RELATIVE FIX POINTS OF A CERTAIN CLASS OF COMPLEX FUNCTIONS

DIBYENDU BANERJEE AND BISWAJIT MANDAL

Abstract. We introduce the idea of relative iterations of three functions and by using this, we extend a theorem on fix point of complex functions involving exact factor order.

1. Introduction

A single valued function $f(z)$ of the complex variable z is said to belong to (i) class I if $f(z)$ is entire transcendental, (ii) class II if it is regular in the complex plane punctured at $a, b(a \neq b)$ and has an essential singularity at b, and a singularity at a and if $f(z)$ does not assume the values a and b anywhere in the complex plane except possible at the point a.
We can normalize the functions in class II by taking $a=0$ and $b=\infty$.
Throughout this paper we shall consider only such normalized functions, whenever we deal with functions in class II.
Iterated $f_{n}(z)$ of $f(z)$ are defined inductively by

$$
f_{0}(z)=z \text { and } f_{n+1}(z)=f\left(f_{n}(z)\right) ; n=0,1,2, \ldots
$$

A point α is called a fix point of $f(z)$ of order n if α is a solution of $f_{n}(z)=z$ and called a fix point of exact order n if α is a solution of $f_{n}(z)=z$ but not a solution of $f_{k}(z)=z, k=1,2, \ldots, n-1$.
In [2], Baker proved the following theorem.
Theorem 1.1. If $f(z)$ belongs to class I, then $f(z)$ has fix points of exact order n, except for at most one value of n.

Bhattacharyya [4] extended Theorem 1.1 to the functions belonging to class II as follows:

Theorem 1.2. If $f(z)$ belongs to class II, then $f(z)$ has infinitely many fix points of exact order n, for every positive integer n.

Lahiri and Banerjee [5] generalized Theorem 1.2 in another direction. For this, they introduced the concept of relative fix point defined as follows:

[^0]Let $f(z)$ and $g(z)$ be functions of complex variable z. Let

$$
\begin{aligned}
& f_{1}(z)=f(z) \\
& f_{2}(z)=f(g(z))=f\left(g_{1}(z)\right) \\
& f_{3}(z)=f(g(f(z)))=f\left(g\left(f_{1}(z)\right)\right)
\end{aligned}
$$

$$
f_{n}(z)=f(g(f(g \ldots(f(z) \text { or } g(z) \text { according as } n \text { is odd or even }) \ldots)))
$$

$$
=f\left(g_{n-1}(z)\right)=f\left(g\left(f_{n-2}(z)\right)\right)
$$

and so

$$
\begin{aligned}
& g_{1}(z)=g(z) \\
& g_{2}(z)=g(f(z))=g\left(f_{1}(z)\right) \\
& g_{3}(z)=g\left(f_{2}(z)\right)=g\left(f\left(g_{1}(z)\right)\right) \\
& \vdots \\
& g_{n}(z)=g\left(f_{n-1}(z)\right)=g\left(f\left(g_{n-2}(z)\right)\right)
\end{aligned}
$$

Clearly, all $f_{n}(z)$ and $g_{n}(z)$ are functions in class II, if $f(z)$ and $g(z)$ are so.
A point α is called a fix point of $f(z)$ of order n with respect to $g(z)$, if $f_{n}(\alpha)=\alpha$ and a fix point of exact order n if $f_{n}(\alpha)=\alpha$ but $f_{k}(\alpha) \neq \alpha, k=1,2, \ldots, n-1$. Such points α are also called relative fix points.

Theorem 1.3. If $f(z)$ and $g(z)$ belong to class II, then $f(z)$ has infinitely many relative fix points of exact order n for every positive integer n provided $\frac{T\left(r, g_{n}\right)}{T\left(r, f_{n}\right)}$ is bounded.

Recently, Banerjee and Mandal [6] proved the result of Lahiri and Banerjee [5] by introducing the idea of relative fix point of exact factor order n.
A point α is called a relative fix point of $f(z)$ of exact factor order n if $f_{n}(\alpha)=\alpha$ but $f_{k}(\alpha) \neq \alpha$ and $g_{k}(\alpha) \neq \alpha$ for all divisors $k(k<n)$ of n.
With this definition Banerjee and Mandal [6] proved the following theorem.
Theorem 1.4. If $f(z)$ and $g(z)$ belong to class II, then $f(z)$ has infinitely many relative fix points of exact factor order n for every positive integer n, provided $\frac{T\left(r, f_{n-1}\right)}{T\left(r, f_{n}\right)}$ is bounded.

