RELATIVE FIX POINTS OF A CERTAIN CLASS OF COMPLEX FUNCTIONS

DIBYENDU BANERJEE AND BISWAJIT MANDAL

ABSTRACT. We introduce the idea of relative iterations of three functions and by using this, we extend a theorem on fix point of complex functions involving exact factor order.

1. INTRODUCTION

A single valued function f(z) of the complex variable z is said to belong to (i) class I if f(z) is entire transcendental, (ii) class II if it is regular in the complex plane punctured at a, b ($a \neq b$) and has an essential singularity at b, and a singularity at a and if f(z) does not assume the values a and b anywhere in the complex plane except possible at the point a.

We can normalize the functions in class II by taking a = 0 and $b = \infty$.

Throughout this paper we shall consider only such normalized functions, whenever we deal with functions in class II.

Iterated $f_n(z)$ of f(z) are defined inductively by

 $f_0(z) = z$ and $f_{n+1}(z) = f(f_n(z)); n = 0, 1, 2, \dots$

A point α is called a fix point of f(z) of order n if α is a solution of $f_n(z) = z$ and called a fix point of exact order n if α is a solution of $f_n(z) = z$ but not a solution of $f_k(z) = z$, k = 1, 2, ..., n - 1.

In [2], Baker proved the following theorem.

Theorem 1.1. If f(z) belongs to class I, then f(z) has fix points of exact order n, except for at most one value of n.

Bhattacharyya [4] extended Theorem 1.1 to the functions belonging to class II as follows:

Theorem 1.2. If f(z) belongs to class II, then f(z) has infinitely many fix points of exact order n, for every positive integer n.

Lahiri and Banerjee [5] generalized Theorem 1.2 in another direction. For this, they introduced the concept of relative fix point defined as follows:

Received Sep, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 30D60.

Keywords and phrases. Relative fix points, exact factor order, complex functions.

Let f(z) and g(z) be functions of complex variable z. Let

 $\begin{aligned} f_1(z) &= f(z) \\ f_2(z) &= f(g(z)) = f(g_1(z)) \\ f_3(z) &= f(g(f(z))) = f(g(f_1(z))) \\ \vdots \\ f_n(z) &= f(g(f(g...(f(z) \text{ or } g(z) \text{ according as } n \text{ is odd or even}) \dots))) \\ &= f(g_{n-1}(z)) = f(g(f_{n-2}(z))) \end{aligned}$ and so $g_1(z) &= g(z) \\ g_2(z) &= g(f(z)) = g(f_1(z)) \\ g_3(z) &= g(f_2(z)) = g(f(g_1(z))) \\ \vdots \end{aligned}$

 $g_n(z) = g(f_{n-1}(z)) = g(f(g_{n-2}(z))).$

Clearly, all $f_n(z)$ and $g_n(z)$ are functions in class II, if f(z) and g(z) are so.

A point α is called a fix point of f(z) of order n with respect to g(z), if $f_n(\alpha) = \alpha$ and a fix point of exact order n if $f_n(\alpha) = \alpha$ but $f_k(\alpha) \neq \alpha, k = 1, 2, ..., n - 1$. Such points α are also called relative fix points.

Theorem 1.3. If f(z) and g(z) belong to class II, then f(z) has infinitely many relative fix points of exact order n for every positive integer n provided $\frac{T(r, g_n)}{T(r, f_n)}$ is bounded.

Recently, Banerjee and Mandal [6] proved the result of Lahiri and Banerjee [5] by introducing the idea of relative fix point of exact factor order n.

A point α is called a relative fix point of f(z) of exact factor order n if $f_n(\alpha) = \alpha$ but $f_k(\alpha) \neq \alpha$ and $g_k(\alpha) \neq \alpha$ for all divisors k (k < n) of n.

With this definition Banerjee and Mandal [6] proved the following theorem.

Theorem 1.4. If f(z) and g(z) belong to class II, then f(z) has infinitely many relative fix points of exact factor order n for every positive integer n, provided $\frac{T(r, f_{n-1})}{T(r, f_n)}$ is bounded.

In the present paper we first define relative iterations for three functions and extend the result of Banerjee and Mandal [6] in that direction.

