

 Copyright © IJCESEN

International Journal of Computational and

Experimental Science and ENgineering

(IJCESEN)
Vol. 6-No.1 (2020) pp. 42-62

http://dergipark.org.tr/en/pub/ijcesen
ISSN: 2149-9144

Research Article

Evolutionary Search Algorithm Based on Hypercube Optimization

For High-Dimensional Functions

Mustafa TUNAY*

Istanbul Gelisim University, Faculty of Engineering and Architecture, Computer Engineering, Istanbul-Turkey

* Corresponding Author : mustafatunay44@hotmail.com

ORCID: 0000-0001-8843-621X

Article Info:

DOI: 10.22399/ijcesen.684653

Received : 4 February 2020

Accepted : 16 March 2020

Keywords

Evolutionary algorithms

Optimization algorithms

Benchmark function

Timetabling problem

Abstract:
This study paper is devoted to the design of a novel evolutionary search algorithm

to solve optimization of multivariate systems. Nowadays for many real world

optimization problems the designing of evolutionary search algorithm with high

optimization accuracy is a crucial optimization of multivariate systems. The

proposed optimization search algorithm is a new intense stochastic search method

that is based on a hypercube evolution driven. This algorithm is inspired from the

behaviour of a pigeon that discovers new location of areas for seeds in natural

world. The hypercube is used a statement that shows the area of life for the

behaviour of a pigeon in real life.

The performance of the proposed algorithm is tested on optimization functions as

some Benchmark function and test suite functions including; four unimodal

functions and composition functions. The performance of the proposed algorithm

are shown much better experimental results in EAs and is encouraging in terms of

solution accuracy for global optimization. In addition, the proposed algorithm

approach is applied to solve a timetabling problem as two exams in adjoining

periods, conflict of exams, two or more exams in one day etc. They are very

difficult to solve for many institutions of higher education and as resulted in a

significant increase in their complexity.

1. Introduction

In this study review of optimization search

algorithms are given. A derivative based and

derivative free optimization search algorithms are

specified. The importance of evolutionary search

algorithms for multimodal optimization is shown.

The research is based on evolutionary search

algorithms including genetic algorithms, differential

evaluation, particle swarm optimization, ant colony

optimization and other evolutionary search

algorithms have been analysed. The design of the

high accuracy evolutionary search algorithm for

solving complex multidimensional optimization

problems is noticed.

In many real-world optimization problems, different

optimization strategies have been designed for

finding solution of these kinds of issues. One of them

is the simultaneous perturbation stochastic

approximation (SPSA) method for multivariate

optimization issues. For this purpose in the proposed

method has been developed considerable application

in areas such as statistical parameter estimation,

feedback control, signal and image processing,

simulation-based optimization and experimental

design. In problem solution the proposed method

uses gradient approximation in any case of

dimension of the optimization problem. The SPSA

method decreases especially in problems to be

optimized for cost of optimization solutions. For

more details are referred in [1].

Many optimization problems mainly consist in

finding the "best solution" from the values of

objective function within certain ranges. The

solutions of nonlinear optimization acquire great

http://dergipark.org.tr/en/pub/ijcesen
http://dergipark.ulakbim.gov.tr/ijcesen

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

43

importance. These optimization problems can have

multiple local optimal (minimum and maximum)

solutions. The basic problem is to find the best of

these local optimal solutions. The aim of global

optimization is to find a feasible region solutions x

in a solution space set X, for which the objective

function F obtains its smallest (or largest) value.

One of widely used adaptive heuristic search

algorithm used for multiobjective optimization. The

proposed algorithm is relies on the evolutionary

conception of natural selection. By means

of Genetic algorithms (GAs) is inspired by natural

evolution using searching problems techniques. The

Genetic Algorithms (GAs) mainly consist of

selection process, a crossover process and a mutation

process for search optimization solutions [10]. The

natural evolution is generated individuals from a

population randomly. The population is selected

according to fitness values. The best population is

more likely to be selected. Thus, the populations

have been selected based on their physical condition

and so we excepted that selected population is

among the strongest in the population and so we

excepted that selected population will gradually

increase in the average fitness, used in the next

iteration, as the current solution [2].

Genetic algorithms provides in complex adaptive

systems for in economic theory to the use of machine

learning methods. Adaptation is a biological process

survives in environments confronting organisms that

evolve by rearranging genetic material. Holland

presents using mathematical model that seek out a

solution for nonlinearity such as complex

interactions [25].

The modification of genetic algorithm is a biased

random key using for solving tactical berth

allocation problem (TBAP) aiming. The TBAP

aiming allocates incoming ships to berthing

positions for assigning quay crane profiles (i.e.

number of quay cranes per time step) [14].

The design of the TBAP are both the minimization

of the housekeeping expenses; first one got from the

transhipment compartment streams in the middle of

ships, second one is the amplification of the

aggregate estimation of the quay crane profiles doled

out of the ships. The acquired results for handling the

TBAP have demonstrated that the proposed

calculation which is appropriate to proficiently take

care of this issue.