In the present paper we first define relative iterations for three functions and extend the result of Banerjee and Mandal [6] in that direction.
Let $f(z), g(z)$, and $h(z)$ be three functions of the complex variable z and $m \geq 2$ be any fixed positive integer. We set

$$
\begin{aligned}
& f_{1}(z)=f(z) \\
& f_{2}(z)=f(g(z))=f\left(g_{1}(z)\right) \\
& f_{3}(z)=f(g(h(z)))=f\left(g\left(h_{1}(z)\right)\right)=f\left(g_{2}(z)\right) \\
& f_{4}(z)=f(g(h(f(z))))=f\left(g\left(h_{2}(z)\right)\right)=f\left(g_{3}(z)\right)
\end{aligned}
$$

$f_{n}(z)=f(g(h(f \ldots(f(z)$ or $g(z)$ or $h(z)$ according to $n=3 m-2$ or $3 m-1$ or $3 m$)...)))

$$
=f\left(g_{n-1}(z)\right)=f\left(g\left(h_{n-2}(z)\right)\right)
$$

Similarly,

$$
\begin{aligned}
& g_{1}(z)=g(z) \\
& g_{2}(z)=g(h(z))=g\left(h_{1}(z)\right) \\
& g_{3}(z)=g(h(f(z)))=g\left(h\left(f_{1}(z)\right)\right)=g\left(h_{2}(z)\right) \\
& g_{4}(z)=g(h(f(g(z))))=g\left(h\left(f_{2}(z)\right)\right)=g\left(h_{3}(z)\right)
\end{aligned}
$$

$$
\vdots
$$

$g_{n}(z)=g(h(f(g \ldots(g(z)$ or $h(z)$ or $f(z)$ according to $n=3 m-2$ or $3 m-1$ or $3 m) . .)$.$))$

$$
=g\left(h_{n-1}(z)\right)=g\left(h\left(f_{n-2}(z)\right)\right)
$$

and so are

$$
\begin{aligned}
& h_{1}(z)=h(z) \\
& h_{2}(z)=h(f(z))=h\left(f_{1}(z)\right) \\
& h_{3}(z)=h(f(g(z)))=h\left(f\left(g_{1}(z)\right)\right)=h\left(f_{2}(z)\right) \\
& h_{4}(z)=h(f(g(h(z))))=h\left(f\left(g_{2}(z)\right)\right)=h\left(f_{3}(z)\right)
\end{aligned}
$$

$h_{n}(z)=h(f(g(h \ldots(h(z)$ or $f(z)$ or $g(z)$ according to $n=3 m-2$ or $3 m-1$ or $3 m) . .$.$))$

$$
=h\left(f_{n-1}(z)\right)=h\left(f\left(g_{n-2}(z)\right)\right)
$$

Clearly all $f_{n}(z), g_{n}(z)$, and $h_{n}(z)$ are functions in class II, if $f(z), g(z)$, and $h(z)$ are so.
The following definition is now introduced.
Definition 1.5. A point α is called a fix point of $f(z)$ of order n with respect to $g(z)$ and $h(z)$, if $f_{n}(\alpha)=\alpha$ and a fix point $f(z)$ of exact factor order n if $f_{n}(\alpha)=\alpha$ but $f_{k}(\alpha) \neq \alpha, g_{k}(\alpha) \neq \alpha$ and $h_{k}(\alpha) \neq \alpha$ for all divisors $k(k<n)$ of n.
Example 1.6. Let $f(z)=z+1, g(z)=\frac{1}{z-1}$, and $h(z)=\frac{2}{z}$. Clearly, $f_{3}(z)=\frac{2}{2-z}$. Here $z=1 \pm i$ are fix points of $f(z)$ of exact factor order 3 .

Let $f(z)$ be meromorphic in $r_{0} \leq|z|<\infty, r_{0}>0$. We use the following notations [1]: $n(t, a, f):=$ number of roots of $f(z)=a$ in $r_{0}<|z| \leq t$, counted according to multiplicity,
$N(r, a, f):=\int_{r_{0}}^{r} \frac{n(t, a, f)}{t} d t$,
$n(t, \infty, f):=n(t, f)=$ the number of poles of $f(z)$ in $r_{0}<|z| \leq t$, counted with due to multiplicity,

$$
\begin{aligned}
& N(t, \infty, f):=N(t, f) \\
& m(r, f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

and $m(r, a, f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\frac{1}{f\left(r e^{i \theta}\right)-a}\right| d \theta$.
With these notations, Jensen's formula can be written as [1],

$$
m(r, f)+N(r, f)=m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f}\right)+O(\log r)
$$