Let f(z), g(z), and h(z) be three functions of the complex variable z and $m \ge 2$ be any fixed positive integer. We set

$$\begin{aligned} &f_1(z) = f(z) \\ &f_2(z) = f(g(z)) = f(g_1(z)) \\ &f_3(z) = f(g(h(z))) = f(g(h_1(z))) = f(g_2(z)) \\ &f_4(z) = f(g(h(f(z)))) = f(g(h_2(z))) = f(g_3(z)) \\ &\vdots \end{aligned}$$

16

 $f_n(z)=f(g(h(f...(f(z) \text{ or } g(z) \text{ or } h(z) \text{ according to } n=3m-2 \text{ or } 3m-1 \text{ or } 3m)...)))$

$$= f(g_{n-1}(z)) = f(g(h_{n-2}(z))).$$

Similarly,

 $g_{1}(z) = g(z)$ $g_{2}(z) = g(h(z)) = g(h_{1}(z))$ $g_{3}(z) = g(h(f(z))) = g(h(f_{1}(z))) = g(h_{2}(z))$ $g_{4}(z) = g(h(f(g(z)))) = g(h(f_{2}(z))) = g(h_{3}(z))$ \vdots $g_{n}(z) = g(h(f(g...(g(z) \text{ or } h(z) \text{ or } f(z) \text{ according to } n = 3m - 2 \text{ or } 3m - 1 \text{ or } 3m)...)))$ $= g(h_{n-1}(z)) = g(h(f_{n-2}(z)))$

and so are

$$h_{1}(z) = h(z)$$

$$h_{2}(z) = h(f(z)) = h(f_{1}(z))$$

$$h_{3}(z) = h(f(g(z))) = h(f(g_{1}(z))) = h(f_{2}(z))$$

$$h_{4}(z) = h(f(g(h(z)))) = h(f(g_{2}(z))) = h(f_{3}(z))$$

$$\vdots$$

 $h_n(z) = h(f(g(h...(h(z) \text{ or } f(z) \text{ or } g(z) \text{ according to } n = 3m - 2 \text{ or } 3m - 1 \text{ or } 3m)...)))$

$$= h(f_{n-1}(z)) = h(f(g_{n-2}(z))).$$

Clearly all $f_n(z)$, $g_n(z)$, and $h_n(z)$ are functions in class II, if f(z), g(z), and h(z) are so.

The following definition is now introduced.

Definition 1.5. A point α is called a fix point of f(z) of order n with respect to g(z)and h(z), if $f_n(\alpha) = \alpha$ and a fix point f(z) of exact factor order n if $f_n(\alpha) = \alpha$ but $f_k(\alpha) \neq \alpha$, $g_k(\alpha) \neq \alpha$ and $h_k(\alpha) \neq \alpha$ for all divisors k (k < n) of n.

Example 1.6. Let f(z) = z+1, $g(z) = \frac{1}{z-1}$, and $h(z) = \frac{2}{z}$. Clearly, $f_3(z) = \frac{2}{2-z}$. Here $z = 1 \pm i$ are fix points of f(z) of exact factor order 3.

Let f(z) be meromorphic in $r_0 \leq |z| < \infty$, $r_0 > 0$. We use the following notations [1]:

n(t, a, f) := number of roots of f(z) = a in $r_0 < |z| \le t$, counted according to multiplicity,

$$N(r,a,f) := \int_{r_0}^r \frac{n(t,a,f)}{t} dt$$

 $n(t, \infty, f) := n(t, f)$ = the number of poles of f(z) in $r_0 < |z| \le t$, counted with due to multiplicity,

$$\begin{split} N(t,\infty,f) &:= N(t,f), \\ m(r,f) &:= \frac{1}{2\pi} \int_0^{2\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta \end{split}$$

and $m(r, a, f) := \frac{1}{2\pi} \int_0^{2\pi} \log^+ \left| \frac{1}{f(re^{i\theta}) - a} \right| d\theta$. With these notations, Jensen's formula can be written as [1], $m(r, f) + N(r, f) = m(r, \frac{1}{f}) + N(r, \frac{1}{f}) + O(\log r)$. Writing m(r, f) + N(r, f) = T(r, f), the above becomes $T(r, f) = T(r, \frac{1}{f}) + O(\log r)$.

