ψ
′

1(f) and ψ
′

1(g) share 0 IM. If n > 4m+ 22 then the conclusion of Theorem D holds.

Throughout the paper we define two non-zero polynomials P1(z) and P (z) as follows:

P1(z) =
am

n+m+ 1
zm +

am−1
n+m

zm−1 + . . .+
a0

n+ 1
,(1)

and

P (z) = amz
m + am−1z

m−1 + . . .+ a1z + a0,(2)

where m ≥ 1 is an integer and a0, a1,. . . , am are complex constants.

Let P (z) be non-constant and am 6= 0, a0 6= 0. Let t be the number of distinct roots

of the equation P (z) = 0. We define s by

s =
4m

t
− (m− 1).(3)

Clearly t ≤ m.

Next we recall the following result of Zhang,Chen and Lin [26] since it has some

relevance with the above discussion.

Theorem F. [26] Let f and g be two non-constant meromorphic functions. Let

n and m be two positive integers such that n > max{m + 10, 3m + 3} and P (z)

be such that a0( 6= 0), a1, ... , am(6= 0) are complex constants. If fnP (f)f
′

and

gnP (g)g
′

share (1,∞) then either f(z) = tg(z) for a constant t such that td = 1, where

d = gcd(n+m+ 1, ..., n+m+ 1− i, ..., n+ 1), am−i 6= 0 for some i ∈ {0, 1, 2, ...,m}
or f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn+1
1

( amω
m
1

n+m+ 1
+
am−1ω

m−1
1

n+m
+ . . .+

a0
n+ 1

)
−ωn+1

2

( amω
m
2

n+m+ 1
+
am−1ω

m−1
2

n+m
+ . . .+

a0
n+ 1

)
.

In 2011, Zhang-Xu [27] generalized Theorem F for small functions. Recently, Sahoo

and Seikh [19] improved Theorem F in the following way.

Theorem G. [26] Let f and g be two non-constant meromorphic functions. Let n,

m, k be three positive integers such that Θ(∞; f) + Θ(∞; g) >
4

n+ 1
and P (z) be

such that a0(6= 0), a1, ... , am(6= 0) are complex constants. If Ek)(α, f
nP (f)f

′
) =

Ek)(α, g
nP (g)g

′
) and one of the following holds:

(i) k ≥ 3 and Θ(∞; f) > 0, Θ(∞; g) > 0 and n > max{3m+ 1, 3m+ 9};

(ii) k = 2 and n > max{3m+ 1,
3m

2
+ 12};

(iii) k = 1 and n > 3m+ 17,

then the conclusion of Theorem F holds.



20 ABHIJIT BANERJEE and MOLLA BASIR AHAMED

Remark. It should be noted that in Theorem G the condition Θ(∞; f) + Θ(∞; g) >
4

n+ 1
is only required when m = 1. Otherwise this condition is redundant.

Let m∗ be a non-negative integer defined as follows:

m∗ =

{
m, if am 6= 0
0, if a0 6= 0 and ai = 0, 1 ≤ i ≤ m .

For a non-constant meromorphic function h we define ψ(h) as

ψ(h) =
[
hn+1

{ am
n+m+ 1

hm +
am−1
n+m

hm−1 + . . .+
a0

n+ 1

}]
+ α.

In the context of the result of Xiong, Lin and Mori [20] it will be interesting to

investigate the conclusions of Theorem G for all possible forms of P (z) so that all

results except Theorem E can be brought under a single umbrella. In this paper we

shall obtain two results; one of them improves Theorem E and the other improves all

the remaining results to a large extent.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, and α(z)( 6≡
0,∞) be a small function with respect to f and g. Also we suppose that Ek)(0, ψ

′
(f)) =

Ek)(0, ψ
′
(g)). If

(a) k ≥ 3 and n > max{m∗ + 10, s};

(b) k = 2 and n > max{3m∗

2
+ 12, s};

(c) k = 1 and n > max{3m∗ + 18, s},

then the following conclusions hold.