Writing $m(r, f)+N(r, f)=T(r, f)$, the above becomes

$$
T(r, f)=T\left(r, \frac{1}{f}\right)+O(\log r)
$$

In this case the first fundamental theorem takes the form

$$
\begin{equation*}
m(r, a, f)+N(r, a, f)=T(r, f)+O(\log r) \tag{1}
\end{equation*}
$$

where $r_{0} \leq|z|<\infty, r_{0}>0$.
Suppose that $f(z)$ is non-constant. Let $a_{1}, a_{2}, \ldots, a_{q}, q \geq 2$ be distinct finite complex numbers, $\delta>0$ and suppose that $\left|a_{\mu}-a_{v}\right| \geq \delta$ for $1 \leq \mu \leq v \leq q$. Then

$$
\begin{equation*}
m(r, f)+\sum_{v=1}^{q} m\left(r, a_{v}, f\right) \leq 2 T(r, f)-N_{1}(r)+S(r) \tag{2}
\end{equation*}
$$

where

$$
N_{1}(r)=N\left(r, \frac{1}{f^{\prime}}\right)+2 N(r, f)-N\left(r, f^{\prime}\right)
$$

and

$$
S(r)=m\left(r, \frac{f^{\prime}}{f}\right)+\sum_{v=1}^{q} m\left(r, \frac{f^{\prime}}{f-a_{v}}\right)+O(\log r)
$$

Adding $N(r, f)+\sum_{v=1}^{q} N\left(r, a_{v}, f\right)$ to both sides of (2) and using (1), we obtain

$$
\begin{equation*}
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{v=1}^{q} \bar{N}\left(r, a_{v}, f\right)+S_{1}(r) \tag{3}
\end{equation*}
$$

where $S_{1}(r)=O(\log T(r, f))$ and \bar{N} corresponds to distinct roots.
Further, because f_{n} has an essential singularity at ∞, we have $\frac{\log r}{T\left(r, f_{n}\right)} \rightarrow 0$ as $r \rightarrow \infty$ [1].

2. Lemmas

The following lemmas will be needed in the sequel.
Lemma 2.1. If n is any positive integer and f, g, and h are functions in class II, then for any $r_{0}>0$ and a positive constant M_{1}, we have

$$
\frac{T\left(r, f_{n+p}\right)}{T\left(r, f_{n}\right)}>M_{1} \text { or } \frac{T\left(r, g_{n+p}\right)}{T\left(r, f_{n}\right)}>M_{1} \text { or } \frac{T\left(r, h_{n+p}\right)}{T\left(r, f_{n}\right)}>M_{1}
$$

according to $p=3 m$ or $3 m-1$ or $3 m-2 ; m \in \mathbb{N}$, for all large r, except a set of r intervals of total finite length.

Proof. Case (i). When $p=3 m, m \in \mathbb{N}$.
In this case we consider the equation $f_{n+p}(z)=a$, where $a \neq 0, \infty$ i.e. $f_{p}\left(f_{n}(z)\right)=a$. This is equivalent to $f_{p}\left(w_{i}\right)=a$ and $f_{n}(z)=w_{i},(i=1,2, \ldots)$.

Because f_{p} is transcendental, $f_{p}\left(w_{i}\right)=a$ has infinitely many roots for every complex number a with two exceptions $a=0, \infty$.
From (1)

$$
\begin{aligned}
T\left(r, f_{n+p}\right) & =m\left(r, a, f_{n+p}\right)+N\left(r, a, f_{n+p}\right)+O(\log r) \\
& \geq \bar{N}\left(r, a, f_{n+p}\right)+O(\log r) \\
& \geq \sum_{i=1}^{M} \bar{N}\left(r, w_{i}, f_{n}\right)
\end{aligned}
$$

for a fixed $M(>3)$.
From (3) taking $a_{v}=w_{i}, f=f_{n}$, and $q=M$, we obtain

$$
\sum_{i=1}^{M} \bar{N}\left(r, w_{i}, f_{n}\right) \geq(M-1) T\left(r, f_{n}\right)-\bar{N}\left(r, f_{n}\right)-S_{1}(r)
$$

Since for large $r, \quad S_{1}(r) \leq T\left(r, f_{n}\right)$, so

$$
\begin{equation*}
\sum_{i=1}^{M} \bar{N}\left(r, w_{i}, f_{n}\right) \geq(M-3) T\left(r, f_{n}\right) \tag{4}
\end{equation*}
$$

Therefore,

$$
T\left(r, f_{n+p}\right) \geq M_{1} T\left(r, f_{n}\right), \text { where } M_{1}=M-3
$$

outside a set of r intervals of total finite length.
Case (ii). When $p=3 m-1, m \in \mathbb{N}$.
In this case, we consider the equation $g_{n+p}(z)=a$, where $a \neq 0, \infty$ i.e. $g_{p}\left(f_{n}(z)\right)=a$.
This is equivalent to $g_{p}\left(w_{i}^{\prime}\right)=a$ and $f_{n}(z)=w_{i}^{\prime},(i=1,2, \ldots)$.
From (1), by same reasoning as in Case (i), we have

$$
\begin{aligned}
T\left(r, g_{n+p}\right) & =m\left(r, a, g_{n+p}\right)+N\left(r, a, g_{n+p}\right)+O(\log r) \\
& \geq \bar{N}\left(r, a, g_{n+p}\right)+O(\log r) \\
& \geq \sum_{i=1}^{M} \bar{N}\left(r, w_{i}^{\prime}, f_{n}\right)
\end{aligned}
$$

for a fixed $M(>3)$.
Now, we have as in (4)

$$
\sum_{i=1}^{M} \bar{N}\left(r, w_{i}^{\prime}, f_{n}\right) \geq(M-3) T\left(r, f_{n}\right) .
$$

