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RESULTS ON CERTAIN NON-LINEAR DIFFERENTIAL
POLYNOMIALS SHARING A SMALL FUNCTION

ABHIJIT BANERJEE anpD MOLLA BASIR AHAMED

ABSTRACT. In the paper we shall mainly concern about the special types of non-linear
differential polynomial sharing a small function as introduced in [20]. Our main result
will improve, unify and generalize a number of recent results.

1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper by meromorphic functions we shall always mean meromorphic functions
in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite complex
number. We say that f and g share a CM(counting multiplicities), provided that
f —a and g — a have the same zeros with the same multiplicities. Similarly, we say
that f and g share a IM(ignoring multiplicities), provided that f — a and g — a have
the same zeros ignoring multiplicities. In addition we say that f and g share co CM,
if 1/f and 1/g share 0 CM, and we say that f and g share co IM, if 1/f and 1/g
share 0 IM.

Let m be a positive integer or infinity and a € CU{oo}. We denote by E,)(a; f) the
set of all a-points of f with multiplicities not exceeding m, where an a-point is counted
according to its multiplicity. Also we denote by Em) (a; f) the set of distinct a-points
of f(z) with multiplicities not greater than m. If o is a small function we define
that E,,)(a, f) = Epy(a,9) (Em (o, f) = Emy(a,g)), which means E,,)(0, f — o) =
By (0.9 = @) (B (0, f = @) = By (0,9 — ).

If for some a € CU {oo}, Epy(a, f) = Epy(a,g9) (Emy(a, f) = Em(a,g)) holds for
m = oo we say that f, g share the value a CM (IM).

We adopt the standard notations of value distribution theory (see [6]). We denote by
T'(r) the maximum of T'(r, f) and T'(r,g). The notation S(r) denotes any quantity
satisfying S(r) = o(T(r)) as r — 00, outside of a possible exceptional set of finite
linear measure.
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Throughout this paper, we need the following definition.

@(a7f) =1- hnifup W’

where a is a value in the extended complex plane.

Yang and Hua [22] made some vital contribution by showing that conclusions similar
to the four value theorem can be obtained when two specific types of non-linear
differential polynomials namely differential monomials share the same value. Below
we state their results.

Theorem A. [22] Let f and g be two non-constant meromorphic functions, n > 11
be a positive integer and a € C—{0}. If f*f" and g™g’ share a CM, then either f(z) =
c1e%, g(2) = coe™*, where c1, co and c are three constants satisfying (c1co)"1c? =

—1 or f =tg for a constant t such that t"t' = 1.

This result may be considered as the inception of new era in the direction of value
sharing of differential polynomials and the uniqueness of its generating meromorphic
function. The introduction of the new notion of scaling between CM and IM, known
as weighted sharing of values by I. Lahiri [7]-[8] in 2001 (for further details see [1]-[4],
[11)-[15], [17)-[18]).

Lin and Yi [16] improved the result of Fang and Hong [5] in the following manner.

Theorem B. [16] Let f and g be two non-constant meromorphic functions satisfying
O(c0, f) > . n(>12) an integer. If f*(f —1)f and g"(g—1)g share 1 CM,
then f = g.

2
(n+1)

Theorem C. [16] Let f and g be two non-constant meromorphic functions and n(>
13) be an integer. If f"(f — 1)2fl and g™ (g — 1)29' share 1 CM, then [ = g.

In 2005, Xiong, Lin and Mori [21] considered a new type of non-linear differen-
tial polynomial. Suppose h is a non-constant meromorphic function and 1 (h) =
h" (g™ + a) + «, where a is a constant and a # 0,00 is a small function. They
proved the following theorem.

Theorem D. [21] Let f and g be two transcendental meromorphic functions. Let m,
n, k are positive integers such that (k—1)n > 14+3m+k(104+m) and Ek)(O,w/l(f)) =
Ey(0,41(9)), then

(i) if m > 2, then f(z) = g(z);

(ii) if m = 1, then either f(z) = g(2), or f and g satisfy the algebraic equation
R(f,9) =0, where R(wi,ws) = (n+ 1)(w]™? —wit?) — (n + 2) (W] —wi™h).

In 2007, Shen and Li [20] improved and supplemented Theorem D. In 2008, C. Meng
[18], improved and supplemented Theorem D by the notion of weighted sharing. Here
we mention the following theorem of Meng.
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Theorem E. [18] Let f and g be two transcendental meromorphic functions. Let
W (f) and ) (g) share 0 IM. If n > 4m+ 22 then the conclusion of Theorem D holds.

