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Abstract

This paper establishes a study on some important latest innovations in the existence and uniqueness results by
means of Banach contraction fixed point theorem for Caputo fractional Volterra-Fredholm integro-differential
equations with boundary condition. New conditions on the nonlinear terms are given to pledge the equiva-
lence. Finally, an illustrative example is also presented.

Keywords: Volterra-Fredholm integro-differential equation, Caputo sense, Gronwall-Bellman’s inequality,
Banach contraction fixed point theorem.
2010 MSC: 34A12, 46B80, 45J05.

1. Introduction

In recent years, there has been a growing interest in the linear and nonlinear integro-differential equations
which are a combination of differential and integral equations |4, [6l [7, 18], 20, 25]. The nonlinear integro-
differential equations play an important role in many branches of nonlinear functional analysis and their
applications in the theory of engineering, mechanics, physics, electrostatics, biology, chemistry and economics

[15] and signal processing [27].
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The challenging work is to find the solution while dealing with Volterra-Fredholm fractional integro-
differential equations. Therefore, many researchers have tried their best to use different techniques to find
the analytical and numerical solutions of these problems [11 2, [3 5 9} 10 111 16, 23] 241 B30].

The study of iterative differential and integro-differential equations is linked to the wide applications of
calculus in mathematical sciences. These equations are vital in the study of infection models. Many papers
have dealt with the existence, uniqueness and other properties of solutions of special forms of the iterative
differential equations and integro-differential equations [17, 18| 21, 22].

Recently, Cheng et al. [8, 22], investigated analytic and exact solutions of an iterative functional differ-
ential equation of the type

u'(x) = f(z, u(h(z) + g(u(x)))),
u(wo) = o

Lauran [21], studied the existence and uniqueness results for first order differential and iterative differ-
ential equations with deviating argument of the type

u'(t) = f(t,u(t), u(u(t)), u(Au(t))),
’U,(t()) = X0
Kendre et al. [18], studied the existence of solution for iterative integro-differential equations of the type
t
W (0) = S ulu(t). [kt sulu(s))ds),
to
u(to) = X0
In [1I7], Ibrahim investigated the existence and uniqueness of solution for iterative differential equations
of the type

D*u(t) = f(t,u(u(t))),
u(0) = up.

Unhale and Kendre [29], established the existence and uniqueness of solution for iterative integro-differential
equations of the type

t
D%u(t) = f(t) +/0 h(t, s)u(Au(s))ds,
u(0) = u,

Motivated by these problems, in this paper, we discuss new existence and uniqueness results for nonlinear
fractional Volterra-Fredholm integro-differential equation with deviating argument of the type

T T
D%(z) = f(x) +/ h(m,s)u(u(s))ds+/ k(x,s)u(u(s))ds, z,s e J:=10,T], (1)
0 0
with the boundary condition
au(0) +bu(T) =¢, a,b,ceR, a+b#0, (2)

where D%(.), 0 < a < 1, is the Caputo fractional derivative, f(t), h(x,s) and k(z,s) are given continuous
functions, u(z) is the unknown function to be determined.

The main objective of the present paper is to study the new existence and uniqueness results for iterative
nonlinear fractional Volterra-Fredholm integro-differential equation with deviating argument.

The rest of the paper is organized as follows: In Section [2] some essential notations, definitions and
Lemmas related to fractional calculus are recalled. In Section [3] the new existence and uniqueness results
of the solution for nonlinear fractional Volterra-Fredholm integro-differential equation have been proved. In
Section |9 focuses on an example to illustrate the theory. Finally, we will give a report on our paper and a
brief conclusion is given in Section [6]
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2. Preliminaries

In this segment, we first survey some fundamental definitions of the fractional calculus theory which are
required for building up our outcomes. For more details, see [9, 111, 12} 13], 19} 20, 26, 28, [30].

Definition 2.1. [18]/ The Riemann-Liouville fractional integral of order o > 0 of a function f is defined as

T f(x) _léwﬁﬂx—WPV@ﬁ, £>0, acR*
Jof(x) = flx), (3)

where RT is the set of positive real numbers.