Therefore, $T\left(r, g_{n+p}\right) \geq M_{1} T\left(r, f_{n}\right)$, outside a set of r intervals of total finite length. Case (iii). When $p=3 m-2, m \in \mathbb{N}$.
In this case, we consider the equation $h_{n+p}(z)=a$, where $a \neq 0, \infty$ i.e. $h_{p}\left(f_{n}(z)\right)=a$.
This is equivalent to $h_{p}\left(w_{i}^{\prime \prime}\right)=a$ and $f_{n}(z)=w_{i}^{\prime \prime},(i=1,2, \ldots)$.

From (1), by same reasoning as in Case (i), we have

$$
\begin{aligned}
T\left(r, h_{n+p}\right) & =m\left(r, a, h_{n+p}\right)+N\left(r, a, h_{n+p}\right)+O(\log r) \\
& \geq \bar{N}\left(r, a, h_{n+p}\right)+O(\log r) \\
& \geq \sum_{i=1}^{M} \bar{N}\left(r, w_{i}^{\prime \prime}, f_{n}\right)
\end{aligned}
$$

for a fixed $M(>3)$.
In this case, as in (4) we also have

$$
\sum_{i=1}^{M} \bar{N}\left(r, w_{i}^{\prime \prime}, f_{n}\right) \geq(M-3) T\left(r, f_{n}\right)
$$

Therefore, $T\left(r, h_{n+p}\right) \geq M_{1} T\left(r, f_{n}\right)$, outside a set of r intervals of total finite length and this proves the lemma.
If we simply interchange f, g, and h in cyclic order, then we obtain the following two lemmas.

Lemma 2.2. If n is any positive integer and f, g, and h are functions in class II, then for any $r_{0}>0$ and a positive constant M_{1}, we have

$$
\frac{T\left(r, g_{n+p}\right)}{T\left(r, g_{n}\right)}>M_{1} \text { or } \frac{T\left(r, h_{n+p}\right)}{T\left(r, g_{n}\right)}>M_{1} \text { or } \frac{T\left(r, f_{n+p}\right)}{T\left(r, g_{n}\right)}>M_{1}
$$

according to $p=3 m$ or $3 m-1$ or $3 m-2 ;, m \in \mathbb{N}$, for all large r, except a set of r intervals of total finite length.

Lemma 2.3. If n is any positive integer and f, g, and h are functions in class II, then for any $r_{0}>0$ and a positive constant M_{1}

$$
\frac{T\left(r, h_{n+p}\right)}{T\left(r, h_{n}\right)}>M_{1} \text { or } \frac{T\left(r, f_{n+p}\right)}{T\left(r, h_{n}\right)}>M_{1} \text { or } \frac{T\left(r, g_{n+p}\right)}{T\left(r, h_{n}\right)}>M_{1}
$$

according to $p=3 m$ or $3 m-1$ or $3 m-2 ; m \in \mathbb{N}$, for all large r, except a set of r intervals of total finite length.

3. Main Result

Our main result is given in the following theorem.
Theorem 3.1. If $f(z), g(z)$, and $h(z)$ belong to class II, then $f(z)$ has infinitely many fix points of exact factor order n for every positive integer $n(\geq 3)$ provided $\frac{T\left(r, g_{n}\right)}{T\left(r, f_{n}\right)}$ and $\frac{T\left(r, h_{n}\right)}{T\left(r, f_{n}\right)}$ are bounded.

Proof. We consider the function $\phi(z)=\frac{f_{n}(z)}{z}, r_{0}<|z|<\infty$. Then

$$
\begin{equation*}
T(r, \phi)=T\left(r, f_{n}\right)+O(\log r) \tag{5}
\end{equation*}
$$

Assume that $f(z)$ has only a finite number of fix points of exact factor order n. Now from (3) by taking $q=2, a_{1}=0, a_{2}=1$, we obtain for ϕ,

$$
T(r, \phi) \leq \bar{N}(r, \infty, \phi)+\bar{N}(r, 0, \phi)+\bar{N}(r, 1, \phi)+S_{1}(r, \phi)
$$