(I) When am 6= 0, a0 6= 0 and at least one of am−i 6= 0, i = 1, 2, . . . ,m− 1 then one

of the following two conditions holds:

(I1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = gcd(n+m+ 1, n+

m, . . . , n+m+ 1− i, . . . , n+ 1), am−i 6= 0 for some i = 0, 1, 2, . . . ,m;

(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn+1
1 (amω

m
1 + am−1ω

m−1
1 + . . .+ a0)

− ωn+1
2 (amω

m
2 + am−1ω

m−1
2 + . . .+ a0),

(II) When am 6= 0, a0 6= 0 and all of am−i’s, i = 1, 2, . . . ,m− 1 are zero then

(II1) if m = 1, Θ(∞, f) + Θ(∞, g) > 4/(n+ 1); or

(II2) if m ≥ 2, we have f ≡ tg for some constant t, satisfying td ≡ 1, where

d = gcd(m,n+ 1),

(III) When | am | + | a0 |6= 0, but | am | . | a0 |= 0 and all of am−i’s, i = 1, 2, . . . ,m−1

are zero then one of the following two conditions holds:

(III1) f(z) ≡ tg(z) where t is a constant satisfying tn+m∗+1 = 1;
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(III2) a2m∗ [f
n+m∗+1]

′
[gn+m∗+1]

′ ≡ α2. In particular when α(z) = d = constant,

we get f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are constants satisfy-

ing

a2m∗(c1c2)n+m∗+1((n+m∗ + 1)c)2 = −d2.

Theorem 1.2. Let f and g be two non-constant meromorphic functions, and α(z)( 6≡
0,∞) be a small function with respect to f and g. Also we suppose that Ek)(0, ψ

′
(f)) =

Ek)(0, ψ
′
(g)), where n > max{4m∗ + 22, s} is an integer. Then the conclusions of

Theorem 1.1 hold.

Remark. In the above theorem when k −→ ∞, we get a generalized version of The-

orem E.

We now explain following definitions and notations which are used in the paper.

Definition 1.3. [13] Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.4. [23] For a ∈ C∪{∞} and a positive integer p we denote by Np(r, a; f)

the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . N(r, a; f |≥ p). Clearly N1(r, a; f) =

N(r, a; f).

Definition 1.5. Let k be a positive integer and for a ∈ C−{0}, Ek)(a; f) = Ek)(a; g).

Let z0 be a zero of f(z) − a of multiplicity p and a zero of g(z) − a of multiplicity

q. We denote by NL(r, a; f) the counting function of those a-points of f and g where

p > q ≥ 1, by Nf>s(r, a; g) (Ng>s(r, a; f)) the counting functions of those a-points

of f and g for which p > q = s(q > p = s), by N
1)
E (r, a; f) the counting function of

those a-points of f and g where p = q = 1 and by N
(2

E (r, a; f) the counting function of

those a-points of f and g where p = q ≥ 2, each point in these counting functions is

counted only once. Similarly, we can define NL(r, a; g), N
1)
E (r, a; g), and N

(2

E (r, a; g).

We denote by Nf≥k+1(r, a; f | g 6= a) (Ng≥k+1(r, a; g | f 6= a)) the reduced counting

functions of those a-points of f and g for which p ≥ k + 1 and q = 0 (q ≥ k + 1 and

p = 0).

Definition 1.6. [9] Let a, b ∈ C ∪{∞}. We denote by N(r, a; f | g 6= b) the counting

function of those a-points of f , counted according to multiplicity, which are not the

b-points of g.
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2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We define the

function H as:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.(4)

Lemma 2.1. [13] Let f be a non-constant meromorphic function and let an(z)( 6≡ 0),

an−1(z), ... , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for

i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. [28] Let f be a non-constant meromorphic function, and p, k be positive

integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f),(5)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(6)

Lemma 2.3. [10] If N(r, 0; f (k) | f 6= 0) denotes the counting function of those zeros

of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its

multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.4. [22] Let f and g be two non-constant meromorphic functions, n ≥ 6 be

an integer. If fnf
′
gng

′
= 1 then f(z) = c1e

cz, g(z) = c2e
−cz where c, c1 and c2 are

constants satisfying (c1c2)n+1c2 = −1.