A new structured population approach is built a

hierarchy of hypercube is represented as population

of GA. GA is about structured population that

generally leads to higher performance than the

palmitic genetic algorithm; because it can control

two opposite processes, namely exploration and

exploitation in the search space. GA is about several

spatially structured populations that were introduced

in the literature [9, 19]. These are cellular, GA-social

patchwork basis, island-style or model, terrain-

based, graph-based and religion-based. This

research does not build subpopulations based on the

information of the genes of individuals themselves.

The structuring of subpopulations could help to

achieve better performance and more efficient

search strategy. The algorithm can dynamically

build the structure of a population by dividing the

search space. The structured population is

represented as hierarchical hypercube

subpopulations that are dynamically built and

adapted to the search time. Each subpopulation

represents a subdivision of the real space of genes.

This structure could help guide research towards the

promising sub-areas.

A new tendency search optimization is modified

artificial chromosomes with genetic algorithm

(ACGA). The proposed algorithm has been applied

real world problems successfully in order to solve

scheduling problems. However, ACGA cannot

perform function well in some planning problems

due to the fact that its probabilistic model does not

take into account the variable interactions, in

particular if the sequence-dependent setup times are

taken into account. This is due to the fact that the

previous job will improve variable interactions for

influence the processing time. The improvement of

artificial chromosomes with genetic algorithm

(ACGA) is successfully applied single machine

scheduling problems. This improvement of ACGA

is a bi-variate probabilistic model called an ACGA

II. The design of ACGA II has very broad concept

including some heuristics and local search

algorithm, variable neighbourhood search (VNS)

[11]. The proposed is successfully demonstrated

solving single machine scheduling problems with

sequence-dependent setup times for date

environment.

Traditional computational intelligent systems are

basically based on private "internal" cognitive and

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

44

computational processes. However, Swarm

Intelligence argues that human intelligence comes

from the interactions of individuals in a social world.

This proposed model of intelligence commonly can

be used in artificial intelligent systems.

The foundations of approach presents through social

psychology, cognitive science, and evolutionary

computation. The authors describe is referred in

[4,8]. The Particle swarm optimization (PSO)

algorithm is evaluated objective function in a search

space. Each particle determines its movement by

using the history of its own current and best locations

with the member of swarm and with the random

perturbations. The swarm like a flock of birds

foraging for a food and move close to optimum

point. The proposed algorithm provides a problem

solving method.

There are in many real-world optimization problems

to use mathematical algorithms that seek an iterative

solution because the function or the constraints of

objective problem can be modified over time. If

these cases are undefined past in the optimization

process, we are called dynamic for these types of

problems. There are some difficulties in optimizing

dynamic environments with the goal that the

calculations for rationalization in these situations

would be to use some systems keeping in mind the

ultimate objective of overcoming difficulties. There

are many algorithms for optimization problems. One

of them is a new optimization algorithm based on

dynamic environments the particle swarm

optimization (PSO) in which a new mechanism has

been carried out for improving solutions in [23]. In

this mechanism, it is attempted to increase local

research capacity around with optimal focusing on

the best pic found in each environment.

Experimental and comparative results demonstrated

the superiority of the proposed method.

The particle swarm optimization (PSO) is modified

a new cooperative coevolving with PSO (CCPSO)

algorithm to optimize large-scale and complex

multimodal optimization problems. The updating

rules of the PSO is also changed a new cooperative

coevolving with PSO (CCPSO II) algorithm. The

new proposed algorithm is based on Cauchy and

Gaussian method distributions to sample new points

in the search space. The design of CCPSO II scheme

dynamically determines the coevolving

subcomponent sizes of the variables. For more

description of details are referred in [26].

The performance of CCPSO II was tested on large-

scale and complex multimodal optimization

problems. The experimental results have

demonstrated the performance of CCPSO II that is

successfully applied solving many difficult

optimization search problems. The performance of

CCPSO II is successfully also evaluated by

considering the cases in which the problem

dimension are as a set of high dimensional problems.

There is a new alternative way for PSO to optimize

multimodal problems. The PSO is changed and

modified creating a new design of comprehensive

learning particle swarm optimizer (CLPSO). The

performance of CLPSO was successfully tested on

multimodal problems. The design of CLPSO is

applied in a novel learning strategy. This strategy

allows the diversity of the swarm to be preserved to

discourage premature convergence so that the

updating of the appropriate speed for PSO provides

best information. For details are briefly referred in

[27].

The particle swarm optimization builds the differing

qualities of the particles such as a two-layer is

proposed. The downside of catching in a

neighbourhood ideal is kept away from a structure

with two layers (upper layer and lower layer) is

proposed [20]. Swarms of particles and one swarm

of particles are created in the lower layer and the

upper layer respectively. Each better global position

in every swarm of the lower layer is to be the

position of the particle in the swarm of the upper

layer. A variety of particles increases to avoid

capture in a local optimum. A mutation is also

included into the particles of every swarm in the

lower layer so that the particles jump the

neighbourhood ideal to locate the global optimum.

The proposed algorithm was tested on various types

of large-scale optimization problems and

experimental results have shown convergence

properties successfully. The proposed algorithm

works much better for types of large-scale

optimization problems.