In this case the first fundamental theorem takes the form

(1)
$$m(r, a, f) + N(r, a, f) = T(r, f) + O(\log r),$$

where $r_0 \le |z| < \infty, r_0 > 0$.

Suppose that f(z) is non-constant. Let $a_1, a_2, \ldots, a_q, q \ge 2$ be distinct finite complex numbers, $\delta > 0$ and suppose that $|a_{\mu} - a_{\nu}| \ge \delta$ for $1 \le \mu \le \nu \le q$. Then

(2)
$$m(r,f) + \sum_{\nu=1}^{q} m(r,a_{\nu},f) \le 2T(r,f) - N_{1}(r) + S(r),$$

where

$$N_1(r) = N(r, \frac{1}{f'}) + 2N(r, f) - N(r, f'),$$

and

$$S(r) = m(r, \frac{f'}{f}) + \sum_{\nu=1}^{q} m(r, \frac{f'}{f - a_{\nu}}) + O(\log r).$$

Adding $N(r, f) + \sum_{\nu=1}^{q} N(r, a_{\nu}, f)$ to both sides of (2) and using (1), we obtain

(3)
$$(q-1)T(r,f) \le \overline{N}(r,f) + \sum_{\nu=1}^{q} \overline{N}(r,a_{\nu},f) + S_1(r),$$

where $S_1(r) = O(\log T(r, f))$ and \overline{N} corresponds to distinct roots. Further, because f_n has an essential singularity at ∞ , we have $\frac{\log r}{T(r, f_n)} \to 0$ as $r \to \infty$ [1].

2. Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. If n is any positive integer and f, g, and h are functions in class II, then for any $r_0 > 0$ and a positive constant M_1 , we have

$$\frac{T(r, f_{n+p})}{T(r, f_n)} > M_1 \text{ or } \frac{T(r, g_{n+p})}{T(r, f_n)} > M_1 \text{ or } \frac{T(r, h_{n+p})}{T(r, f_n)} > M_1$$

according to p = 3m or 3m - 1 or 3m - 2; $m \in \mathbb{N}$, for all large r, except a set of r intervals of total finite length.

Proof. Case (i). When p = 3m, $m \in \mathbb{N}$. In this case we consider the equation $f_{n+p}(z) = a$, where $a \neq 0, \infty$ i.e. $f_p(f_n(z)) = a$. This is equivalent to $f_p(w_i) = a$ and $f_n(z) = w_i$, (i = 1, 2, ...). Because f_p is transcendental, $f_p(w_i) = a$ has infinitely many roots for every complex number a with two exceptions $a = 0, \infty$.

From (1)

$$\begin{split} T(r,f_{n+p}) &= m(r,a,f_{n+p}) + N(r,a,f_{n+p}) + O(\log r) \\ &\geq \overline{N}(r,a,f_{n+p}) + O(\log r) \\ &\geq \sum_{i=1}^{M} \overline{N}(r,w_i,f_n) \end{split}$$

for a fixed M(>3).

From (3) taking $a_v = w_i$, $f = f_n$, and q = M, we obtain

$$\sum_{i=1}^{M} \overline{N}(r, w_i, f_n) \ge (M-1)T(r, f_n) - \overline{N}(r, f_n) - S_1(r).$$

Since for large r, $S_1(r) \leq T(r, f_n)$, so

(4)
$$\sum_{i=1}^{M} \overline{N}(r, w_i, f_n) \ge (M-3)T(r, f_n).$$

Therefore,

$$T(r, f_{n+p}) \ge M_1 T(r, f_n)$$
, where $M_1 = M - 3$,

outside a set of r intervals of total finite length.

Case (ii). When $p = 3m - 1, m \in \mathbb{N}$.