Lemma 2.5. Let f , g be two non-constant meromorphic functions and n be a positive

integer such that n > 6. If a2m∗(f
n+m∗+1)

′
(gn+m∗+1)

′ ≡ d2, then f = c1e
cz, g =

c2e
−cz, where c1, c2 and c are constants such that a2m∗(c1c2)n+m∗+1((n+m∗+1)c)2 =

−d2.

Proof. From the given condition we can write

(7) fn+m∗f ′gn+m∗g′ ≡
(

d

am∗(n+m∗ + 1)2

)2

= k2,

where k = d/(am∗(n + m∗ + 1)2). We put f1 =
f

k
1

n+m∗+1

, g1 = g

k
1

n+m∗+1
. Then (7)

reduces to

fn+m∗

1 f
′

1g
n+m∗

1 g
′

1 = 1.

Using Lemma 2.4, we have f = c1e
cz, g = c2e

−cz, where c1, c2 and c are constants

such that a2m∗(c1c2)n+m∗+1((n+m∗ + 1)c)2 = −d2. �
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Lemma 2.6. Let f , g be two non-constant meromorphic functions and

F =
[fn+1P1(f)]

′

−α
,G =

[gn+1P1(g)]
′

−α
, where α(z)( 6≡ 0,∞) be a small function with

respect to f and g, n is a positive integer such that n > m∗ + 5. If H ≡ 0 then either

[fn+1P1(f)]
′ ≡ [gn+1P1(g)]

′
or [fn+1P1(f)]

′
[gn+1P1(g)]

′ ≡ α2.

Proof. Since H ≡ 0, by integration we get

1

F − 1
≡ bG+ a− b

G− 1
,(8)

where a, b are constants and a 6= 0. We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b.

If b = −1, then from (8) we have

F ≡ −a
G− a− 1

.

Therefore

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f).

So by Lemma 2.2 and the second fundamental theorem we get

(n+m∗ + 1) T (r, g) ≤ T (r,G) +N2(r, 0; gn+1P1(g))−N(r, 0;G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G) +N2(r, 0; gn+1P (g))

−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) +N2(r, 0; gn+1P (g)) +N(r,∞; f) + S(r, g)

≤ T (r, f) + (m∗ + 3) T (r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure

such that T (r, f) ≤ T (r, g) for r ∈ I.

So for r ∈ I we have

(n− 3) T (r, g) ≤ S(r, g),

which is a contradiction.

If b 6= −1, from (8) we obtain that

F −
(

1 +
1

b

)
≡ −a

b2
[
G+ a−b

b

] .
So

N
(
r,

(b− a)

b
;G
)

= N(r,∞;F ) = N(r,∞; f).

Using Lemma 2.2 and by the same argument as used in the case when b = −1 we can

get a contradiction.
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Case 2. Let b 6= 0 and a = b.

If b = −1, then from (8) we have

FG ≡ α2,

that is

[fn+1P1(f)]
′
[gn+1P1(g)]

′
≡ α2.

If b 6= −1, from (8) we have
1

F
≡ bG

(1 + b)G− 1
.

Therefore

N
(
r,

1

1 + b
;G
)

= N(r, 0;F ).

So by Lemma 2.2 and the second fundamental theorem we get

(n+m∗ + 1) T (r, g) ≤ T (r,G) +N2(r, 0; gn+1P1(g))−N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1 + b
;G) +N2(r, 0; gn+1P1(g))

−N(r, 0;G) + S(r, g)

≤ (m∗ + 3)T (r, g) +N(r, 0;F ) + S(r, g)

≤ N(r,∞; f) + 2N(r, 0; f) + (m∗ + 3)T (r, g)

≤ (m∗ + 3){T (r, g) + T (r, f)}+ S(r, f) + S(r, g).

So for r ∈ I we have

{n−m∗ − 5} T (r, g) ≤ S(r, g),

which is a contradiction since n > m∗ + 5.

Case 3. Let b = 0. From (8) we obtain

F ≡ G+ a− 1

a
.(9)

If a 6= 1 then from (9) we get

N(r, 1− a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (9)

we obtain

F ≡ G.

i.e.,

[fn+1P1(f)]
′
≡ [gn+1P1(g)]

′
.