where $S_{1}(r, \phi)=O(\log T(r, \phi))$ outside a set of r intervals of finite length [3].
First, we calculate $\bar{N}(r, 0, \phi)$. We have $\bar{N}(r, 0, \phi)=\int_{r_{0}}^{r} \frac{\bar{n}(t, 0, \phi)}{t} d t$, where $\bar{n}(t, 0, \phi)$ is the number of roots of $\phi(z)=0$ in $r_{0}<|z| \leq t$, each multiple root taken once at a time. The distinct roots of $\phi(z)=0$ in $r_{0}<|z| \leq t$ are the roots of $f_{n}(z)=0$ in $r_{0}<|z| \leq t$. By the definition of functions in class II, $f_{n}(z)$ has a singularity at $z=0$, an essential singularity at $z=\infty$, and $f_{n}(z) \neq 0, \infty$. So $\bar{n}(t, 0, \phi)=0$. Consequently, $\bar{N}(r, 0, \phi)=0$. By similar argument $\bar{N}(r, \infty, \phi)=0$. So

$$
\begin{equation*}
T(r, \phi) \leq \bar{N}(r, 1, \phi)+S_{1}(r, \phi) \tag{6}
\end{equation*}
$$

We now calculate $\bar{N}(r, 1, \phi)$. If $\phi(z)=1$, then $f_{n}(z)=z$. Due to our iteration process we consider the following three cases.
Case (i). When $n=3 m, m \in \mathbb{N}$.
Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3, for all large r, we have

$$
\begin{aligned}
\bar{N}(r, 1, \phi) & =\bar{N}\left(r, 0, f_{n}-z\right) \\
& \leq \sum_{j / n, j=1}^{n-2}\left[\bar{N}\left(r, 0, f_{j}-z\right)+\bar{N}\left(r, 0, g_{j}-z\right)+\bar{N}\left(r, 0, h_{j}-z\right)\right]+O(\log r)
\end{aligned}
$$

Remark. The term $O(\log r)$ arises due to the assumption that $f(z)$ has only a finite number of relative fix points of exact factor order n.

$$
\begin{aligned}
\leq & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+O(\log r)+T\left(r, g_{j}-z\right)+O(\log r)+T\left(r, h_{j}-z\right)+O(\log r)\right] \\
& +O(\log r) \\
= & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}\right)+T\left(r, g_{j}\right)+T\left(r, h_{j}\right)\right]+O(\log r) \\
= & \left\{T\left(r, f_{j_{1}}\right)+T\left(r, f_{j_{4}}\right)+\ldots+T\left(r, f_{j_{3 p-2}}\right)+T\left(r, f_{j_{2}}\right)+T\left(r, f_{j_{5}}\right)+\ldots+T\left(r, f_{j_{3 q-1}}\right)\right. \\
& \left.+T\left(r, f_{j_{3}}\right)+T\left(r, f_{j_{6}}\right)+\ldots+T\left(r, f_{j_{3 s}}\right)\right\}+\left\{T\left(r, g_{j_{1}}\right)+T\left(r, g_{j_{4}}\right)+\ldots+T\left(r, g_{j_{3 p-2}}\right)\right. \\
& \left.+T\left(r, g_{j_{2}}\right)+T\left(r, g_{j_{5}}\right)+\ldots+T\left(r, g_{j_{3 q-1}}\right)+T\left(r, g_{j_{3}}\right)+T\left(r, g_{j_{6}}\right)+\ldots+T\left(r, g_{j_{3 s}}\right)\right\} \\
& +\left\{T\left(r, h_{j_{1}}\right)+T\left(r, h_{j_{4}}\right)+\ldots+T\left(r, h_{j_{3 p-2}}\right)+T\left(r, h_{j_{2}}\right)+T\left(r, h_{j_{5}}\right)+\ldots+T\left(r, h_{j_{3 q-1}}\right)\right. \\
& \left.+T\left(r, h_{j_{3}}\right)+T\left(r, h_{j_{6}}\right)+\ldots+T\left(r, h_{j_{3 s}}\right)\right\}+O(\log r)
\end{aligned}
$$

where $j_{1}, j_{4}, \ldots, j_{3 p-2} ; j_{2}, j_{5}, \ldots, j_{3 q-1}$, and $j_{3}, j_{6}, \ldots, j_{3 s}$ are divisors of $n=3 m$, and are strictly less than n, and are of the forms $3 p-2,3 q-1$, and $3 s,(p, q, s \in \mathbb{N})$,