Throughout the paper we define two non-zero polynomials P;(z) and P(z) as follows:

Gm Om—1 _m_1 @0
1 Pi(z) = m Z" et —,
(1) 1(2) n+m+1 n+m +n+1
and
(2) P(2) = amz™ + apm_12™ "1 4 ...+ a1z + ao,
where m > 1 is an integer and ayg, ai,..., a,, are complex constants.

Let P(z) be non-constant and a,, # 0, ag # 0. Let ¢ be the number of distinct roots
of the equation P(z) = 0. We define s by

(3) 5= (1)

Clearly t < m.
Next we recall the following result of Zhang,Chen and Lin [26] since it has some
relevance with the above discussion.

Theorem F. [26] Let f and g be two non-constant meromorphic functions. Let
n and m be two positive integers such that n > max{m + 10,3m + 3} and P(z)
be such that ag(# 0), ay, ... , am(# 0) are complex constants. If f*P(f)f and
g"P(g)g share (1,00) then either f(z) = tg(z) for a constant t such that t® = 1, where
d=gcdin+m+1,..,n+m+1—1i,...,n+1), apm_; #0 for some i€ {0,1,2,....,m}
or [ and g satisfy the algebraic equation R(f,g) =0, where

A0 TR UL ao
Ry = wp(eml el e
(wr,w2) 1 n+m+1 n+m n+1
—w”“( AWy’ 1wy ! ao )
2 n+m+1 n—+m T on+4+1/

In 2011, Zhang-Xu [27] generalized Theorem F for small functions. Recently, Sahoo
and Seikh [19] improved Theorem F in the following way.

Theorem G. [26] Let f and g be two non-constant meromorphic functions. Let n,

and P(z) be

m, k be three positive integers such that ©(oo; f) + O(c0;9) > njll—l
such that ag(# 0), a1, ... , am(# 0) are complex constants. If Ejy(a, P =
Ey, (mg"P(g)g,) and one of the following holds:

(i) k>3 and O(o0; f) > 0, ©(c0;9) > 0 and n > max{3m + 1,3m + 9};

(ii) k=2 and n > max{3m + 1, 37m +12};
(iii) k=1 and n > 3m + 17,

then the conclusion of Theorem F holds.
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Remark. [t should be noted that in Theorem G the condition ©(oo; f) + ©(o0; g) >

1 is only required when m = 1. Otherwise this condition is redundant.
n

Let m* be a non-negative integer defined as follows:

. m, if a,, #0
me= 0, if ag #0 and a; =0,1<i<m

For a non-constant meromorphic function h we define t(h) as

h:[h”“{aimhm Am=l pm-1 4 90 H .
w(h) n+m+1 +n—|—m * Jrn—l—l to

In the context of the result of Xiong, Lin and Mori [20] it will be interesting to
investigate the conclusions of Theorem G for all possible forms of P(z) so that all
results except Theorem E can be brought under a single umbrella. In this paper we
shall obtain two results; one of them improves Theorem E and the other improves all
the remaining results to a large extent.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, and a(z)(#
0,00) be a small function with respect to f and g. Also we suppose that Ej)(0, " (f) =
En(0,4'(9)). If

(a) k>3 and n > max{m* + 10, s};

(b) k=2 and n > max{ 37;* +12,s};

(¢) k=1 and n > max{3m* + 18, s},

then the following conclusions hold.

(I) When a,, # 0, ag # 0 and at least one of apm—; #0,i=1,2,...,m —1 then one
of the following two conditions holds:
(I1) f(z) =tg(z) for a constant t such that t* = 1, where d = ged(n+m+1,n+
m,...,n+m+1—1i,....n+1), an_; #0 for somei=0,1,2,...,m;
(I12) f and g satisfy the algebraic equation R(f,g) =0, where
R(wy,w2) = W (amwl® 4+ 1w 4 ...+ ag)

n+1 m—1
— Wy (amWi + apmo1wy’ T 4.+ ag),

(IT) When an, #0, ag #0 and all of apm—;’s, i =1,2,...,m — 1 are zero then
(I11) if m =1, O(o0, f) + O(c0,g) > 4/(n+1); or
(112) if m > 2, we have f = tg for some constant t, satisfying t* = 1, where
d = ged(m,n+ 1),
(III) When | am | + | ao |# 0, but | am, | .| ap |= 0 and all of ap—;’s, i =1,2,...,m—1
are zero then one of the following two conditions holds:
(IT11) f(2) = tg(z) where t is a constant satisfying t"+™ +1 = 1;
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(I12) a2,.[f*t™ 1 [¢" T ) = o2, In particular when oa(z) = d = constant,
we get f(z) = c1e*, g(z) = cae™ %, where ¢1, ca and ¢ are constants satisfy-
imng
aZ,.(crc)™ ™™ ((n +m* +1)e)? = —d?.