�
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Lemma 2.7. Let f and g be two non-constant meromorphic functions and α(z)( 6≡
0,∞) be a small function of f and g. Let n be a positive integer such that n > s, where

s is defined by (3). Suppose that P (z) 6= aiz
i, for i = 1, 2, . . . ,m be a non-constant

polynomial. Then

fnP (f)f
′
gnP (g)g

′
6≡ α2.

Proof. First suppose that

(10) fnP (f)f
′
gnP (g)g

′
≡ α2(z).

Let di be the distinct zeros of P (z) = 0 with multiplicity pi, where i = 1, 2, . . . , t,

1 ≤ t ≤ m and
t∑

i=1

pi = m.

Now by the second fundamental theorem for f and g we get respectively

(11) tT (r, f) ≤ N(r, 0; f) +N(r,∞; f) +

t∑
i=1

N(r, di; f)−N0(r, 0; f
′
) + S(r, f),

and

(12) tT (r, g) ≤ N(r, 0; g) +N(r,∞; g) +

t∑
i=1

N(r, di; g)−N(r, 0; g
′
) + S(r, g),

where N(r, 0; f
′
) denotes the reduced counting function of those zeros of f

′
which are

not the zeros f and f − di, i = 1, 2, . . . , t. N(r, 0; g
′
) can be similarly defined.

Let z0 be a zero of f with multiplicity p but α(z0) 6= 0,∞. Clearly z0 must be a pole

of g with multiplicity q. Then from (10) we get np+ p− 1 = nq +mq + q + 1. This

gives

(13) mq + 2 = (n+ 1)(p− q).

From (13) we get p− q ≥ 1 and so q ≥ n− 1

m
. Now np+p−1 = nq+mq+ q+ 1 gives

p ≥ n+m− 1

m
. Thus we have

(14) N(r, 0; f) ≤ m

n+m− 1
N(r, 0; f) ≤ m

n+m− 1
T (r, f).

Let z1(α(z1) 6= 0,∞) be a zero of f − di with multiplicity qi, i = 1, 2, . . . , t. Then

z1 must be a pole of g with multiplicity r(≥ 1). So from (10) we get qipi + qi − 1 =

(n+m+ 1)r+ 1 ≥ n+m+ 2. This gives qi ≥
n+m+ 2

pi + 1
for i = 1, 2, . . . , t and so we

get

N(r, di; f) ≤ pi + 1

n+m+ 3
N(r, di; f) ≤ pi + 1

n+m+ 3
T (r, f).
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Clearly,

(15)

t∑
i=1

N(r, di; f) ≤ m+ t

n+m+ 3
T (r, f).

Similarly, we have

(16) N(r, 0; g) ≤ m

n+m− 1
T (r, g),

and

(17)

t∑
i=1

N(r, di; g) ≤ m+ t

n+m+ 3
T (r, g).

Also it is clear from (16) and (17) that

N(r,∞; f) ≤ N(r, 0; g) +

t∑
i=1

N(r, di; g) +N0(r, 0; g
′
) + S(r, f) + S(r, g)

≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
T (r, g) +N0(r, 0; g

′
) + S(r, f) + S(r, g).

(18)

Then by (11), (14), (15) and (18) we get

t T (r, f) ≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}+N0(r, 0; g

′
)

−N0(r, 0; f
′
) + S(r, f) + S(r, g).

(19)

Similarly, we have

t T (r, g) ≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}+N0(r, 0; f

′
)

−N0(r, 0; g
′
) + S(r, f) + S(r, g).

(20)

So from (19) and (20) we get

t{T (r, f) + T (r, g)} ≤ 2

(
m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e.,

(21)

(
t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

Since(
t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3

)
=

(n+m− 1)2t+ 2(n+m− 1)(t− 2m)− 8m

(n+m− 1)(n+m+ 3)
,
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we note that when n+m−1 >
4m

t
, i.e., when n >

4m

t
− (m−1) = s, we have clearly

t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3
> 0 and so (21) leads to a contradiction. This completes

the proof. �

Lemma 2.8. Let f and g be two non-constant meromorphic (entire) functions and

n(≥ 2), m(≥ 1) be two distinct integers satisfying n + m ≥ d + 6 (n + m ≥ d + 2).