Nowadays there are many the popular trends to

optimize power flow. The well-known is both

popular algorithms, GAs and PSO are applied to

optimize the power flow. A direction particle swarm

optimization algorithm of ant evolution to solve the

optimal power flow problem with non-smooth and

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

45

non-convex cost characteristics of the generator is

considered. Here, the search for ant colony is used to

find an update operator of the appropriate speed for

particle swarm optimization and ant colony emerge

parameter settings using genetic algorithm approach.

The updating of the appropriate speed for particle

swarm optimization has five operators used.

The proposed method is tested on mainly including

as 30-bus IEEE, 39-bus IEEE and 57-bus IEEE -

systems with three different objective functions [15].

The simulation results have demonstrated better

results for the proposed method. The simulation

results have demonstrated the proposed optimization

search algorithm that gives better results and it is

comparable with classical particle swarm

optimization for solving a set of optimization

problems.

The swarm-inspired projection (SIP) is inspired by

data projection algorithm for swarm optimization.

The algorithm makes it possible to visually estimate

the number of existing clusters in a data set in [18].

The results are based on the projection then we can

partition the data to put in the corresponding number

of clusters.

The design of simulated-annealing (SA) algorithm is

employed to design fuzzy control systems. SA

algorithms are provided for minimizing the objective

functions. A design of PI-FCs (Takagi-Sugeno

proportional-integral fuzzy controllers) is proposed

using SA. The proposed algorithm is implemented

on a case study on the control of the angular position

of a servo system. The system is used as test bed to

confirm the controller design in [12, 21].

There is a new differential evolution (DE) algorithm

to develop about the performance of a new mutation

strategy. This is a called ‘DE/current-to-p-best’

which is about the performance of a new mutation

strategy. This mutation strategy is a generalization of

‘DE/current-to-best’ then. This is a called JADE. It

differentiates the population. However it still gets

the fast convergence property so that self-adaptation

is used to improve for its performance. For more

details are referred in [28]. In this study avoids the

requirement for parameter settings and so that it

works well without user interaction.

Self-adaptive control parameter settings are inspired

by the DE (differential evolution) algorithm. The

differential evolution has been applied practical

situation successfully in order to solve many difficult

optimization search problems. The proposed

algorithm has demonstrated the best convergence

features. The proposed algorithm is based on only a

few control parameters, which are kept constant

throughout the whole evolutionary process, but it is

difficult to properly arrange control parameters in

DE [24, 30].

Self-adaptation of the mutation distribution in

evolutionary strategies develops two useful

methods. These are the ideas of de-randomization

and cumulating. Standard deficiencies of the idea of

mutative strategy parameter control and two levels

of de-randomization are looked into. Fundamental

requests on the self-adjustment of self-assertive

(ordinary) transformation circulations are produced

in [17]. Applying subjective, typical mutation

distributions is equal to applying a general, straight

issue encoding. The performances of these schemes

are comparable only on perfectly scaled functions.

On severely scaled, non-distinguishable functions

for the most part a velocity up variable of a few

requests of greatness is watched. On decently mis-

scaled functions a velocity up factor of three to ten

can be expected.

There is a new heuristic approach is applied for

minimizing nonlinear and non-differentiable

continuous space functions in [5]. The proposed

algorithm selects the difference vector of two

randomly. By means of the proposed algorithm

perturbs an existing vector for chosen population

vectors. The perturbation is done for every

population vector. The proposed method is

demonstrated converges faster for multi objective

optimization.

There is also a viable new approach to stochastic

combinatorial optimization is inspired by the

behaviour of ant. The proposed algorithm mainly

features are constructive greedy heuristic,

distributed of computation and positive of feedback.

Firstly the greedy heuristic finds acceptable

solutions for the search process. Secondly the

distributed of computation avoids premature

convergence. Finally the positive of feedback

explains fast discovery of the best solutions. The

proposed methodology is applied in practical

problems to solve set of especially in problems for

the robustness of the approach in [6].

The design of the artificial bee colony (ABC)

algorithm is modified a hybrid variant of a swarm-

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAAahUKEwi_zuSnq4vHAhWBlRQKHRdBDKU&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDifferential_evolution&ei=CIu-Vb-qGYGrUpeCsagK&usg=AFQjCNHeYYLL8FHagbgv3mXanh_LJH-NLg&bvm=bv.99261572,d.bGg
https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAAahUKEwi_zuSnq4vHAhWBlRQKHRdBDKU&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDifferential_evolution&ei=CIu-Vb-qGYGrUpeCsagK&usg=AFQjCNHeYYLL8FHagbgv3mXanh_LJH-NLg&bvm=bv.99261572,d.bGg

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

46

based metaheuristics. This is referred to Collective

Resource-based ABC with Decentralized tasking

(CRbABC_Dt) in [29]. The proposed algorithm

combines the attraction of de-centralization from

neighbourhood information for wider exploration of

search space.