Theorem 1.2. Let f and g be two non-constant meromorphic functions, and a(z)(#
0,00) be a small function with respect to f and g. Also we suppose that Ek) (0, " ()=
Ey, (0,4 (9)), where n > max{4m* + 22, s} is an integer. Then the conclusions of
Theorem 1.1 hold.

Remark. In the above theorem when k — oo, we get a generalized version of The-
orem F.

We now explain following definitions and notations which are used in the paper.

Definition 1.3. [13] Let p be a positive integer and a € CU {oo}.

(i) N(r,a; f |>p) (N(r,a; f |> p)) denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not less than p.

(i) N(r,a;f |<p) (N(r,a; f |< p)) denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.4. [23] Fora € CU{oo} and a positive integer p we denote by Ny(r, a; f)
the sum N(r,a; f) + N(r,a; f |> 2) + ...N(r,a;f |> p). Clearly Ni(r,a;f) =
N(r,a; f).

Definition 1.5. Let k be a positive integer and for a € C—{0}, Ek)(a; f)= Ek)(a; q).
Let zg be a zero of f(z) — a of multiplicity p and a zero of g(z) — a of multiplicity
q. We denote by Np(r,a; f) the counting function of those a-points of f and g where
p>q>1, by Npss(r,a;9) (Ng=s(r,a; f)) the counting functions of those a-points
of f and g for which p > q=s(q>p=s), by N]{J)(r,a; f) the counting function of
those a-points of f and g where p=q =1 and by NS (r,a; f) the counting function of
those a-points of f and g where p = q > 2, each point in these counting functions is
counted only once. Similarly, we can define N(r,a;g), NB (r,a;g), and Ng(r,a;g).
We denote by N ysii1(rya; f | g#a) (Nyskt1(r,a;9| f # a)) the reduced counting
functions of those a-points of f and g for whichp>k+1andq=0 (¢ > k+1 and
p=0)

Definition 1.6. [9] Let a,b € C U{oo}. We denote by N(r,a; f | g # b) the counting
function of those a-points of f, counted according to multiplicity, which are not the
b-points of g.
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2. LEMMAS

Let F and G be two non-constant meromorphic functions defined in C. We define the
function H as:

F// 2F/ G/l 2Gl
) H_(F’_F—1>_(G'_G—1>'

Lemma 2.1. [13] Let f be a non-constant meromorphic function and let a,(z)(# 0),

an-1(2), ... , ag(z) be meromorphic functions such that T(r,a;(z)) = S(r, f) for
1=0,1,2,...,n. Then

T(rya,f™ + U f" P 4af+ ag) =nT'(r, f)+ S(r, f).

Lemma 2.2. [28] Let f be a non-constant meromorphic function, and p, k be positive

integers. Then

(5) N (R0 SN ) ST (rfD) = T(r ) + Ny, 05.1) + S(r. ),

(6) Ny (r,0:f90) < KN (1,005 f) + Ny (r,0; f) + S0, ).

Lemma 2.3. [10] If N(r,0; f(*) | f # 0) denotes the counting function of those zeros
of %) which are not the zeros of f, where a zero of f*) is counted according to its
multiplicity then

N(r,0; f®) | f #0) < kN(r,00; f) + N(r,0; f |[< k) + kN (r,0; f |> k) + S(r, f).

Lemma 2.4. [22] Let f and g be two non-constant meromorphic functions, n > 6 be
an integer. If f*f g"g =1 then f(z) = c1e®, g(z) = cae™* where ¢, ¢1 and ¢y are

constants satisfying (cico)"Ttc? = —1.

Lemma 2.5. Let f, g be two non-constant meromorphic functions and n be a positive
integer such that n > 6. If a2,.(f*tm +1) (gmtm 1Y = @2, then f = c1e%, g =
coe~ %, where ¢y, ¢y and c are constants such that a2,.(c1co)" ™™ 1 ((n+m*+1)c)? =
—d?.