$$
\begin{aligned}
= & T\left(r, f_{n}\right)\left[\frac{T\left(r, f_{j_{3}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, f_{j_{6}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{3 s}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, g_{j_{1}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, g_{j_{4}}\right)}{T\left(r, f_{n}\right)}\right. \\
& \left.+\ldots+\frac{T\left(r, g_{j_{3_{p-2}}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, h_{j_{2}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, h_{j_{5}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, h_{j_{3 q-1}}\right)}{T\left(r, f_{n}\right)}\right] \\
& +T\left(r, g_{n}\right)\left[\frac{T\left(r, f_{j_{2}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, f_{j_{5}}\right)}{T\left(r, g_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{3 q-1}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, g_{j_{3}}\right)}{T\left(r, g_{n}\right)}\right. \\
& \left.+\frac{T\left(r, g_{j_{6}}\right)}{T\left(r, g_{n}\right)}+\ldots+\frac{T\left(r, g_{j_{3 s}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, h_{j_{1}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, h_{j_{4}}\right)}{T\left(r, g_{n}\right)}+\ldots+\frac{T\left(r, h_{\left.j_{3 p-2}\right)}\right.}{T\left(r, g_{n}\right)}\right] \\
& +T\left(r, h_{n}\right)\left[\frac{T\left(r, f_{j_{1}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, f_{j_{4}}\right)}{T\left(r, h_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{3 p-2}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, g_{j_{2}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, g_{j_{5}}\right)}{T\left(r, h_{n}\right)}\right. \\
& \left.+\ldots+\frac{T\left(r, g_{j_{3 q-1}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, h_{j_{3}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, h_{j_{6}}\right)}{T\left(r, h_{n}\right)}+\ldots+\frac{T\left(r, h_{j_{3 s}}\right)}{T\left(r, h_{n}\right)}\right]+O(\log r) \\
< & \frac{n-1}{6 n} T\left(r, f_{n}\right)+\frac{n-1}{6 n} T\left(r, g_{n}\right)+\frac{n-1}{6 n} T\left(r, h_{n}\right)+O(\log r) .
\end{aligned}
$$

Case(ii). When $n=3 m+1, m \in \mathbb{N}$. Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3 , for all large r, we have

$$
\begin{aligned}
\bar{N}(r, 1, \phi)= & \bar{N}\left(r, 0, f_{n}-z\right) \\
\leq & \sum_{j / n, j=1}^{n-2}\left[\bar{N}\left(r, 0, f_{j}-z\right)+\bar{N}\left(r, 0, g_{j}-z\right)+\bar{N}\left(r, 0, h_{j}-z\right)\right]+O(\log r) \\
\leq & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+O(\log r)+T\left(r, g_{j}-z\right)+O(\log r)+T\left(r, h_{j}-z\right)\right. \\
& +O(\log r)]+O(\log r) \\
= & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}\right)+T\left(r, g_{j}\right)+T\left(r, h_{j}\right)\right]+O(\log r) \\
= & \left\{T\left(r, f_{j_{1}}\right)+T\left(r, f_{j_{4}}\right)+\ldots+T\left(r, f_{j_{3 p-2}}\right)+T\left(r, f_{j_{2}}\right)+T\left(r, f_{j_{5}}\right)\right. \\
& \left.+\ldots+T\left(r, f_{j_{3 q-1}}\right)\right\}+\left\{T\left(r, g_{j_{1}}\right)+T\left(r, g_{j_{4}}\right)+\ldots+T\left(r, g_{j_{3 p-2}}\right)\right. \\
& \left.+T\left(r, g_{j_{2}}\right)+T\left(r, g_{j_{5}}\right)+\ldots+T\left(r, g_{j_{3 q-1}}\right)\right\}+\left\{T\left(r, h_{j_{1}}\right)+T\left(r, h_{j_{4}}\right)\right. \\
& \left.+\ldots+T\left(r, h_{j_{3 p-2}}\right)+T\left(r, h_{j_{2}}\right)+T\left(r, h_{j_{5}}\right)+\ldots+T\left(r, h_{j_{3 q-1}}\right)\right\}+O(\log r),
\end{aligned}
$$

where $j_{1}, j_{4}, \ldots, j_{3 p-2}$ and $j_{2}, j_{5}, \ldots, j_{3 q-1}$ are divisors of $n=3 m+1$ and are strictly less than n, and are of the forms $3 p-2$ and $3 q-1(p, q \in \mathbb{N})$,

$$
\begin{aligned}
= & T\left(r, f_{n}\right)\left[\frac{T\left(r, f_{j_{1}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, f_{j_{4}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{3 p-2}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, g_{j_{2}}\right)}{T\left(r, f_{n}\right)}\right. \\
& \left.+\frac{T\left(r, g_{j_{5}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, g_{j_{3 q-1}}\right)}{T\left(r, f_{n}\right)}\right]+T\left(r, g_{n}\right)\left[\frac{T\left(r, g_{j_{1}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, g_{j_{4}}\right)}{T\left(r, g_{n}\right)}\right. \\
& \left.+\ldots+\frac{T\left(r, g_{j_{3 p-2}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, h_{j_{2}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, h_{j_{5}}\right)}{T\left(r, g_{n}\right)}+\ldots+\frac{T\left(r, h_{j_{3 q-1}}\right)}{T\left(r, g_{n}\right)}\right] \\
& +T\left(r, h_{n}\right)\left[\frac{T\left(r, f_{j_{2}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, f_{j_{5}}\right)}{T\left(r, h_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{3 q-1}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, h_{j_{1}}\right)}{T\left(r, h_{n}\right)}\right. \\
& +\frac{T\left(r, h_{j_{4}}\right)}{T\left(r, h_{n}\right)}+\ldots+\frac{T\left(r, h_{\left.j_{3_{p-2}}\right)}^{T\left(r, h_{n}\right)}\right]+O(\log r)}{<} \quad \frac{n-1}{6 n} T\left(r, f_{n}\right)+\frac{n-1}{6 n} T\left(r, g_{n}\right)+\frac{n-1}{6 n} T\left(r, h_{n}\right)+O(\log r) .
\end{aligned}
$$