In this case, we consider the equation $g_{n+p}(z) = a$, where $a \neq 0, \infty$ i.e. $g_p(f_n(z)) = a$. This is equivalent to $g_p(w'_i) = a$ and $f_n(z) = w'_i$, (i = 1, 2, ...). From (1), by same reasoning as in Case (i), we have

$$T(r, g_{n+p}) = m(r, a, g_{n+p}) + N(r, a, g_{n+p}) + O(\log r)$$

$$\geq \overline{N}(r, a, g_{n+p}) + O(\log r)$$

$$\geq \sum_{i=1}^{M} \overline{N}(r, w'_i, f_n)$$

for a fixed M(>3). Now, we have as in (4)

$$\sum_{i=1}^{M} \overline{N}(r, w'_i, f_n) \ge (M-3)T(r, f_n).$$

Therefore, $T(r, g_{n+p}) \ge M_1 T(r, f_n)$, outside a set of r intervals of total finite length. Case (iii). When p = 3m - 2, $m \in \mathbb{N}$.

In this case, we consider the equation $h_{n+p}(z) = a$, where $a \neq 0, \infty$ i.e. $h_p(f_n(z)) = a$. This is equivalent to $h_p(w_i'') = a$ and $f_n(z) = w_i''$, (i = 1, 2, ...). From (1), by same reasoning as in Case (i), we have

$$\begin{aligned} T(r,h_{n+p}) &= m(r,a,h_{n+p}) + N(r,a,h_{n+p}) + O(\log r) \\ &\geq \overline{N}(r,a,h_{n+p}) + O(\log r) \\ &\geq \sum_{i=1}^{M} \overline{N}(r,w_i'',f_n), \end{aligned}$$

for a fixed M(>3).

In this case, as in (4) we also have

$$\sum_{i=1}^{M} \overline{N}(r, w_i'', f_n) \ge (M-3)T(r, f_n).$$

Therefore, $T(r, h_{n+p}) \ge M_1 T(r, f_n)$, outside a set of r intervals of total finite length and this proves the lemma. \Box

If we simply interchange f, g, and h in cyclic order, then we obtain the following two lemmas.

Lemma 2.2. If n is any positive integer and f, g, and h are functions in class II, then for any $r_0 > 0$ and a positive constant M_1 , we have

$$\frac{T(r, g_{n+p})}{T(r, g_n)} > M_1 \text{ or } \frac{T(r, h_{n+p})}{T(r, g_n)} > M_1 \text{ or } \frac{T(r, f_{n+p})}{T(r, g_n)} > M_1$$

according to p = 3m or 3m - 1 or 3m - 2; $m \in \mathbb{N}$, for all large r, except a set of r intervals of total finite length.

Lemma 2.3. If n is any positive integer and f, g, and h are functions in class II, then for any $r_0 > 0$ and a positive constant M_1

$$\frac{T(r, h_{n+p})}{T(r, h_n)} > M_1 \text{ or } \frac{T(r, f_{n+p})}{T(r, h_n)} > M_1 \text{ or } \frac{T(r, g_{n+p})}{T(r, h_n)} > M_1$$

according to p = 3m or 3m - 1 or 3m - 2; $m \in \mathbb{N}$, for all large r, except a set of r intervals of total finite length.

3. Main result

Our main result is given in the following theorem.

Theorem 3.1. If f(z), g(z), and h(z) belong to class II, then f(z) has infinitely many fix points of exact factor order n for every positive integer $n \geq 3$ provided $\frac{T(r,g_n)}{T(r,f_n)}$ and $\frac{T(r,h_n)}{T(r,f_n)}$ are bounded.

Proof. We consider the function $\phi(z) = \frac{f_n(z)}{z}, r_0 < |z| < \infty$. Then

(5)
$$T(r,\phi) = T(r,f_n) + O(\log r).$$

20

Assume that f(z) has only a finite number of fix points of exact factor order n. Now from (3) by taking q = 2, $a_1 = 0$, $a_2 = 1$, we obtain for ϕ ,

$$T(r,\phi) \le \overline{N}(r,\infty,\phi) + \overline{N}(r,0,\phi) + \overline{N}(r,1,\phi) + S_1(r,\phi),$$

where $S_1(r,\phi) = O(\log T(r,\phi))$ outside a set of r intervals of finite length [3]. First, we calculate $\overline{N}(r,0,\phi)$. We have $\overline{N}(r,0,\phi) = \int_{r_0}^r \frac{\overline{n}(t,0,\phi)}{t} dt$, where $\overline{n}(t,0,\phi)$ is the number of roots of $\phi(z) = 0$ in $r_0 < |z| \le t$, each multiple root taken once at a time. The distinct roots of $\phi(z) = 0$ in $r_0 < |z| \le t$ are the roots of $f_n(z) = 0$ in $r_0 < |z| \le t$. By the definition of functions in class II, $f_n(z)$ has a singularity at z = 0, an essential singularity at $z = \infty$, and $f_n(z) \ne 0, \infty$. So $\overline{n}(t, 0, \phi) = 0$. Consequently, $\overline{N}(r, 0, \phi) = 0$. By similar argument $\overline{N}(r, \infty, \phi) = 0$. So