Definition 2.2. [I8/ The Riemann-Liowville derivative of order o with the lower limit zero for a function
f:[0,1) — R can be written as

1L d [T
L no
D == ————dt 0, 0 1. 4
/(@) ru—amxA(x—wx’x>’ Sas )
Definition 2.3. [Tj] The Caputo derivative of order « for a function f :[0,1) — R can be written as
1 v
D~ = dt 0, 0 1.
f(x) F(l—a)/o @— 1o , >0 0<a<

Definition 2.4. [T} The fractional derivative of f(z) in the Caputo sense is defined by
D) = IOD ()

—a—1d"f(t
ﬁfgx(w—t)" ¢ l%ﬁ)dt, n—1<a<n,

d" f(z)

dxm™

a=n,
where the parameter « is the order of the derivative, in general it is real or even complex.

Definition 2.5. [}/ The Riemann-Liouville fractional derivative of order ov > 0 is normally defined as
Df(x) =D"J" f(x), m—1<a<m. (6)

Lemma 2.1. [T} (Gronwall-Bellman’s Inequality). Let u(x) and f(x) be nonnegative continuous functions
defined on J = [, + h] and ¢ be a nonnegative constant. If

u(z) <c+ /;f(s)u(s)ds, x € J,
then
u(z) < ¢ exp (/; f(s)ds), x € J,

Theorem 2.1. [28/ (Banach contraction principle). Let (X,d) be a complete metric space, then each con-
traction mapping T : X — X has a unique fized point x of T in X i.e. Tx = x.
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3. Main Results

In this section, we shall give the existence and uniqueness results of Eq., with the condition . Let
B = C(J,J) be the Banach space equipped with the norm [Ju|| = max,¢(o 7} |u(z)|. For convenience, we are
listing the following hypotheses used in our further discussion:

(A1) There exists constants 3, and () such that
Br =sup{|h(t,s)| : 0 < s <t <T}.
Br = sup{|k(t,s)| : 0 < s <t <T}.
(A2) There exists a constant M > 0 such that
lu(ty) — u(ts)] < Mty — ta|, for w € B, t1,ts € J, t1 < to.
(A3) There exists a constant L > 0 such that L = sup{|f(¢)|:0 <t <T}.

T BB) [{ b e
(A4) Let pi= TGPy o LTy K <7 <,

Lemma 3.1. If a function u € C[0,T) satisfies (I)-(2) in the closed interval [0,T), then the problems (T))-(2)
are equivalent to the problem of finding a continuous solution of the integral equation

T

u(z) = /Ox(””;(gl(f(tw /Oth(t,s)u(u(s))ds+ /0 k(L s)u(u(s))ds ) dt

T4 i b [/OT b(TF—(;;O‘_I <f(t) + /Ot h(t,s)u(u(s))ds + /OT k(t, s)u(u(s))ds) dt — c}.

Theorem 3.1. Suppose that the hypotheses (A1)-(A4) are satisfied and

a+1
e )

Then there is a unique solution to the problems —.

Proof. Let B(p) ={u € B: 0<u<p,lu(ty) —u(te)] < M|t; — t2|*}.
To apply Banach contraction principle, we define an operator ¥ : B(p) — B(p) by

(Pu)(z) = /OI (z ;(2)&1 (f(t) + /Ot h(t,s)u(u(s))ds + /OT k(t, s)u(u(s))ds) dt
1

_aib[/oTW(f(tH/oth(t, s)u(u(s))ds+/OT k(t, s)u(u(s))ds)dt—c]
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/Ox . r(g)a_l (10 +/0th<ta u(u S))d8+/0Tk(t, S)u(u(s))ds ) dr
L (

s)u(u(
- i b [/T b(TF_(Oté;a1 (f(t) + /Ot h(t, s)u(u(s))ds + /OT k(t, s)u(u(s))ds) dt — c] |

(o — 1) 4

< [ (e |+/|hts||u Dlds-+ [ ke, )Jutute))ds)
1 |b|( T ta 1
wt [ (1701 + [ 1) ututs)as

So, we have

0<|Pu|l =

/ |k(t, s)||u(u(s))|ds dt+’ |—c|—|b|
(= t)o 3 [b[(T" — )"~ 3
< /0 Wu)—i—(ﬁ n+ Br)T7)ds + o b|/ T(a) (L+(5h+ﬁk)T )dt
<
+|a+b\
T(L + T3(Bn + Br)) 0] ||
= I(a+1) [1+\a+b|}+ya+b\
e p.