Case(iii). When $n=3 m+2, m \in \mathbb{N}$. Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3 , for all large r, we have

$$
\begin{aligned}
\bar{N}(r, 1, \phi)= & \bar{N}\left(r, 0, f_{n}-z\right) \\
\leq & \sum_{j / n, j=1}^{n-2}\left[\bar{N}\left(r, 0, f_{j}-z\right)+\bar{N}\left(r, 0, g_{j}-z\right)+\bar{N}\left(r, 0, h_{j}-z\right)\right]+O(\log r) \\
\leq & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}-z\right)+O(\log r)+T\left(r, g_{j}-z\right)+O(\log r)+T\left(r, h_{j}-z\right)\right. \\
& +O(\log r)]+O(\log r) \\
= & \sum_{j / n, j=1}^{n-2}\left[T\left(r, f_{j}\right)+T\left(r, g_{j}\right)+T\left(r, h_{j}\right)\right]+O(\log r) \\
= & \left\{T\left(r, f_{j_{1}}\right)+T\left(r, f_{j_{4}}\right)+\ldots+T\left(r, f_{j_{3 p-2}}\right)+T\left(r, f_{j_{2}}\right)+T\left(r, f_{j_{5}}\right)\right. \\
& \left.+\ldots+T\left(r, f_{j_{3 q-1}}\right)\right\}+\left\{T\left(r, g_{j_{1}}\right)+T\left(r, g_{j_{4}}\right)+\ldots+T\left(r, g_{j_{3 p-2}}\right)+T\left(r, g_{j_{2}}\right)\right. \\
& \left.+T\left(r, g_{j_{5}}\right)+\ldots+T\left(r, g_{j_{3 q-1}}\right)\right\}+\left\{T\left(r, h_{j_{1}}\right)+T\left(r, h_{j_{4}}\right)\right. \\
& \left.+\ldots+T\left(r, h_{j_{3 p-2}}\right)+T\left(r, h_{j_{2}}\right)+T\left(r, h_{j_{5}}\right)+\ldots+T\left(r, h_{j_{3 q-1}}\right)\right\}+O(\log r),
\end{aligned}
$$

where $j_{1}, j_{4}, \ldots, j_{3 p-2}$ and $j_{2}, j_{5}, \ldots, j_{3 q-1}$ are divisors of $n=3 m+2$ and are strictly less than n and are of the forms $3 p-2$ and $3 q-1(p, q \in \mathbb{N})$,

$$
\begin{aligned}
= & T\left(r, f_{n}\right)\left[\frac{T\left(r, f_{j_{2}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, f_{j_{5}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, f_{j_{3 q-1}}\right)}{T\left(r, f_{n}\right)}+\frac{T\left(r, h_{j_{1}}\right)}{T\left(r, f_{n}\right)}\right. \\
& \left.+\frac{T\left(r, h_{j_{4}}\right)}{T\left(r, f_{n}\right)}+\ldots+\frac{T\left(r, h_{j_{3 p-2}}\right)}{T\left(r, f_{n}\right)}\right]+T\left(r, g_{n}\right)\left[\frac{T\left(r, f_{j_{1}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, f_{j_{4}}\right)}{T\left(r, g_{n}\right)}\right. \\
& \left.+\ldots+\frac{T\left(r, f_{j_{3 p-2}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, g_{j_{2}}\right)}{T\left(r, g_{n}\right)}+\frac{T\left(r, g_{j_{5}}\right)}{T\left(r, g_{n}\right)}+\ldots+\frac{T\left(r, g_{j_{3 q-1}}\right)}{T\left(r, g_{n}\right)}\right] \\
& +T\left(r, h_{n}\right)\left[\frac{T\left(r, g_{j_{1}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, g_{j_{4}}\right)}{T\left(r, h_{n}\right)}+\ldots+\frac{T\left(r, g_{j_{3 p-2}}\right)}{T\left(r, h_{n}\right)}+\frac{T\left(r, h_{j_{2}}\right)}{T\left(r, h_{n}\right)}\right. \\
& \left.+\frac{T\left(r, h_{j_{5}}\right)}{T\left(r, h_{n}\right)}+\ldots+\frac{T\left(r, h_{j_{3 q-1}}\right)}{T\left(r, h_{n}\right)}\right]+O(\log r) \\
< & \frac{n-1}{6 n} T\left(r, f_{n}\right)+\frac{n-1}{6 n} T\left(r, g_{n}\right)+\frac{n-1}{6 n} T\left(r, h_{n}\right)+O(\log r) .
\end{aligned}
$$