(6)
$$T(r,\phi) \le \overline{N}(r,1,\phi) + S_1(r,\phi).$$

We now calculate $\overline{N}(r, 1, \phi)$. If $\phi(z) = 1$, then $f_n(z) = z$. Due to our iteration process we consider the following three cases.

Case (i). When $n = 3m, m \in \mathbb{N}$. Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3, for all lab

Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3, for all large r, we have

$$\overline{N}(r,1,\phi) = \overline{N}(r,0,f_n-z)$$

$$\leq \sum_{j/n,j=1}^{n-2} [\overline{N}(r,0,f_j-z) + \overline{N}(r,0,g_j-z) + \overline{N}(r,0,h_j-z)] + O(\log r).$$

Remark. The term $O(\log r)$ arises due to the assumption that f(z) has only a finite number of relative fix points of exact factor order n.

$$\leq \sum_{j/n,j=1}^{n-2} \left[T(r,f_j-z) + O(\log r) + T(r,g_j-z) + O(\log r) + T(r,h_j-z) + O(\log r) \right] \\ + O(\log r) \\ = \sum_{j/n,j=1}^{n-2} \left[T(r,f_j) + T(r,g_j) + T(r,h_j) \right] + O(\log r) \\ = \left\{ T(r,f_{j_1}) + T(r,f_{j_4}) + \dots + T(r,f_{j_{3p-2}}) + T(r,f_{j_2}) + T(r,f_{j_5}) + \dots + T(r,f_{j_{3q-1}}) \right. \\ + T(r,f_{j_3}) + T(r,f_{j_6}) + \dots + T(r,f_{j_{3s}}) \right\} + \left\{ T(r,g_{j_1}) + T(r,g_{j_4}) + \dots + T(r,g_{j_{3p-2}}) \right. \\ + T(r,g_{j_2}) + T(r,g_{j_5}) + \dots + T(r,g_{j_{3q-1}}) + T(r,g_{j_3}) + T(r,g_{j_6}) + \dots + T(r,g_{j_{3s}}) \right\} \\ + \left\{ T(r,h_{j_1}) + T(r,h_{j_4}) + \dots + T(r,h_{j_{3p-2}}) + T(r,h_{j_2}) + T(r,h_{j_5}) + \dots + T(r,h_{j_{3q-1}}) \right. \\ + T(r,h_{j_3}) + T(r,h_{j_6}) + \dots + T(r,h_{j_{3s}}) \right\} + O(\log r),$$

where $j_1, j_4, \ldots, j_{3p-2}; j_2, j_5, \ldots, j_{3q-1}$, and j_3, j_6, \ldots, j_{3s} are divisors of n = 3m, and are strictly less than n, and are of the forms 3p - 2, 3q - 1, and 3s, $(p, q, s \in \mathbb{N})$,