Also, for each 0 < z1 < 9 < T, we have

Vu(zg) — \Ifu(acl)‘

- /Oxl (22 — t)alp(_a(xl —t)! (f(t) + /Ot h(t, s)u(u(s))ds + /OT k(t, S)U(U(S))ds> dt‘

)
+ /;2 (f@F—(;f[))“‘1 f(t)+/0th(t s)u(u(s ))ds+/Tk(t s)u(u(s) ds)dt‘
< 1/0361[(301 O = (z2 — 0‘1 ’f ‘ /’htsH ’ds

+ / ‘ktsH ‘ds)dtﬂ—/ (xg — to‘l‘f ‘ /‘htsH ‘ds
(@) Jao
+ / ‘kt,sHuus ‘ds)dt.
0

Hence,
‘\Ifu(xg) — \I’U(-Tl)‘
< L /I1 [(xl — 1) — (w2 — t)a_l} [L+T°(By, + Br)]dt
- (o) Jo
1 r2 o—

+ o) /ﬂg1 (zg — )* ML + T3(By + Br)]dt

3
_ +FT(Q(€:L1+) Br)] [x(lx 28+ 2as — xl)a]

L 2L TG+ 5]
- MNa+1)

‘ (0%

’33‘2 — T
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This shows that ¥ maps from B(p) — B(p), Now, for all u,v € B(p) we have

‘\Ifu Wz )‘

< a/ x—1)*" 1 / ‘ht s H v(s))’ds
+ / ‘ktsH (v(s) ‘ds)dt
i / 7= 00 ([ [pess)Jututsn) - oo s

+ / ‘kts‘ (v(s) ‘ds)dt

- 5h+5k/ 1 /‘ ‘ ()) = v(v(s))|ds
+ /‘ ] [u(v(s)) = v(v(s) ‘ds)dt

-t /f s
+ /‘ u(s)) = u(e(s))| + [u(e(s) — v(e(s) ‘ds)dt

5h+5k

IN

| =0 / (MJu(s) — o(s)] + fu(s) — v(s) )ds)di

0

\b!(5h+5k) T el uls) — (s ls) — o) Vs
+ |a+b|F()/0( t) (/O(Ml() (s)] + |u(s) ()!)d)dt

(Bn+ Be) [* ac1( [ () Dds
< B [T (/0 (M + 1)fu(s) — o(s)))ds) dr
[61(Bn + Br) [T
+ e /O / (M + Dfu(s) — v(s)))ds ) di
< (5h+ﬁk M+1 Hu—v[/ a 1dt+|b|T(/B’Zj:f‘l} M+1 ” _ ”/ a 1dt
< T““(ﬁh + 5k)(M )HU ol + b|TT* (B + Br) (M + 1) = o
- Ia+1) la + 0T (a+ 1)
T (5 B D) b
= [ T(a+1) <” |a+b\)}”“*””

Since

a+1
B (Bg(Ziki()MH)( + |a|—bk|b|>] <1

by the Banach contraction principle, ¥ has a unique fixed point. This means that the problems (/1] . ) has
unique solution.

O

The above theorem shows that there exists a unique solution to the problems —. However, it does
not tell us how to find this solution. To find the solution of the problems —, we will define the following
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sequence
Un+1 (33‘)

= /099 (x ;(2;‘_1 (f(t) + /Ot h(t, s)un(un(s))ds + /OT k(t, s)un(un(S))ds) dt (7)

“a 41_ b [/OT b(TF_(Oté;al (f(t) + /Ot h(t, s)un(un(s))ds + /OT E(t, s)un(un(s))ds) dt — c].

where n = 0, 1,2, ... and ug(x) is fixed functions of the class C' mapping [0, 7] — [0, 7] such that |ug(x)| <
T. For this, we have the following theorem.

Theorem 3.2. If the assumptions of the Theorem are satisfied then the sequences defined in (7)) converges
uniformly to the unique solution of the problems —.