Thus in any case,

$$
\bar{N}(r, 1, \phi)<\frac{n-1}{6 n} T\left(r, f_{n}\right)+\frac{n-1}{6 n} T\left(r, g_{n}\right)+\frac{n-1}{6 n} T\left(r, h_{n}\right)+O(\log r) .
$$

So from (6) and since $\frac{T\left(r, g_{n}\right)}{T\left(r, f_{n}\right)}$ and $\frac{T\left(r, h_{n}\right)}{T\left(r, f_{n}\right)}$ are bounded, we have

$$
\begin{aligned}
T(r, \phi)< & \frac{n-1}{6 n} T\left(r, f_{n}\right)+\frac{n-1}{6 n} T\left(r, g_{n}\right)+\frac{n-1}{6 n} T\left(r, h_{n}\right)+O(\log r)+S_{1}(r, \phi) \\
= & \frac{n-1}{6 n} T\left(r, f_{n}\right)+\frac{n-1}{6 n} T\left(r, g_{n}\right)+\frac{n-1}{6 n} T\left(r, h_{n}\right)+O(\log r)+O(\log T(r, \phi)) \\
\leq & T\left(r, f_{n}\right)\left[\frac{n-1}{6 n}+\frac{n-1}{6 n} \frac{T\left(r, g_{n}\right)}{T\left(r, f_{n}\right)}+\frac{n-1}{6 n} \frac{T\left(r, h_{n}\right)}{T\left(r, f_{n}\right)}+\frac{O\left(\log \left(T\left(r, f_{n}\right)+O(\log r)\right)\right)}{T\left(r, f_{n}\right)}\right. \\
& \left.+\frac{O(\log r)}{T\left(r, f_{n}\right)}\right] \\
\leq & T\left(r, f_{n}\right)\left[\frac{n-1}{6 n}+\frac{n-1}{6 n}+\frac{n-1}{6 n}+\frac{O\left(\log \left(T\left(r, f_{n}\right)\left(1+\frac{O(\log r)}{T\left(r, f_{n}\right)}\right)\right)\right)}{T\left(r, f_{n}\right)}+\frac{O(\log r)}{T\left(r, f_{n}\right)}\right] \\
< & T\left(r, f_{n}\right)\left[\frac{1}{2}+\frac{O\left(\log \left(T\left(r, f_{n}\right)\left(1+\frac{O(\log r)}{T\left(r, f_{n}\right)}\right)\right)\right)}{T\left(r, f_{n}\right)}+\frac{O(\log r)}{T\left(r, f_{n}\right)}\right]=\frac{1}{2} T\left(r, f_{n}\right),
\end{aligned}
$$

for all large r.
Therefore, $T(r, \phi)<\frac{1}{2} T\left(r, f_{n}\right)$ for all large r. This contradicts to (5). Hence $f(z)$ has infinitely many relative fix points of exact factor order n.
This proves the theorem.
Remark. Since fix points of exact order are fix points of exact factor order, if $f(z)=g(z)=h(z)$ then $\frac{T\left(r, g_{n}\right)}{T\left(r, f_{n}\right)}$ and $\frac{T\left(r, h_{n}\right)}{T\left(r, f_{n}\right)}$ being bounded, Theorem 1.2 covers Theorem 3.1.

References

[1] Bieberbach L., Theorie der Gewöhnlichen Differentialgleichungen, Berlin, 1953.
[2] Baker I.N., The existence of fix points of entire functions, Math. Zeit., 73 (1960), 280-284.
[3] Hayman W.K., Meromorphic functions, The Oxford University Press, 1964.
[4] Bhattacharyya P., An extention of a theorem of Baker, Publicationes Mathematicae Debrecen, 27 (1980), 273-277.
[5] Lahiri B.K., Banerjee D., On the existence of relative fix points, İstanbul Univ. Fen Fak. Mat. Dergisi, 55-56 (1996-1997), 283-292.
[6] Banerjee D., Mandal B., On the existence of relative fix points of a certain class of complex functions, İstanbul Univ. Sci. Fac. J. Math. Phys. Astr., Vol. 5 (2014), 9-16.

DIBYENDU BANERJEE, Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India, e-mail: dibyendu192@rediffmail.com.

BISWAJIT MANDAL, Bunia Dangal High School, Bunia-731303, Birbhum, West Bengal, India, e-mail: biswajitmandal.math@gmail.com.

[^0]: Received Sep, 2014.
 2010 Mathematics Subject Classification. Primary 30D60.
 Keywords and phrases. Relative fix points, exact factor order, complex functions.