$$= T(r, f_n) \Big[\frac{T(r, f_{j_3})}{T(r, f_n)} + \frac{T(r, f_{j_6})}{T(r, f_n)} + \dots + \frac{T(r, f_{j_{3s}})}{T(r, f_n)} + \frac{T(r, g_{j_1})}{T(r, f_n)} + \frac{T(r, g_{j_4})}{T(r, f_n)} \\ + \dots + \frac{T(r, g_{j_{3p-2}})}{T(r, f_n)} + \frac{T(r, h_{j_2})}{T(r, f_n)} + \frac{T(r, h_{j_5})}{T(r, f_n)} + \dots + \frac{T(r, h_{j_{3q-1}})}{T(r, f_n)} \Big] \\ + T(r, g_n) \Big[\frac{T(r, f_{j_2})}{T(r, g_n)} + \frac{T(r, f_{j_5})}{T(r, g_n)} + \dots + \frac{T(r, f_{j_{3q-1}})}{T(r, g_n)} + \frac{T(r, g_{j_3})}{T(r, g_n)} \\ + \frac{T(r, g_{j_6})}{T(r, g_n)} + \dots + \frac{T(r, g_{j_{3s}})}{T(r, g_n)} + \frac{T(r, h_{j_1})}{T(r, g_n)} + \frac{T(r, h_{j_4})}{T(r, g_n)} + \dots + \frac{T(r, h_{j_{3p-2}})}{T(r, g_n)} \Big] \\ + T(r, h_n) \Big[\frac{T(r, f_{j_1})}{T(r, h_n)} + \frac{T(r, f_{j_3})}{T(r, h_n)} + \dots + \frac{T(r, f_{j_{3p-2}})}{T(r, h_n)} + \frac{T(r, g_{j_2})}{T(r, h_n)} + \frac{T(r, g_{j_5})}{T(r, h_n)} \Big] \\ + \dots + \frac{T(r, g_{j_{3q-1}})}{T(r, h_n)} + \frac{T(r, h_{j_3})}{T(r, h_n)} + \frac{T(r, h_{j_6})}{T(r, h_n)} + \dots + \frac{T(r, h_{j_{3s}})}{T(r, h_n)} \Big] + O(\log r) \\ < \frac{n-1}{6n}T(r, f_n) + \frac{n-1}{6n}T(r, g_n) + \frac{n-1}{6n}T(r, h_n) + O(\log r).$$

Case(ii). When n = 3m + 1, $m \in \mathbb{N}$. Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3, for all large r, we have

$$\begin{split} \overline{N}(r,1,\phi) &= \overline{N}(r,0,f_n-z) \\ &\leq \sum_{j/n,j=1}^{n-2} [\overline{N}(r,0,f_j-z) + \overline{N}(r,0,g_j-z) + \overline{N}(r,0,h_j-z)] + O(\log r) \\ &\leq \sum_{j/n,j=1}^{n-2} [T(r,f_j-z) + O(\log r) + T(r,g_j-z) + O(\log r) + T(r,h_j-z) \\ &\quad + O(\log r)] + O(\log r) \\ &= \sum_{j/n,j=1}^{n-2} [T(r,f_j) + T(r,g_j) + T(r,h_j)] + O(\log r) \\ &= \{T(r,f_{j_1}) + T(r,f_{j_4}) + \ldots + T(r,f_{j_{3p-2}}) + T(r,f_{j_2}) + T(r,f_{j_5}) \\ &\quad + \ldots + T(r,f_{j_{3q-1}})\} + \{T(r,g_{j_1}) + T(r,g_{j_4}) + \ldots + T(r,g_{j_{3p-2}}) \\ &\quad + T(r,g_{j_2}) + T(r,g_{j_5}) + \ldots + T(r,g_{j_{3q-1}})\} + \{T(r,h_{j_1}) + T(r,h_{j_4}) \\ &\quad + \ldots + T(r,h_{j_{3p-2}}) + T(r,h_{j_2}) + T(r,h_{j_5}) + \ldots + T(r,h_{j_{3q-1}})\} + O(\log r), \end{split}$$

where $j_1, j_4, \ldots, j_{3p-2}$ and $j_2, j_5, \ldots, j_{3q-1}$ are divisors of n = 3m + 1 and are strictly less than n, and are of the forms 3p - 2 and 3q - 1 ($p, q \in \mathbb{N}$),

$$= T(r, f_n) \left[\frac{T(r, f_{j_1})}{T(r, f_n)} + \frac{T(r, f_{j_4})}{T(r, f_n)} + \dots + \frac{T(r, f_{j_{3p-2}})}{T(r, f_n)} + \frac{T(r, g_{j_2})}{T(r, f_n)} \right]$$

$$+ \frac{T(r, g_{j_5})}{T(r, f_n)} + \dots + \frac{T(r, g_{j_{3q-1}})}{T(r, f_n)} + T(r, g_n) \left[\frac{T(r, g_{j_1})}{T(r, g_n)} + \frac{T(r, g_{j_4})}{T(r, g_n)} \right]$$