Proof. From the given condition we can write

. . d 2
7 n+m !/ n+m /E _ k2,
(M) f g g am~(n +m* +1)2
where k = d/(ap,-(n +m* +1)%). We put f; = #, g1 = —%—. Then (7)
Py knFmeH1
reduces to
1n+m*f19?+m*91 =1

Using Lemma 2.4, we have f = c1e%*, g = coe™°*, where c1, co and c are constants

such that a?,.(c1co)™™ 1 ((n+m* +1)c)? = —d>. O
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Lemma 2.6. Let f, g be two non-constant meromorphic functions and
L/ P(f)] G- lg" P1(g)]

- -«
respect to f and g, n is a positive integer such that n > m* +5. If H = 0 then either

P = 9" Pig)) or [fMHPI()] [T PLg)] = o
Proof. Since H = 0, by integration we get

1 bG+a-b
®) F—-1~— G-1"

where a, b are constants and a # 0. We now consider the following cases.

F = , where a(z)(# 0,00) be a small function with

Case 1. Let b # 0 and a # b.
If b = —1, then from (8) we have
—a

FP=—" .
G—a-—1

Therefore

N(r,a+1;G) = N(r,00; F) = N(r, 00; f).

So by Lemma 2.2 and the second fundamental theorem we get

T(r,G) 4 Ny(r,0;g" " Pi(g)) — N(r,0;G)

N(r,00;G) + N(r,0;G) + N(r,a + 1;G) + No(r,0; g" ' P(g))
~N(r,0;G) + S(r, 9)

N(r,00:9) + No(r,0; 9" P(g)) + N(r,00; f) + S(r, g)

T(r, f)+ (m*+3) T(r,g) + S(r, f) + S(r, 9).

(n+m* +1) T(r,g)

IN

IN

IN A

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T'(r, f) < T(r,g) for r € I.
So for r € I we have

(Tl - 3) T(T.a g) < S(T‘,g),

which is a contradiction.
If b # —1, from (8) we obtain that

F— (1 + %) = bQ{Gj“b]
b
So
N(T, (b ; “) ; G) = N(r,00; F) = N(r,00; f).
Using Lemma 2.2 and by the same argument as used in the case when b = —1 we can

get a contradiction.
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Case 2. Let b#0and a =b.
If b = —1, then from (8) we have
FG = ao?,
that is
PN [ Pilg)] = o,

If b # —1, from (8) we have
1 bG
F~ (1+b0G-1
Therefore
N(r, L; G) = N(r,0; F).
1+

So by Lemma 2.2 and the second fundamental theorem we get

IN

(n+m*+1) T(r,g) T(r,G) + Na(r,0;g" ' Pi(g)) = N(r,0;G) + S(r, 9)

IN

N(r,00;G) + N(r,0;G) + N(r, ﬁ; G) + No(r,0; g" ' Pi(g))
—N(r,0;G) + S(r, 9)

(m* +3)T(r,g) + N(r,0; F) + S(r, g)

N(r,00; f) +2N(r,0; f) + (m* +3)T(r, g)

(m* +3{T(r,g) + T(r, /)} + S(r, f) + 5(r, 9).

IN A

IN

So for r € I we have
{n—m" =5} T(r,g) < S(r,9),

which is a contradiction since n > m* + 5.

Case 3. Let b= 0. From (8) we obtain
G+a—-1

9) F=2t

If a # 1 then from (9) we get

N(r,1—a;G) = N(r,0; F).
We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (9)

we obtain

F=G.

ie.,
’

[fPPf)]) = 9" Pig))]
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Lemma 2.7. Let f and g be two non-constant meromorphic functions and a(z)(#
0,00) be a small function of f and g. Let n be a positive integer such that n > s, where
s is defined by (3). Suppose that P(z) # a;z%, for i = 1,2,...,m be a non-constant
polynomial. Then

frP(f)f 9" Plg)g # o”.
Proof. First suppose that

(10) I"P(f)f g"Plg)g = o*(2).
Let d; be the distinct zeros of P(z) = 0 with multiplicity p;, where i = 1,2,... ¢,

t
1<t<mand ) p;=m.
i=1
Now by the second fundamental theorem for f and g we get respectively

t

(11)  ¢T(r, f) < N(r,0; f) + N(r,00; ) + Z (r,dis f) — No(r,0; f ) + S(r, f),

and

(12)  tT(r,9) < N(r,0:9) + N(r,00,9) + y_N(r,dizg) = N(r,0:9 ) + S(r,g),

)
-
i

where N(r,0; f l) denotes the reduced counting function of those zeros of f which are
not the zeros f and f —d;, i =1,2,...,t. N(r,0; g,) can be similarly defined.