Proof. Let Uy, = maxge |ug(z) — ug—1(x)|. Then

U, = max\ul( ) — up(z)]
—pye- 1 t T 1
= max ‘/ T(a) f +/0 h(t, s)uo(uo(s))ds —1—/0 k(t, s)uo(UO(s))ds)dt P

T

% [/O b( F((z; 1<f(t)+/()th(t,8)u0(U0(S))ds+/[) k(t,s)uo(uo(s))ds>dt—c} —uo(x))
TULATG By By K

- INa+1) la + b la + b
< T.
Since ug : [0,7] — [0,T], we have Uy < T.
Uy = max|uQ( ) — up(z)]
= 1
rgg}’/ (f /htsu ui(s ds+/k:tsu1u1 )dt
Hb[/ (T (Ot[;“ 1( ()+/O h(t, s)ur (us (s ))ds+/0 k(t, 8)ui (ur (s ))ds)dt—c}
_{/ x—t ( / (t, s )uo (uo(s ))ds+/OTk(t,s)uo(uo(s))ds)dt
a+b[/ <TF—(?"1( (t)—i—/oth(t s)uo(uo(s))ds+/0Tk(t s)uo(uo(s))ds)dt—c}dt}‘
= Ry A A
+/0T‘k(t75) ‘ul(ul(s))—uo(uo(s))‘d5>dt— ‘aib’/o ’ ’ F(_at)
« (‘f(t)‘ n /Ot (h(t, s)Hul(ul(s)) _ uo(uo(s))‘ds n /OT ‘k(t, s)Hul(ul(s)) _ uo(uo(s))|ds)dt}
< TU, < T2

Assume that result is true for n ie. U, <TU,_1 <T". Now, we show that result holds for n + 1
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Unir = maxluna(e) = un (@)

— max‘/ ) 1(f(t)—I—/Oth(t,s)m(un(s))ds+/0Tk‘(t, S)Un(un(&’))ds)dt

xzeJ Oé)

LM ([t syntun(os + [ syunuate)as)t o
—{ ’ M (f(t) 4 /Ot h(t, $)un—1(un—1(s))ds + /OT k(t, s)un,l(un,l(s))ds> dt
= [/OT b(TF—(;;O‘_l (re+ /Ot h(t, )tn—1(un-1(s))ds

n /OT k(t, )1 (11 (5))ds ) d — ] dt),

ma{ [y (] + [ o)

IN

tn (un(5)) — un_l(un_l(s))‘ds

+ /OT\k:(t,s)\ tn (1 (5)) = 1 (1 (5)) | s ) dt

— a-1 3
g b o [t =i
1) a5 = s s

< TU, <T".

Thus by induction, we have U, < T*. Since

T*(L + T%(Bn + Br))
MNa+1)

ug + <T <1, when ug > 0.

Hence Uy, tends to zero as k tends to infinity. Since the family {Uy} is the Arzela-Ascoli family thus for
every subsequence {uy;} of {Uy} there exists a subsequence {uy;} uniformly convergent and the limit needs
to be a solution of the problem —. Thus, the sequence {Uy} tends uniformly to the unique solution of

the problem —. O

4. Ulam-Hyers Stability

In this section, we investigate the Ulam-Hyers stability and generalized Ulam-Hyers stability for the
problem —.

Definition 4.1. The Eq. 1s Ulam-Hyers stable if there exists a real number © > 0 such that for each
€ > 0 and for each solution v € C*(J,J) of the inequality

x T
D) ~ f(2) - /O h(w, s)o(v(s))ds — /O k(z, s)o(v(s))ds| < e, € J, (8)

there exists a solution u € C*(J,J) of Eq. with

v(z) — u(z)] < Qe. (9)
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Definition 4.2. The Eq. is generalized Ulam-Hyers stable if there exists © € C(RT,RT), ©(0) =0
such that for each € > 0 and for each solution v € C1(J,.J) of the inequality

x T
D) - f(2) - /0 h(w, s)o(v(s))ds — /0 k(2 s)o(v(s))ds| < e, @ € J, (10)

there exists a solution u € C*(J,J) of Eq. with
[v(z)u(z)] < B(e). (11)

Theorem 4.1. If the assumptions of the Theov"em are satisfied, then the problem - 1s Ulam-Hyers
stable.