Then for two constants λ, µ, with |λ|+ |µ| 6= 0,

fn+1 (µfm + λ) ≡ gn+1 (µgm + λ)

implies the following.

(i) if λµ 6= 0 and

(a) m = 1, Θ(∞, f) + Θ(∞, g) > 4/n+ 1; or

(b) m ≥ 2 and for some constant t, satisfying td ≡ 1,

we have f ≡ tg, where d = (m,n+ 1),

(ii) if λµ = 0, then f = tg, where t is a constant satisfying tn+m∗+1 = 1.

Proof. Let m = 1. In this case noting that d = 1 = (n + 2, n + 1), proceeding in

the same way as done in Lemma 2.6 of [11] we can show when Θ(∞, f) + Θ(∞, g) >

4/(n+ 1), we have f ≡ g.

Next suppose m ≥ 2. Let f 6≡ tg for a constant t satisfying td = 1. We put h =
f

g
.

Then hd 6≡ 1, i.e., (h − v0)(h − v1) . . . (h − vd−1) 6≡ 0, where vk = exp

(
2kπi

d

)
,

k = 0, 1, 2, . . . , d− 1. First suppose that h is constant. Now from the given condition

we have

µgm( hn+m+1 − 1) ≡ −λ(hn+1 − 1).

Since gcd(n+ 1,m) = d, it follows that gcd(n+m+ 1, n+ 1) = d.

Eliminating the common factors, we end up with

agm(h− α1)(h− α2) . . . (h− αn+m+1−d) ≡ (h− β1)(h− β2) . . . (h− βn+1−d),

where αi and βj are those zeros of hn+m+1 − 1 and hn+1 − 1 which are not the zeros

of hd − 1, i = 1, 2, . . . , n + m + 1 − d and j = 1, 2, . . . , n + 1 − d. Also we note

that none of the αi’s coincide with βj ’s. So if h = αi or βj , then we have either

(h− β1)(h− β2) . . . (h− βn−d) ≡ 0 or g ≡ 0 and in both case we get a contradiction.

Hence we assume neither hn+m+1 ≡ 1 nor hn+1 ≡ 1. Therefore we may write

gm = − λ

µ

hn+1 − 1

hn+m+1 − 1
.(22)

It follows from above that g is a constant, which is impossible. So h is non-constant.

We observe that since a non-constant meromorphic function cannot have more than

two Picard exceptional values h can take at least n + m − d − 1 values among uj =

exp

(
2jπi

n+m+ 1

)
, where j = 0, 1, 2, . . . , n + m. Since fm has no simple pole h− uj
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has no simple zero for at least n + m − d − 1 values of uj , for j = 0, 1, 2, . . . , n + m

and for these values of j we have Θ(uj ;h) ≥ 1

2
, which leads to a contradiction.

Therefore hd ≡ 1 i.e., f ≡ tg for a constant t satisfying td = 1, where d = gcd(n+1,m).

Subcase 2.2: Let λµ = 0 but |λ| + |µ| 6= 0. Then from the given condition we get

fn+m∗+1 ≡ gn+m∗+1 and so f ≡ tg, where t is a constant satisfying tn+m∗+1 = 1. �

3. Proofs of the Theorems

Proof of Theorem 1.2. Since

ψ(f) =
[
fn+1

{ am
n+m+ 1

fm +
am−1
n+m

fm−1 + . . .+
a0

n+ 1

}]
+ α = fn+1P1(f) + α

and

ψ(g) =
[
gn+1

{ am
n+m+ 1

gm +
am−1
n+m

gm−1 + . . .+
a0

n+ 1

}]
+ α = gn+1P1(g) + α,

we have

ψ
′
(f) = fn[amf

m + am−1f
m−1 + . . .+ a0]f

′
+ α

′
= fnP (f)f

′
+ α

′
,

and

ψ
′
(g) = gn[amg

m + am−1g
m−1 + . . .+ a0]g

′
+ α

′
= gnP (g)g

′
+ α

′
.