Let zg be a zero of f with multiplicity p but a(zg) # 0, 00. Clearly zg must be a pole
of g with multiplicity g. Then from (10) we get np +p — 1 = ng + mq + g + 1. This
gives

(13) mqg+2=m+1)(p—q).

—1
From (13) we get p—¢ > 1 and so ¢ > P72 Now np+p—1=ng+mqg+q+1 gives
m
> n+m-—1

p > ———— . Thus we have
m

(14) N(r,0;f) <

m m
— N0 f) £ —/———
n+m-—1 (r,0: /) n+m-—1

Let z1(a(z1) # 0,00) be a zero of f — d; with multiplicity ¢;, ¢ = 1,2,...,t. Then
z1 must be a pole of g with multiplicity #(> 1). So from (10) we get ¢;p; +¢; — 1 =

T(r, f)-

2
(n+m+1)r+1>n+m+2. ThisgivesqiZ%fori:l,l...,tandsowe
Di
get
N(T di'f)<ﬂN(7’ di'f)<AT(T f)
T T n4+m+3 T T n4+m+3 ’
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Clearly,

t

— m—+t
15 N(r,di; f) < ———= T'(n, f).
(15) ; (rydis f) < - o T( )
Similarly, we have
1 N(r,0;9) < ——— T
(16) (n059) < " T(r,g).
and

t

— m-4t
1 N(r,d;;9) < ————=T(r, g).
a7 > Nirndig) < T T(rg)

=1

Also it is clear from (16) and (17) that

o+

N(T,Oo;f) S TOg Z rdzvg +NO(T09)+S(T7JC)+S(T79)

m+1
n—|—m—1 n+m+3

IA

) T(r,g) + No(r,0:g') + 5(r, f) + S(r.g).
18)
Then by (11), (14), (15) and (18) we get

FT(r f) < ( m m+t

4 ) 0 4 T )} + R0

7N0(7’, 01 f/) + S(Tv f) + S(Ta g)
(19)

Similarly, we have

(T0g) < (e ot ) AT )+ T )} + R0 1)
—NO(T,O;QI)+S(T,f)+5(’l“,g).
(20)

So from (19) and (20) we get

HT(r f) + T(r.g)} <2 (

m m+t
+
n+m—-—1 n+m+3

ie.,
e (1- 2  HOED ) (1 )+ T} < 502 0) + ().
Since

)

. 2m  2(m+t)  (n+m—1)%t+2(n+m—1)(t—2m) —8m
n+m—-1 n+m+3) (n+m—1)(n+m+3)

) {T(r.J) + T(r.g)} + S(r, ) + S(r.).
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4 4
we note that when n4+m—1 > Tm, i.e., when n > Tm —(m—1) = s, we have clearly

2 2 t
- m___ 2m+1) > 0 and so (21) leads to a contradiction. This completes
n+m—-—1 n+m+3
the proof. O

Lemma 2.8. Let f and g be two non-constant meromorphic (entire) functions and
n(> 2), m(> 1) be two distinct integers satisfyingn+m >d+6 (n+m > d+2).
Then for two constants X, p, with |\ + |p| # 0,
Frf™ +2) =" (ng™ + )

implies the following.
(i) if \u# 0 and
(a) m =1, O, f) + ©(00,9) > 4/n + 1; or
(b) m > 2 and for some constant t, satisfying t¢ =1,
we have f = tg, where d = (m,n + 1),
(ii) if A= 0, then f = tg, where t is a constant satisfying t"*™ +1 =1,
Proof. Let m = 1. In this case noting that d = 1 = (n + 2,n + 1), proceeding in
the same way as done in Lemma 2.6 of [11] we can show when O(co, f) + ©(c0,g) >
4/(n + 1), we have f = g.
Next suppose m > 2. Let f # tg for a constant t satisfying t¥ = 1. We put h = 1

g
ka)