A population-based search algorithm takes its name

from the behaviour of honey bee colonies

discovering new areas for the food foraging in

natural land. The proposed algorithm is inspired by

Bees algorithm. The behaviours of honey bee

colonies look for the best solution for optimization

problem. Each candidate solution is about a flower

(food source) to define search the solution space, a

colony (population) and bees (n agents). This

algorithm evaluates fitness (profitability), and lands

on a flower (solution) at each time. The algorithm

performs a kind of neighbourhood for search

combined with global search and has been

successfully applied in various optimization areas

for both combinatorial optimization and continuous

optimization in order to solve many difficult

optimization problems. The proposed algorithm is

demonstrated the effectiveness and specific abilities

for optimization solution in [7].

As it was mentioned above different multi-objective

evolutionary algorithms such as bees algorithm, ant

colony algorithm, genetic algorithms (GAs), particle

swarm optimization (PSO) and differential

evaluation algorithm have been designed. These

algorithms have found many practical applications.

Different evolutionary algorithms have been applied

optimization issues successfully in order to solve

many difficult optimization search problems. Many

improvements have been done in order to develop

optimization for search the best solution of the

problems.

There have been many studies on finding new

methods for optimization. Recently the field of

combinatorial optimization has witnessed with the

metaheuristic methods. Most of them are based on

natural scientific happening. The development of

new method is metaphor or man-made process

increasing use of metaphors as inspiration and

justification to lead the area of metaheuristics away

from scientific. For more details are referred in [16].

In this study paper presents specify that the capacity

MAs for unravelling various sorts of computerized

IIR channel outlines is still restricted in [22]. Within

a framework of two-step set memorization algorithm

(TSMA) is designed to synthesize the advantages of

evolutionary global research and local search

techniques. The first one is about a competition is

held among the candidate local search procedures.

Its significant thought is to pick the best nearby

inquiry system and to acquire great introductory

state. The second one is about implement effective

adaptive MA pursues the best solution.

Many research methods desire to find the best

solution for global problems and increase the

accuracy of the optimization. In this study paper, a

novel Hypercube Optimization Search (HOS)

algorithm which references the best elements from

an extreme function to solve applied multivariate

systems for optimization is designed in [3, 13]. This

algorithm approaches in optimization which gets the

best optimization elements to minimize (or

maximize) since min f(x) =-max (-f(x)).

In this study paper, the performance of the HOS

algorithm will be tested on test suite functions and

some benchmark functions. The general

performance of the algorithm will be evaluated in

terms of solution accuracy and then the proposed

algorithm will also be applied a timetabling problem.

Experimental results have demonstrated the

efficiency of the proposed method will be presented

in terms of optimization accuracy.

2. The Design of Hypercube Optimization

Search Algorithm

The structure of the HOS algorithm is used basic

processes are described. The flowcharts of HOS

algorithm mainly presents Fly process (initialization-

evaluation), Displacement-Shrink process and

Searching Areas process are described in Figure 1.

The functions of each block are described and

mathematical formulas and basic operations used in

each processes are presented. The HOS algorithm is

inspired by the behaviour of pigeon to discover new

areas for seeds (food) in natural life. The behaviour

of pigeon (flying) searches a moving for new

locations of seeds. The behaviour of pigeon moves its

around and contracts according to specific rules. In

fact, the aim of pigeon discovers new places (areas)

for seeds like as in natural life in [31]. In such

behaviour, a moving pigeon searches for new

locations of seed. The pigeon moves 3600 swivel its

around for in a unique way for mark areas and seeds.

The possibility of a higher accumulation of location

of seeds (or food) may be found in undiscovered

https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Continuous_optimization
https://en.wikipedia.org/wiki/Continuous_optimization

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

47

Figure 1. The structure of Hypercube Optimization

Search Algorithm

Figure 2. The behaviour of pigeon is simulated to

searching seeds in real life

branches of the marked area. We have distributed the

seeds on some area with different distribution a

higher accumulation. In one of the point of this area,

we had sown seeds with a higher accumulation of

location of seeds (maximum). We detect that when a

pigeon looking for the seeds in the area it does not

directly moving (fly) to the area having a higher

accumulation of location of seeds. The pigeon is

starting from some arbitrary point time by time

shrinkage the area and at the end come to the higher

accumulation of location that has maximum seeds.

In a search process, the pigeon is not limited to a

single area. The pigeon picks new search area

according to the higher accumulation of location of

seeds. The pigeon stops moving and keeps in mind

the area which has seeds. After eating the seeds, the

pigeon looks for a new search area. The pigeon

moves another area branch to find a new area. The

pigeon does not move to another area when it gets to

an area that has the most seeds. For this investigation,

some experiments have been done with the pigeons

in real life. The behaviour of pigeon is simulated to

searching seeds in Figure 2 in real life. In this study,

the hypercube is used to describe the “searching

area”. Inside the search area, the objective function is

evaluated at each solution. Beginning at the root area,

any solutions which help us are ‘neighbour’

solutions. The value of an objective function is

evaluated according to the quantity and accumulation

of location of seeds. Then, the functional distances

between each of the two solutions are determined

evaluating best solution (lowest distances) for the

next new search area. The HOS algorithm is mainly

consist of processes that are given following below.