Proof. let € > 0 and let function v € C'(.J, J) which satisfies the inequality

xT

T
D%(z) — f(x) —/ h(z, s)v(v(s))ds _/0 k(x,s)v(v(s))ds < e, (12)

0

and let u € C(J,J) be the unique solution of the following problem
T T
D%(x) = f(z)+ / h(zx, s)u(u(s))ds +/ k(x,s)u(u(s))ds,
0 0
u(0) = v(0), w(T) = V(T).

from Lemma [3.1] we obtain

u(z) = /Ow(x;(g”(f(tw /0 " Bt $)u(u(s))ds + /OTk(t,s)u(u(s))ds>dt

S (0 [ e ot + [ #emtuionas)ac

Ca+b
= A+ /0 ’ (“";(2;1( Ft) + /0 th(t, s)u(u(s))ds + /0 ! k(t,s)u(u(s))ds)dt,
where
Ay = a _1|_ b [C - /OT b(TF_(;;a_l (f(t) + /Ot h(t, s)u(u(s))ds + /OT k(t, s)u(u(s))ds) dt} :
Let

A, = a1_+_b [C _ /OT b(TF_((?)a_l (f(t) + /Ot h(t, s)v(v(s))ds + /OT k(t, S)U(v(s))ds)dt}.

On the other hand, if u(0) = v(0), w(T) = v(T), then A, = A, and
T _ na—1 t T
(@) = Ay + /0 %( £ + /0 h(t, s)u(u(s))ds + /0 k(1 $)u(u(s))ds ) dt.
From inequality we have

T T
—e < D%(z) — f(x) — /0 h(z,s)v(v(s))ds — /0 k(x,s)v(v(s))ds < e, (13)

If we integrate each term of the above inequality and appling the boundary conditions, then we have

o)== [TES ([ nieooas + [ e sees)i] < 5
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For any x € J, we have

’v(:c) - u(x)’

A, / /ht 5 s))ds+/0Tk(t,s)v(v(s))ds)dt(

(x_t) - u\s S ! s)ivlv(s)) —ululs S
+A Fw)péhm@vw@» uu(@)lds + [t s)o0(s) = u(u(s)ds) i
eTe a:(x_t)afl t
o+ e ([ o) = o)l + o) — utuls) s

IN

IN

T
48 [ Io(u(s) = oul)] + lo(us)) = u(us)))ds)

0

r&Tfl P [ [t Djets) - ) asa

/ / (& — " (M + D)[o(s) — u(s)|dsdt
eTa TthJrﬁk M+1/| () lds.
INa+1) I'a+1
Using Gronwall’s inequality, we get
e ET* (B + Bi)(M + 1)
— <
’”(‘r) “(5”)’ = T(a+1) T(a+1)
where & = £(«) a constant, which completes the proof.

Moreover, if we set ©(e) = Qe, ©(0) = 0, then boundary value problem (I])-(2) is generalized Ulam-Hyers
stable. .

IN

<

[1+ }:Qe,

5. An Example
We consider the nonlinear iterative fractional integro-differential equation — with
a=05 T=05L=02,M=04,8,=0r=05, a=b=1,and c=0

New, we have

Ta(L+T3(6h+ﬁk))< Ll ) | 0.50-5(0.2+0.53(0.5+0.5))(1Jr 1) o
[(a+1) la + b la+b r.5+1) 2
0.2298098
= =715
I'(1.5) (1.5)
_0.3447145
T 0.886227
= (.38897
< 05=T.
Also,
Tt (M +1 + b 0.595t1(0.4 + 1)(0.5+ 0.5 1
( ) (B ﬁk)(H ] ) _ ( )( )(1+f)
Fa+1) la + b ro.5+1) 2
0.494975
= — (1.
0.886227( 5)
= (.8378
< 1.

Since all the hypotheses of Theorem [3.1] are fulfilled, then there exists a unique solution of the given equation.
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6. Conclusion

The main purpose of this paper was to present new existence and uniqueness results as well as the Ulam-
Hyers stability and generalized Ulam-Hyers stability results of the solution for Caputo fractional iterative
Volterra-Fredholm integro-differential. The techniques used to prove our results are a variety of tools such as
the Gronwall-Bellman’s inequality, some properties of fractional calculus and the Banach contraction fixed
point theorem. Moreover, the results of references [17, [I8], 29] appear as a special case of our results.
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