d

k=0,1,2,...,d—1. First suppose that h is constant. Now from the given condition

Then hd # 1, ie., (h —vo)(h —v1)...(h — va_1) # 0, where vy = e:z:p<

we have

pg™ (R 1) = A (AT - 1),
Since ged(n + 1,m) = d, it follows that ged(n + m+1,n+1) = d.
Eliminating the common factors, we end up with

ag™(h —o1)(h —az)...(h — angmir-a) = (h = B1)(h = B2) ... (h = Bni1-a),
where a; and 3; are those zeros of A" "1 — 1 and A"*! — 1 which are not the zeros
of f*—1,i=1,2,....n+m+1—dand j = 1,2,...,n+1—d. Also we note
that none of the a;’s coincide with 3;’s. So if h = a; or §;, then we have either
(h—pB1)(h—B2)...(h— Bn_q) =0 or g =0 and in both case we get a contradiction.
Hence we assume neither A"t *! = 1 nor A"*! = 1. Therefore we may write

A R 1
(22) gr=—=—.
I hvn+vrz+1 —-1
It follows from above that g is a constant, which is impossible. So h is non-constant.
We observe that since a non-constant meromorphic function cannot have more than
two Picard exceptional values h can take at least n +m — d — 1 values among u; =

9
exp _om , where j = 0,1,2,...,n 4+ m. Since f™ has no simple pole h — u;
n+m+1
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has no simple zero for at least n +m — d — 1 values of u;, for j = 0,1,2,...,n+m
1
and for these values of j we have ©O(u;;h) > 3 which leads to a contradiction.

Therefore h? = 1i.e., f = tg for a constant ¢ satisfying t = 1, where d = ged(n+1,m).
Subcase 2.2: Let Ay = 0 but |A\| 4 |u| # 0. Then from the given condition we get
frtm i+l = gnitm ™+l and g0 f = tg, where t is a constant satisfying "™ 1 =1. O

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.2. Since

_ n+1 am m Am—1 m—1 ag }:| _ n+1P
o) = [ e S a = PR +a
and
_ n+1 A m Am—1 g1 ao }:| — n+1P
vlg) = g { g 2l B o = g P9 + o,
we have
O (f) = fMamf™ + amr S+t aof o = PP 4o,
and
V¥ (9) = g"[amg™ + am-19"""+ ... +aolg +a =g"P(g)g +a.
Let
F = n+1 am m Am—1 pm—1 ao _ n+1P
1=f {n+m+1f +7n+mf + +n+1 f 1(f)s
G —_ n+1 A m A —1 m—1 ao — n+1P
1=9 {n+m+1g Ry A T g 1(9),
g IMand™ a7 4 raf PSR
_a/ _a/ _al b
and
oo O'amg™ +am 19"+ tadg _g"Pl9)g _ (9" Pag))

—a —a —«a
Since Ey, (0, W' (f) = Ek)(O,w/(g)), it follows that Ey)(1, F) = Ey(1,G), except the

zeros and poles of a'. Also F| = —a'F and G = —a'G.

Case 1. Let H # 0.
Let zo be a simple zero of F' — 1. Then by a simple calculation we see that zg is a
zero of H and hence

(23)  NH(r,1;F) = NJ)(r,1;G) < N(r,0; H) < N(r,00; H) + S(r, F) + 5(r, G).
Also
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N(r,00;H) < N(r,0;F [>2) 4+ N(r,0;G [>2) + N(r,00; F |[> 2) + N(r,00; G |> 2)

+NFZ]€+1(T7 1, F | G 75 1) —|—NG2]§+1(7“, 1; G | G 75 1) —|—NL(’/‘, 1; F)
(24) +NL(r, 1;G) + No(r,0; F') + No(r,0;¢"),

where No(r,0; F') is the reduced counting function of those zeros of F* which are not

the zeros of F(F —1). No(r,0; G/) is similarly defined.

Using (23), (24) and Lemma 2.2 and noting that

Nesi(nLF) + N(nLF [22) = Ng(nLF)+Np(r, 11 F) + No(r, 1;G)
+NFZm+1(T7 1; F | G 7& 1) + S(T)v

by the second fundamental theorem we get

(n+m*+1)T(r, f) <T(r,F)+ N5(r,0; F1) — Na(r,0; F') + S(r, f)
N(r,00; f) + N(r,0; F) + N) (r,1; F) + Ngo1(r, 1, F) + N(r, 1; F |> 2)
+N3(r, 0; Fy) — No(r,0; F) — No(r,0; F ) + S(r, f) + S(r, )
2N(r,00; f) + N(r,00;9) + N(r,0;G |> 2) + 2N (r, 1; F)
+2N(r,1;G) + 2Npspi1(r, 3 F | G#1)+ Ngspra1(r, ;G| F #1)
ANE(r, 1,G) + No(r,0;G') + N(r, 0; F1) + S(r).