2.1 Fly Process (Initialization-Evaluation)

As mentioned above the HOS algorithm simulates

the behaviour of a pigeon discovers new marking of

areas. These marking of areas are performed and the

pigeon is looking for new one after eating the food.

By means of evaluating in the objective function in

a given hypercube, the pigeons' positions are

changed step by step from the initial points. Initial

points in the process of fly are given in Table 1 in

detail. The HOS algorithm begins the initialization

of matrices and variables for the generation of a

hypercube. The hypercube is represented by its

centre (xc) and radii (side R). Then the X matrix is

Table 1. Initial points in the process of fly.

Symbol Definition
m Dimension of hypercube

R Radii of hypercube

x =xi take initial each Hypercube’s position

LB, UB lower and upper bounds

N number of points

X N X m points, solutions

F N X 1 points, Values of functions

Create

matrices:

X (N x m)

F (N x 1)

FBEST: BEST VALUE

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

48

generated within the boundaries of the hypercube.

The search area is bounded with the sides of a

hypercube. The size of X solution is defined by

(Nx1).

Initialization and evaluation is the first block of the

HOS algorithm. The starting conditions are:

1. Lower (LB) and upper (UB) boundaries are used

to generate the hypercube for all points. Initial

points (xi) are generated inside hypercube.

xi = (xi1, xi2 , …,xim)

2. Points (xi) are generated inside hypercube for it is

generated best point (xbest) randomly is

evaluated initialization of solutions according to

the objective function.

Fi = (Fi1, Fi2,...,Fim)

The proposed algorithm is based on the generation

and a uniform distribution of N searching points

inside the initial hypercube. N should be high, that is

the data points should be sufficiently dense so as to

probe all the possible zones. Otherwise, the

algorithm can take as the best zone (global optimum)

a simply better one (local optimum). It is generated

using point of values according to the objective

function are determined. The idea is to have an

approximate knowledge of where the lowest values

of F. As pointed out above, a higher accumulation

(and hence the number of points N) is a function of

the dimension m of the hypercube. Problems with

higher dimensions will require higher N, while

smoother functions (or low dimensional) can be

sampled with lower N.

As mentioned the hypercube is represented by the

centre and radii. At the beginning, the value of radii

of first HC is determined according to the change

interval of objective (test) function. The initial point

0x is generated as the centre of the first Hypercube

(HC). Boundaries of HC determine the boundaries of

search space. Using the value of HC’s centre 0x the

dimensions of the hypercube are derived according

to formula (2.1.1). In the next iterations, the

proposed algorithm updates centre and radii of the

hypercube in the displacement-shrink process. As a

result of these operations the size of hypercube is

reduced and search space is shrunk correspondingly.

Note that in next iterations (i=2,3…) the parameters

of the hypercube are updated using the values of X

matrix. We have illustrated the fly process as follows

with data points to create them with default values;

1. Dimension of hypercube

m = length(0x) (2.1.1)

2. Row vectors with lower and upper boundaries of

HC

 LB = min(X bounds),

UB = max(X bounds) (2.1.2)

3. Distance between m-dimensional HC’s

D = UB – LB (2.1.3)

4. Central Values

cx = (LB + UB) / 2 (2.1.4)

5. Vector with radii of HC

0R = D/2; R = 0R (2.1..5)

In the following iterations, according to the matrix X,

the row vector with the lower and upper boundaries

(2.1.2) is determined. Using these boundaries,

obtained from the first hypercube, the center points

(2.1.4) and radii (2.1.5) of the next hypercube are

determined. HOS algorithm begins with the

initialization of matrices and variables, it goes to the

main loop, by which convergence towards the global

minimum is sought. The details regarding the

visualization of flow-chart for Fly process of the

HOS algorithm is illustrated in Figure 3.

In next iterations (i = 2, 3…) each position of the

pigeon is created using the values of X matrix. These

points form the new Xnew matrix. This matrix is used

to evaluate the test functions. Following evaluation,

the best (minimum) value of function Fbest and the

corresponding Xbest points are determined.

The Xbest point is improved (updated) using local

search, that is
new

best bestX X F   . Here 0    1,

F is the objective function. The improvement is

continued until F becomes acceptable small value-

less than present value (tolF). The derived best

points are used to determine the centre and radii of

next position points. This operation is realised by

calculating the mean of the centre of last position

point (Xlast_centre) and last best (Xbest) point. This

process is called “displacement”, which is described

in next section.

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

49

Figure 3. The flow-chart for process of Fly

2.2 Displacement-Shrink Process

The center of the next hypercube is calculated as the

average between the best current point and the center

of the previous hypercube. The average is about

between the two values; they are considered to be a

conservative criterion for avoiding excessive

fluctuations in the search and avoiding drastically

moving to a neighbouring area where a lower value

has been found. The center and the radii of the new

hypercube are determined as:

SRR

XX
X

oldnew

bestcentrelast

centrenew

*

2

_

.