Let

F1 = fn+1

{
am

n+m+ 1
fm +

am−1
n+m

fm−1 + . . .+
a0

n+ 1

}
= fn+1P1(f),

G1 = gn+1

{
am

n+m+ 1
gm +

am−1
n+m

gm−1 + . . .+
a0

n+ 1

}
= gn+1P1(g),

F =
fn[amf

m + am−1f
m−1 + . . .+ a0]f

′

−α′
=
fnP (f)f

′

−α′
=

(fn+1P1(f))
′

−α′
,

and

G =
gn[amg

m + am−1g
m−1 + . . .+ a0]g

′

−α′
=
gnP (g)g

′

−α′
=

(gn+1P1(g))
′

−α′
.

Since Ek)(0, ψ
′
(f)) = Ek)(0, ψ

′
(g)), it follows that Ek)(1, F ) = Ek)(1, G), except the

zeros and poles of α
′
. Also F

′

1 = −α′F and G
′

1 = −α′G.

Case 1. Let H 6≡ 0.

Let z0 be a simple zero of F − 1. Then by a simple calculation we see that z0 is a

zero of H and hence

(23) N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Also
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N(r,∞;H) ≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N(r,∞;F |≥ 2) +N(r,∞;G |≥ 2)

+NF≥k+1(r, 1;F | G 6= 1) +NG≥k+1(r, 1;G | G 6= 1) +NL(r, 1;F )

+NL(r, 1;G) +N0(r, 0;F
′
) +N0(r, 0;G

′
),(24)

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are not

the zeros of F (F − 1). N0(r, 0;G
′
) is similarly defined.

Using (23), (24) and Lemma 2.2 and noting that

NG>1(r, 1;F ) +N(r, 1;F |≥ 2) = N
(2

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

+NF≥m+1(r, 1;F | G 6= 1) + S(r),

by the second fundamental theorem we get

(n+m∗ + 1)T (r, f) ≤ T (r, F ) +N3(r, 0;F1)−N2(r, 0;F ) + S(r, f)

≤ N(r,∞; f) +N(r, 0;F ) +N
1)
E (r, 1;F ) +NG>1(r, 1;F ) +N(r, 1;F |≥ 2)

+N3(r, 0;F1)−N2(r, 0;F )−N0(r, 0;F
′
) + S(r, f) + S(r, g)

≤ 2N(r,∞; f) +N(r,∞; g) +N(r, 0;G |≥ 2) + 2NL(r, 1;F )

+2NL(r, 1;G) + 2NF≥k+1(r, 1;F | G 6= 1) +NG≥k+1(r, 1;G | F 6= 1)

+N
(2

E (r, 1;G) +N0(r, 0;G
′
) +N3(r, 0;F1) + S(r).

(25)

Using Lemma 2.2 and 2.3 we obtain that

2NF≥k+1(r, 1;F | G 6= 1) + 2NL(r, 1;F ) +N
(2

E (r, 1;F )

≤ 2N(r, 0;F
′
| F 6= 0) + S(r, f)

≤ 2N(r,∞; f) + 2N(r, 0;F ) + S(r, f)

≤ 4N(r,∞; f) + 4N(r, 0; f) + 2m∗T (r, f) + S(r, f),

(26)

and

N(r, 0;G |≥ 2) +NG≥m+1(r, 1;G | F 6= 1) + 2NL(r, 1;G) +N0(r, 0;G
′
)

≤ 2N(r, 0;G
′
| G 6= 0) +N(r, 0;G

′
| G = 0) + S(r)

≤ N(r, 0;G
′
| G 6= 0) +N(r, 0;G

′
) + S(r)

≤ 2N(r,∞; g) +N(r, 0;G) +N2(r, 0;G) + S(r).

≤ 4N(r,∞; g) + 5N(r, 0; g) + 2m∗T (r, f) + S(r).

(27)

Using (26) and (27) in (25) we have
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(n+m∗ + 1)T (r, f) ≤ 6N(r,∞; f) + 5N(r,∞; g) + 7N(r, 0; f) + 5N(r, 0; g)

+3m∗T (r, f) + 2m∗T (r, g) + S(r)

≤ (5m∗ + 23)T (r) + S(r).