IN

IN

(25)
Using Lemma 2.2 and 2.3 we obtain that

N popsr(n L F | G#1)+ 2N (r,1; F) + Ne(r,1; F)
IN(r,0;F | F #0)+ S(r, f)
2N (r,00; f) +2N(r,0; F) + S(r, f)

AN (r,00; f) + 4N (r,0; f) + 2m*T(r, f) + S(r, f),

IN A

IN

(26)

and

N(r,0;G |>2) + Nasma1(r, ;G| F#1)+ 2N (r,1;G) + No(r,0:G)
IN(r,0;G | G#0)+N(r,0,G | G=0)+S(r)

N(r,0;G | G #0)+N(r,0;G) + S(r)

2N (r,00;g) + N(r,0; G) + No(r,0; G) + S(r).

4N (r,00;9) + 5N (r,0; g) +2m*T(r, f) + S(r).

ININ INCIA

(27)
Using (26) and (27) in (25) we have
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(n+m*+1)T(r, f) < 6N(r,00; ) + 5N (r,00; g) + TN (r,0; f) + 5N(r, 0; g)
+3m*T(r, f) +2m*T(r,g) + S(r)
(5m* +23)T(r) + S(r).

IA

In a similar way we get
m+m"+1DT(r,g) < (5m™+23)T(r) + S(r).
So from the above two inequalities we get
(n—4m* —22)T(r) < S(r),

which is a contradiction.

Case 2. Now suppose H = 0. Then by Lemma 2.6 we see that either FG = o? or
F = G. First suppose P(z) is a non-constant polynomial with a,, # 0 and ag # 0,
then by Lemma 2.7, FG # o?. Next let | an, |[+| ap |# 0 but | am |. | ag |= 0 and all
am—i, 1 =1,2,...,m —1 are zero. Then FG = a? implies

* 7 * ’
Q2 (Y (T = 2,

In particular, if @« = d = constant, the conclusion of the theorem follows form Lemma
2.5.
So we must have F' = G i.e., (f"T P (f)) = (¢"T'Pi(g)) . Integrating, we obtain

FUPU(f) = " Pi(g) + e
If possible suppose ¢ # 0.
Now using the second fundamental theorem we get
(n+m*+1)T(r, f)
N(r,0; fPHEPL(f)) + N (00 f 1 PU(f)) + N (7 cos [P PL(S))
N(r,0; f) +m*T(r, f) + N(r, 003 f) + N(r,0: g" " Pi(g))
(m* +2)T(r, f) + N(r,0;9) + m*T(r,g) + S(r, f)
(m*+2)T(r,f)+ (m*+1)T(r,g) + S(r, f) + S(r,g)
{2m* + 3} T(r) + S(r).

INIA IN A

IN

Similarly we get
(n+m*+1) T(r,g) < {2m* +3} T(r) + S(r).
Combining these we get
(n—m™ =2)T(r) < S(r),

which is a contradiction since n > m* + 2.
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Therefore ¢ = 0 and so

[PP(f) = g" T Pu(g).

ie.,
am, n+m+1 Am—1 rntm ao n+l
n+m+1f +n+mf +'“+n+1f o
am n+m+1 ;| 9m—1 nym ao  p41
n+m+1g n+m +”'+n—|—1g '

If ay,—; =0, for i =1,2,...m—1, then since P(z) is a non-zero polynomial, it follows
that | am, |[+] ao |# 0. If | am, |- | ao |# 0, the conclusion of the theorem follows from
Lemma 2.8(3), otherwise it follows from Lemma 2.8(ii). Let at least one of a,,—; # 0,

fori =1,2,...m — 1. Suppose h = i If h is a constant, by putting f = hg in the
g

above expression we get

(e2°% Am—1 _ a
mhn+m+1_1 m 1hn+m_1 h77,+2_1
e A [ e A LA )
Qo n+1 —
20 _(pmt 1) =0,
Jrn—i—l( )