 (2.2.6)

S is a factor of convergence which is defined in the

next section (see equation (2.3.11)). As shown the

calculated second position point is derived from the

previous position point and the sizes of the second

position point will be less than the sizes of the

previous one. The details regarding the visualization

of the flow-chart Displacement-Shrink process of

the HOS algorithm is illustrated in Figure 4.The

points in the HOS algorithm do not move according

to some rule, nor does the method have memory of

them, except for the best points Xbest. New data

points are generated and evaluated according to the

objective functions. The hypercube size is changed

according a result of this process the size of

hypercube is reduced and the search space is shrunk

correspondingly. The decrease in size of the

hypercube allows an increase in a higher

accumulation of the test points. This leads to the

quick finding of the optimum value of the function.

The idea of this is that if the best value of X moves

significantly, then the global minimum is probably

not found yet, and we are far from last phase of

convergence. The number of generated points makes

the deep search more efficient. This is shown to

organize by increasing the number of test points in a

search space by improving the best points using local

search also. The algorithm evaluates the test

functions in many points such an approach allows a

rapid selection of a new best zone for an intense

search in it. In addition to displacement, the HOS

must shrink, in order to refine the search and

converge towards a unique and certain minimum -

global. This contraction is governed by the

movement of the average of the best values. For

large displacements, there is no contraction, because

we interpret that the total minimum is still very

uncertain. For small displacements or null

displacements, the points will shrink as we approach

the total minimum: the contraction is more important

for the small movements. This guarantees rapid

convergence of the method, while protecting against

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

50

Figure 4. The flow-chart for process of Displacement-

Shrink

blocking to an undesirable (local) minimum. The

HOS will pass a set of points from the current

position which determines the maximum distance.

The ranges of displacements are shown below;

Step 1: Normalized x (the previous x for minimum)

D

xx
x c

n

)(
 (2.2.7)

Step 2: Normalized
minx (current x for minimum)

D

xx
x c

n

)(min
min


 (2.2.8)

Step 3: Normalized distance

D

xxsum nn
nd

5.02

min))((
 (2.2.9)

Step 4: Re-normalized distance

m

d
d n

nn  (2.2.10)

For each iteration, the x displacement is computed

and normalized twice: first each element of x is

divided by the corresponding initial range (and thus

the displacement is transformed into a unity-sided

points) (Step 1 and Step 2), and then that quantity is

normalized again, dividing it by the diagonal of

points such as m (Step 3 and Step 4).

2.3 Searching Area Process

The search process is determined by computing the

distances between old optimum (minimum) and new

optimum values determined by equations (2.2.7 –

2.2.10) in particular equation (2.2.10). The

Searching area process controls the movements of X

according to the interval defined (particularly for

1.0nnd). The details regarding the visualization of

flow-chart Searching area process of the HOS

algorithm is illustrated in Figure 5. If the movement

of X satisfies the condition then a factor of

convergence S is calculated and updated it for each

iterations:

3
1 0.2

d
nnS e


  (2.3.11)

where dnn is computed by (2.2.10) and describes the

normalized distance moved by the average of the last

two best values of X. Next the update of solutions will

be performed. The size (in all the dimensions) of the

hypercube is reduced by multiplying with this factor,

as mentioned in the previous section. The whole

process is repeated until specific termination

conditions are satisfied. When the new hypercube is

set (centre and size), the function is again evaluated

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

51

Figure 4. The flow-chart for process of Searching area

at new points, randomly (with uniform distribution)

chosen inside the hypercube. Again, the new

minimum is found and compared to the last

minimum. If new minimum is worst (greater) than

the previous one, dnn is considered null and a new

iteration will be done. If the same is found for several

consecutive times the algorithm ends, and the best

minimum is considered the global minimum. If the

solutions found are the nearly the same then for

obtaining exact solutions “the determination new

position point and searching solution” process will be

repeated 50 times. If in all iterations obtained values

of dnn that are the same, the process will be stopped.

In other case the search of optimal solutions will be

repeated. Scaling (the search space dimensionality)

is implemented by reducing or dividing (distances)

the initial size of HC (delimited by bounds) at each

iteration. The movement of the focus (centre of next

HC) and the new sizes of HC are computed from that

scale. As shown in the above sections the HOS

algorithm finds best points in given hypercube

(search space) and then using this point draws a new

hypercube, and again finds the next best point and

creates the next new hypercube and so on. In this

way the algorithm continues step by step approaches

to the optimum point. This approach can be

expressed as a hypercube evolution driven by

convergence.

The HOS algorithm can be described as above. Input

parameters for the algorithm are as follows (Figure

3.2): Objective function (defined as test function),

initial lower and upper bounds of hypercube

(absolute bounds) determined using test function,

initial values of points (initial solution X0),

tolerances for function f and solution X (tolF, tolX).

Output of the algorithm is the best individuals Xbest

in the final hypercube (HC).

3. Test Functions

The test functions used in simulation of the HOS

algorithm are described. We have used five

benchmark and eleven test suite functions are given

in the literatures [26-30,33-49] to test the

performance of the HOS algorithm and make a

comparative analysis with other evolutionary

algorithms. The benchmark function is general

known described. These functions are summarized

as follows; Rosenbrock function (f1) is unimodal for

lowest dimension as 2D and 3D but may have

multiple minima in high dimensional problems.