$$+ \dots + \frac{T(r, g_{j_{3p-2}})}{T(r, g_n)} + \frac{T(r, h_{j_2})}{T(r, g_n)} + \frac{T(r, h_{j_5})}{T(r, g_n)} + \dots + \frac{T(r, h_{j_{3q-1}})}{T(r, g_n)} \right]$$

$$+ T(r, h_n) \left[\frac{T(r, f_{j_2})}{T(r, h_n)} + \frac{T(r, f_{j_5})}{T(r, h_n)} + \dots + \frac{T(r, f_{j_{3q-1}})}{T(r, h_n)} + \frac{T(r, h_{j_1})}{T(r, h_n)} \right]$$

$$+ \frac{T(r, h_{j_4})}{T(r, h_n)} + \dots + \frac{T(r, h_{j_{3p-2}})}{T(r, h_n)} \right] + O(\log r)$$

$$< \frac{n-1}{6n} T(r, f_n) + \frac{n-1}{6n} T(r, g_n) + \frac{n-1}{6n} T(r, h_n) + O(\log r).$$

Case(iii). When n = 3m + 2, $m \in \mathbb{N}$. Now by Lemma 2.1, Lemma 2.2, and Lemma 2.3, for all large r, we have

$$\begin{split} \overline{N}(r,1,\phi) &= \overline{N}(r,0,f_n-z) \\ &\leq \sum_{j/n,j=1}^{n-2} [\overline{N}(r,0,f_j-z) + \overline{N}(r,0,g_j-z) + \overline{N}(r,0,h_j-z)] + O(\log r) \\ &\leq \sum_{j/n,j=1}^{n-2} [T(r,f_j-z) + O(\log r) + T(r,g_j-z) + O(\log r) + T(r,h_j-z) \\ &\quad + O(\log r)] + O(\log r) \\ &= \sum_{j/n,j=1}^{n-2} [T(r,f_j) + T(r,g_j) + T(r,h_j)] + O(\log r) \\ &= \{T(r,f_{j_1}) + T(r,f_{j_4}) + \ldots + T(r,f_{j_{3p-2}}) + T(r,f_{j_2}) + T(r,f_{j_5}) \\ &\quad + \ldots + T(r,f_{j_{3q-1}})\} + \{T(r,g_{j_1}) + T(r,g_{j_4}) + \ldots + T(r,g_{j_{3p-2}}) + T(r,g_{j_{3p-2}}) + T(r,g_{j_2}) \\ &\quad + T(r,g_{j_5}) + \ldots + T(r,g_{j_{3q-1}})\} + \{T(r,h_{j_1}) + T(r,h_{j_4}) \\ &\quad + \ldots + T(r,h_{j_{3p-2}}) + T(r,h_{j_2}) + T(r,h_{j_5}) + \ldots + T(r,h_{j_{3q-1}})\} + O(\log r), \end{split}$$

where $j_1, j_4, \ldots, j_{3p-2}$ and $j_2, j_5, \ldots, j_{3q-1}$ are divisors of n = 3m+2 and are strictly less than n and are of the forms 3p-2 and 3q-1 $(p, q \in \mathbb{N})$,

$$= T(r, f_n) \Big[\frac{T(r, f_{j_2})}{T(r, f_n)} + \frac{T(r, f_{j_5})}{T(r, f_n)} + \dots + \frac{T(r, f_{j_{3q-1}})}{T(r, f_n)} + \frac{T(r, h_{j_1})}{T(r, f_n)} \\ + \frac{T(r, h_{j_4})}{T(r, f_n)} + \dots + \frac{T(r, h_{j_{3p-2}})}{T(r, f_n)} \Big] + T(r, g_n) \Big[\frac{T(r, f_{j_1})}{T(r, g_n)} + \frac{T(r, f_{j_4})}{T(r, g_n)} \\ + \dots + \frac{T(r, f_{j_{3p-2}})}{T(r, g_n)} + \frac{T(r, g_{j_2})}{T(r, g_n)} + \frac{T(r, g_{j_5})}{T(r, g_n)} + \dots + \frac{T(r, g_{j_{3q-1}})}{T(r, g_n)} \Big] \\ + T(r, h_n) \Big[\frac{T(r, g_{j_1})}{T(r, h_n)} + \frac{T(r, g_{j_4})}{T(r, h_n)} + \dots + \frac{T(r, g_{j_{3p-2}})}{T(r, h_n)} + \frac{T(r, h_{j_2})}{T(r, h_n)} \\ + \frac{T(r, h_{j_5})}{T(r, h_n)} + \dots + \frac{T(r, h_{j_{3q-1}})}{T(r, h_n)} \Big] + O(\log r) \\ < \frac{n-1}{6n} T(r, f_n) + \frac{n-1}{6n} T(r, g_n) + \frac{n-1}{6n} T(r, h_n) + O(\log r).$$