which implies that h? = 1, where d = ged(n+m-1,...,nd+m+1—i,... . n+1), apm_; #
0 for some i € {0,1,...,m}. Thus f = tg for a constant ¢ such that t¢ = 1,where
d=gcdln+m+1,....,n+m+1—14,....,n+1), am_; # 0 for some ¢ € {0,1,...,m}.
If h is not constant then f and g satisfy the algebraic equation R(f,g) = 0, where

m—1

A Ay —1W ag
R(wi,w = ! m=l uu L ot
(w1, w2) 1 (n—|—m—|—1 n+m n+1)
,wn-‘rl( amwén am—lw;n_l ao )
2 n+m+1 n+m n+1

Proof of Theorem 1.1. Since Ej, (0, W (f) = Ey, (0,9'(g)), it follows that
Ey(1,F) = Ep,)(1,G), except the zeros and poles of o

First suppose H # 0. In this case also (23) and (24) hold with Né)(r,l;F) =
N(r,1; F |=1). Using (23), (24) and adopting the same procedure as done in the
Proof of Theorem 1 of [19], when k = 3 we get

T(r,F)+T(r,G) < 4{N(r,00;f)+ N(r,00;9)} +2{Na(r,0; F)
+No(r,0,G)} + S(r, f) + S(r, 9)-
(28)

Hence by using Lemma 2.2 we get from (28)
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(n+m*+D{T(r, f)+T(r,g)}

T(r,F)+T(r,G) + N3(r,0; F1) + N3(r,0; G1) — No(r,0; F) — Ny(r,0; G)

+S(r, f)+ S(r,9)

AN (r, 003 f) + N(r,0039)} + N3 (r,0; f* " P(f)) + N3(r,0; 6" Pr(g))
+No(r,0; F) + No(r,0;G) + S(r, f) + S(r, 9)

5{N(r,00; f) + N(r,00; 9)} + 6{N(r,0; f) + N(r,0; 9)} + 2m*{T(r, f) + T(r,9)}
+S(r, f) + S(r,9)

< (2m*+11)T(r)+ S(r).

(29)

IN

IN

IN

In a similar way we can obtain
(30) (n+m*+1DT(r,g) < (2m*+11)T(r) + S(r).
Combining (29) and (30) we see that

(n—=m"*—=10) T(r) < S(r),

which is a contradiction.

When k£ = 2, using (23), (24) and proceeding in the same way as in the Proof of
Theorem 1 of [19] we get that

T(,F)+T(r,G) < S{N(r,00: )+ W(r,00:9)} + 2 Na(r, 05 F) + Na(r, 05 G)}
5N, 0:F) + N, 0:0)) + 5(r, /) + 5(r,).
(31)
Using Lemma 2.2 we get from (31) that
(n+m*+1T(r,f) < 6{N(r,00, f) + N(r,00;9)} + T{N(r,0; f) + N(r,0;9)}

£ 1) + T )} + S0 0) + S(00)
< (57; + 13) T(r) + S(r).
(32)
Similarly, we can obtain
om*
(33) (n+m*+1)T(r,g9) < ( 5 T 13> T(r)+S8(r).

Combining (32) and (33) we see that

(n - 37; - 12) T(r) < +S(r),
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which leads to a contradiction.
Last suppose k = 1. Using (23), (24) and proceeding in the same way as in the Proof
of Theorem 1 of [19] we get that

T(r,F)+T(r,G) < 6{N(r,00;f)+ N(r,00;9)} + 2{Na(r,0; F) + Na(r,0; G)}
+2{N(r,0; F) + N(r,0;G)} + S(r, f) + S(r, g).
(34)
Using Lemma 2.2 we get from (34) that
(n+m*+1DT(r, f) < 9{N(r,00, f)+ N(r,00;9)} + 10{N(r,0; f) + N(r,0;9)}
+4m*{T(r, )+ T(r,9)} + S(r, f) + S(r,g)
(Am* +19) T(r) + S(r).

IA

(35)
In a similar way we can obtain
(36) (n+m*+1)T(r,g) < (4m* +19) T(r) + S(r).
Combining (35) and (36) we get
(n—3m*—18) T(r) < +S(r),

which leads to a contradiction. Next suppose H = 0. Then by Lemma 2.6 and
following the same procedure as adopted in the proof of Theorem 1.2 we can easily
deduce the conclusions of the theorem. Hence the proof is completed. |
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