In a similar way we get

(n+m∗ + 1)T (r, g) ≤ (5m∗ + 23)T (r) + S(r).

So from the above two inequalities we get

(n− 4m∗ − 22)T (r) ≤ S(r),

which is a contradiction.

Case 2. Now suppose H ≡ 0. Then by Lemma 2.6 we see that either FG ≡ α2 or

F ≡ G. First suppose P (z) is a non-constant polynomial with am 6= 0 and a0 6= 0,

then by Lemma 2.7, FG 6≡ α2. Next let | am |+| a0 |6= 0 but | am |. | a0 |= 0 and all

am−i, i = 1, 2, . . . ,m− 1 are zero. Then FG ≡ α2 implies

a2m∗(f
n+m∗+1)

′
(gn+m∗+1)

′
≡ α2.

In particular, if α = d = constant, the conclusion of the theorem follows form Lemma

2.5.

So we must have F ≡ G i.e., (fn+1P1(f))
′ ≡ (gn+1P1(g))

′
. Integrating, we obtain

fn+1P1(f) ≡ gn+1P1(g) + c.

If possible suppose c 6= 0.

Now using the second fundamental theorem we get

(n+m∗ + 1)T (r, f)

≤ N(r, 0; fn+1P1(f)) +N(r,∞; fn+1P1(f)) +N(r, c0; fn+1P1(f))

≤ N(r, 0; f) +m∗T (r, f) +N(r,∞; f) +N(r, 0; gn+1P1(g))

≤ (m∗ + 2) T (r, f) +N(r, 0; g) +m∗T (r, g) + S(r, f)

≤ (m∗ + 2) T (r, f) + (m∗ + 1) T (r, g) + S(r, f) + S(r, g)

≤ {2m∗ + 3} T (r) + S(r).

Similarly we get

(n+m∗ + 1) T (r, g) ≤ {2m∗ + 3} T (r) + S(r).

Combining these we get

(n−m∗ − 2) T (r) ≤ S(r),

which is a contradiction since n > m∗ + 2.
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Therefore c = 0 and so

fn+1P1(f) ≡ gn+1P1(g).

i.e.,

am
n+m+ 1

fn+m+1 +
am−1
n+m

fn+m + . . .+
a0

n+ 1
fn+1 ≡

am
n+m+ 1

gn+m+1 +
am−1
n+m

gn+m + . . .+
a0

n+ 1
gn+1.

If am−i = 0, for i = 1, 2, . . .m−1, then since P (z) is a non-zero polynomial, it follows

that | am |+| a0 |6= 0. If | am |. | a0 |6= 0, the conclusion of the theorem follows from

Lemma 2.8(i), otherwise it follows from Lemma 2.8(ii). Let at least one of am−i 6= 0,

for i = 1, 2, . . .m − 1. Suppose h =
f

g
. If h is a constant, by putting f = hg in the

above expression we get

am
n+m+ 1

gm(hn+m+1 − 1) +
am−1
n+m

gm−1(hn+m − 1) + . . .+
a1

n+ 2
g(hn+2 − 1)

+
a0

n+ 1
(hn+1 − 1) ≡ 0,

which implies that hd = 1, where d = gcd(n+m+1, . . . , n+m+1−i, . . . , n+1), am−i 6=
0 for some i ∈ {0, 1, . . . ,m}. Thus f ≡ tg for a constant t such that td = 1,where

d = gcd(n+m+ 1, . . . , n+m+ 1− i, . . . , n+ 1), am−i 6= 0 for some i ∈ {0, 1, . . . ,m}.
If h is not constant then f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn+1
1 (

amω
m
1

n+m+ 1
+
am−1ω

m−1
1

n+m
+ . . .+

a0
n+ 1

)

−ωn+1
2 (

amω
m
2

n+m+ 1
+
am−1ω

m−1
2

n+m
+ . . .+

a0
n+ 1

).