Thus in any case,

$$\overline{N}(r,1,\phi) < \frac{n-1}{6n}T(r,f_n) + \frac{n-1}{6n}T(r,g_n) + \frac{n-1}{6n}T(r,h_n) + O(\log r).$$

So from (6) and since $\frac{T(r,g_n)}{T(r,f_n)}$ and $\frac{T(r,h_n)}{T(r,f_n)}$ are bounded, we have

$$\begin{split} T(r,\phi) &< \frac{n-1}{6n}T(r,f_n) + \frac{n-1}{6n}T(r,g_n) + \frac{n-1}{6n}T(r,h_n) + O(\log r) + S_1(r,\phi) \\ &= \frac{n-1}{6n}T(r,f_n) + \frac{n-1}{6n}T(r,g_n) + \frac{n-1}{6n}T(r,h_n) + O(\log r) + O(\log T(r,\phi)) \\ &\leq T(r,f_n) \Big[\frac{n-1}{6n} + \frac{n-1}{6n}\frac{T(r,g_n)}{T(r,f_n)} + \frac{n-1}{6n}\frac{T(r,h_n)}{T(r,f_n)} + \frac{O(\log(T(r,f_n) + O(\log r)))}{T(r,f_n)} \\ &+ \frac{O(\log r)}{T(r,f_n)}\Big] \\ &\leq T(r,f_n) \Big[\frac{n-1}{6n} + \frac{n-1}{6n} + \frac{n-1}{6n} + \frac{O(\log(T(r,f_n)(1 + \frac{O(\log r)}{T(r,f_n)})))}{T(r,f_n)} + \frac{O(\log r)}{T(r,f_n)}\Big] \\ &< T(r,f_n) \Big[\frac{1}{2} + \frac{O(\log(T(r,f_n)(1 + \frac{O(\log r)}{T(r,f_n)})))}{T(r,f_n)} + \frac{O(\log r)}{T(r,f_n)}\Big] = \frac{1}{2}T(r,f_n), \end{split}$$

for all large r.

Therefore, $T(r, \phi) < \frac{1}{2}T(r, f_n)$ for all large r. This contradicts to (5). Hence f(z) has infinitely many relative fix points of exact factor order n. This proves the theorem.

Remark. Since fix points of exact order are fix points of exact factor order, if f(z) = g(z) = h(z) then $\frac{T(r, g_n)}{T(r, f_n)}$ and $\frac{T(r, h_n)}{T(r, f_n)}$ being bounded, Theorem 1.2 covers Theorem 3.1.

References

- [1] Bieberbach L., Theorie der Gewöhnlichen Differentialgleichungen, Berlin, 1953.
- [2] Baker I.N., The existence of fix points of entire functions, Math. Zeit., 73 (1960), 280–284.
- [3] Hayman W.K., Meromorphic functions, The Oxford University Press, 1964.
- [4] Bhattacharyya P., An extention of a theorem of Baker, Publicationes Mathematicae Debrecen, 27 (1980), 273–277.
- [5] Lahiri B.K., Banerjee D., On the existence of relative fix points, İstanbul Univ. Fen Fak. Mat. Dergisi, 55-56 (1996-1997), 283-292.
- [6] Banerjee D., Mandal B., On the existence of relative fix points of a certain class of complex functions, İstanbul Univ. Sci. Fac. J. Math. Phys. Astr., Vol.5 (2014), 9–16.

DIBYENDU BANERJEE, Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India, *e-mail*: dibyendu1920rediffmail.com.

BISWAJIT MANDAL, Bunia Dangal High School, Bunia-731303, Birbhum, West Bengal, India, *e-mail*: biswajitmandal.math@gmail.com.