Schwefel 2.26 (f2), Rastrigin function (f3), Ackley

function (f4) and Griewank function (f5) are

multimodal. Next one is about test suite functions

(Special Session and Competition on Real-

Parameter Optimization). These test suite functions

including; four unimodal functions and composition

functions. It consists of eleven test suite functions

that can be grouped into two types.

• Unimodal Functions (1 to 3)

• Composition Functions (4 to 11)

All test suite functions are minimization problems as

 T21 ,..,),(Min Dxxxxxf  . Here D is the

dimension,  T211 ,.., iDiii oooo  are the shifted

global optimum which is randomly distributed in [-

80,80]
D

. These functions are scalable and shifted to

0. For convenience, the same search ranges are

defined for all test functions from test suite functions

for search range is [-100, 100]
D

. Rotation matrix Mi

is assigned to each test suite functions and with

condition number c (Gram-Schmidt ortho-

normalization) that is equal to 1 or 2. For a more

detailed description of these test functions, the

reader is referred [36] in details.

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

52

3.1 Simulation on Test Functions

In this section, the simulation of the Hypercube

Optimization Search (HOS) algorithm has been

performed. The performance of the proposed

algorithm is tested using five benchmark functions

and test suite functions are given in the previous

section.

Table 2. Simulation Results for Some Benchmark

Functions for Dimension of 30.

Functions (30D) Results FEs

Rosenbrock

(f1)

Best 0

1500 Mean 0

StD. 0

Schwefel 2.26

(f2)

Best 3.82e-04

103 Mean 3.82e-04

StD. 0

Rastrigin

(f3)

Best 0

750 Mean 0

StD. 0

Ackley

(f4)

Best 8.88e-16

1500 Mean 8.88e-16

StD. 8.96e-31

Griewank

(f5)

Best 0

750 Mean 0

StD. 0

The proposed algorithm is applied to minimize a set

of problems of dimensions as 30D, 50D and 100D

for five benchmark functions. The proposed

algorithm has been set the population size equal to

100 for the cases of 30D and 50D, and 400 for the

case of 100D, respectively. It is applied to minimize

a set of problems of dimensions as 10D and 30D for

test suite functions. At first, the performance of the

HOS algorithm is statistically applied to minimize a

set of five benchmark functions of dimensions as

Table 3. Simulation Results for Some Benchmark

Functions for Dimension of 50.

Functions (50D) Results FEs

Rosenbrock

(f1)

Best 0

1500 Mean 0

StD. 0

Schwefel

2.26

(f2)

Best 6.36e-04

103 Mean 6.36e-04

StD. 0.00e+00

Rastrigin

(f3)

Best 0

750 Mean 0

StD. 0

Ackley

(f4)

Best 8.88e-16

1500 Mean 8.88e-16

StD. 8.96e-31

Griewank

(f5)

Best 0

103 Mean 0

StD. 0

Table 4. Simulation Results for Some Benchmark

Functions for Dimension of 100.

Functions (100D) Results FEs

Rosenbrock

(f1)

Best 0

2. 103 Mean 0

StD. 0

Schwefel 2.26

(f2)

Best 1.27e-03

103 Mean 1.27e-03

StD. 0.00e+00

Rastrigin

(f3)

Best 0

103 Mean 0

StD. 0

Ackley

(f4)

Best 8.88e-16

1750 Mean 8.88e-16

StD. 8.96e-31

Griewank

(f5)

Best 0

103 Mean 0

StD. 0

30D, 50D and 100D.

We have summarized the mean and standard

deviation of the results obtained by the HOS

algorithm that tested functions evaluations over

successful 50 runs.

The details regarding the visualization of benchmark

function results and the number of function

evaluations (FEs) are shown in Table 2 for dimenson

of 30, Table 3 for dimenson of 50 and Table 4 for

dimenson of 100. Next section is about simulation of

these benchmark function that are given figures as

dimension of 30, dimension of 50 and dimension of

100.

3.1.a Simulation for Rosenbrock Function

The HOS algorithm is applied for optimization of

test function (f1) having 30D, 50D and 100D

dimensions that are given following figures. f1 was

obtained as 0 (a), 0 (b) and 0 (c) after 1500, 1500

and 2000 evaluations respectively.

3.1.b Simulation for Schewel Function 2.26

The HOS algorithm is applied for optimization of

test function (f2) having 30D, 50D and 100D

dimensions that are given the following figures. The

minimum of Schwefel function 2.26 was obtained as

3.82e-04 (a), 6.36e-04 (b) and 1.27e-03 (c) after

1000 evaluations for these dimensions respectively.

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

53

Figure 5. Rosenbrock for Dimension of 30, 50 and 100

for (a), (b) and (c) respectively

3.1.c Simulation for Rastrigin Function

The HOS algorithm is applied for optimization of

test function (f3) having 30D, 50D and 100D

dimensions that are given in figures. Rastrigin

function was obtained as 0.00e+00 (a), 0.00e+00 (b)

and 0.00e+00 (c) after 750, 750 and 1000

evaluations respectively.