�

Proof of Theorem 1.1. Since Ek)(0, ψ
′
(f)) = Ek)(0, ψ

′
(g)), it follows that

Ek)(1, F ) = Ek)(1, G), except the zeros and poles of α
′
.

First suppose H 6≡ 0. In this case also (23) and (24) hold with N
1)
E (r, 1;F ) =

N(r, 1;F |= 1). Using (23), (24) and adopting the same procedure as done in the

Proof of Theorem 1 of [19], when k = 3 we get

T (r, F ) + T (r,G) ≤ 4{N(r,∞; f) +N(r,∞; g)}+ 2{N2(r, 0;F )

+N2(r, 0;G)}+ S(r, f) + S(r, g).

(28)

Hence by using Lemma 2.2 we get from (28)
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(n+m∗ + 1){T (r, f) + T (r, g)}
≤ T (r, F ) + T (r,G) +N3(r, 0;F1) +N3(r, 0;G1)−N2(r, 0;F )−N2(r, 0;G)

+S(r, f) + S(r, g)

≤ 4{N(r,∞; f) +N(r,∞; g)}+N3(r, 0; fn+1P1(f)) +N3(r, 0; gn+1P1(g))

+N2(r, 0;F ) +N2(r, 0;G) + S(r, f) + S(r, g)

≤ 5{N(r,∞; f) +N(r,∞; g)}+ 6{N(r, 0; f) +N(r, 0; g)}+ 2m∗{T (r, f) + T (r, g)}
+S(r, f) + S(r, g)

≤ (2m∗ + 11)T (r) + S(r).

(29)

In a similar way we can obtain

(n+m∗ + 1)T (r, g) ≤ (2m∗ + 11)T (r) + S(r).(30)

Combining (29) and (30) we see that

(n−m∗ − 10) T (r) ≤ S(r),

which is a contradiction.

When k = 2, using (23), (24) and proceeding in the same way as in the Proof of

Theorem 1 of [19] we get that

T (r, F ) + T (r,G) ≤ 9

2
{N(r,∞; f) +N(r,∞; g)}+ 2{N2(r, 0;F ) +N2(r, 0;G)}

+
1

2
{N(r, 0;F ) +N(r, 0;G)}+ S(r, f) + S(r, g).

(31)

Using Lemma 2.2 we get from (31) that

(n+m∗ + 1)T (r, f) ≤ 6{N(r,∞, f) +N(r,∞; g)}+ 7{N(r, 0; f) +N(r, 0; g)}

+
5m∗

2
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤
(

5m∗

2
+ 13

)
T (r) + S(r).

(32)

Similarly, we can obtain

(n+m∗ + 1) T (r, g) ≤
(

5m∗

2
+ 13

)
T (r) + S(r).(33)

Combining (32) and (33) we see that(
n− 3m∗

2
− 12

)
T (r) ≤ +S(r),



RESULTS ON CERTAIN NON-LINEAR DIFFERENTIAL POLYNOMIALS 33

which leads to a contradiction.

Last suppose k = 1. Using (23), (24) and proceeding in the same way as in the Proof

of Theorem 1 of [19] we get that

T (r, F ) + T (r,G) ≤ 6{N(r,∞; f) +N(r,∞; g)}+ 2{N2(r, 0;F ) +N2(r, 0;G)}
+2{N(r, 0;F ) +N(r, 0;G)}+ S(r, f) + S(r, g).

(34)

Using Lemma 2.2 we get from (34) that

(n+m∗ + 1)T (r, f) ≤ 9{N(r,∞, f) +N(r,∞; g)}+ 10{N(r, 0; f) +N(r, 0; g)}
+4m∗{T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ (4m∗ + 19) T (r) + S(r).

(35)

In a similar way we can obtain

(n+m∗ + 1) T (r, g) ≤ (4m∗ + 19) T (r) + S(r).(36)

Combining (35) and (36) we get

(n− 3m∗ − 18) T (r) ≤ +S(r),

which leads to a contradiction. Next suppose H ≡ 0. Then by Lemma 2.6 and

following the same procedure as adopted in the proof of Theorem 1.2 we can easily

deduce the conclusions of the theorem. Hence the proof is completed. �
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