3.1.d Simulation for Ackley Function

The HOS algorithm is applied for optimization of

test function (f4) having 30D, 50D and 100D

dimensions that are given in figures. The minimum

of Ackley function was obtained as 8.88e-16 (a),

4.44e-15 (b) and 8.88e-16 (c) after 1500, 1500 and

1750 evaluations respectively.

3.1.e Simulation for Schewel Function 2.26

The HOS algorithm is applied for optimization of

test function (f5) having 30D, 50D and 100D

dimensions that are given in figures. The minimum

of Griewank function was obtained as 0.00e+00 (a),

0.00e+00 (b) and 0.00e+00 (c) after 750, 1000 and

1000 evaluations respectively.

3.2 Simulation on Test Suit Functions

The proposed algorithm is applied to minimize a set

of eleven problems of dimensions 10D and 30D after

setting the maximum function evaluations (FEs)

equal to D*104 for all test suite functions.

Table 5. Simulation Results for Some Test Suit Functions

for Dimension of 10.

Functions (10D) Mean
(f6) Rotated High Conditioned Elliptic 0

(f7) Rotated Bent Cigar 0

(f8) Rotated Discus 2.44e-06

(f9) Composition 1 (N=5) 1.35e+02

(f10) Composition 2 (N=3) 6.79e+00

(f11) Composition 3 (N=3) 3.47e+01

(f12) Composition 4 (N=5) 9.86e+00

(f13) Composition 5 (N=5) 6.67e+01

(f14) Composition 6 (N=5) 1.29e+02

(f15) Composition 7 (N=3) 3.49e+02

(f16) Composition 8 (N=3) 6.69e+01

We have summarized the mean and the standard

deviation of the results obtained by the HOS

algorithm in results of evaluations of test functions

over successful 50 independent runs. The details

regarding the visualization of the experimental

results of test suite functions are shown in Table 5 for

dimension of 10 and in Table 6 for dimension of 30.

In Table 5 and in Table 6, these experimental results

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

54

Figure 6. Schewel 2.26 for Dimension of 30, 50 and 100

for (a), (b) and (c) respectively

suggest that the overall convergence rates of the

HOS algorithm still perform better for the set of

problems. We can see that by increasing learning

iterations, the accuracy of the HOS algorithm is

increased for these functions.

Figure 7. Rastrigin for Dimension of 30, 50 and 100 for

(a), (b) and (c) respectively

3.3 Comparative Results

This section presents a comparison of the

performances of the HOS algorithm with different

evolutionary algorithms by using some Benchmark

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

55

Figure 8. Ackley for Dimension of 30, 50 and 100 for (a),

(b) and (c) respectively

Functions and test suite functions given in above. In

this study, statistical tests are provided in order to

show statistical differences between simulation

results of the HOS algorithm and the simulation

results of other evolutionary algorithms.

Figure 9. Griewank for Dimension of 30, 50 and 100 for

(a), (b) and (c) respectively

All comparisons of the test optimization search

methods defined same initial conditions, parameters

as population size; 100 in the case of 30D and 400 in

the case of 100D [28]. At the first one, dimension is

set to 30D, the population size is set at 100 for these

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

56

Table 6. Simulation Results for Some Test Suit Functions

for Dimension of 30.

Functions (30D) Mean
(f6) Rotated High Conditioned Elliptic 0

(f7) Rotated Bent Cigar 1.89e-06

(f8) Rotated Discus 0

(f9) Composition 1 (N=5) 2.65e+02

(f10) Composition 2 (N=3) 8.89e+01

(f11) Composition 3 (N=3) 1.55e+02

(f12) Composition 4 (N=5) 4.46e+01

(f13) Composition 5 (N=5) 1.13e+02

(f14) Composition 6 (N=5) 2.36e+02

(f15) Composition 7 (N=3) 2.65e+02

(f16) Composition 8 (N=3) 4.15e+02

function evaluations over successful 50 runs. The

mean and the standard deviation of the results

obtained by each algorithm for five Benchmark

functions that are summarized in Table 2, in Table 3

and in Table 4. The performances for all algorithm

results are statistically shown the better one that is

highlighted in bold. For each Benchmark function,

the results of above mentioned two, namely; DE and

jDE algorithms are compared and the better result

(whose mean’s value is less) is selected for statistical

comparison with the results of the HOS algorithm.

This idea is used in all future comparisons. The

performances of HOS algorithm demonstrate much

better than others to be marked in bold given in Table

7 in detail.

Table 7. Simulation Results for Some Benchmark

Functions for Dimension of 30.

Functions HOS DE jDE FEs

f1
Mean 0 2.1e+00 1.3e+01

3.103
StD. 0 (1.5e+00) 1.4e+01)

f2
Mean 3.8e–04 5.9e+03 7.9e–11

103
StD. (0.0e+00) (1.1e+03) (1.3e–10)

f3
Mean 0 1.8e+02 1.5e–04

103
StD. 0 (1.3e+01) (2.0e–04)

f4
Mean 8.8e–16 9.7e–11 4.7e–15

2.103
StD. (8.9e–31) (5.0e–11) (9.6e–16)

f5
Mean 0 0 0

3.103
StD. 0 0 0

The HOS algorithm works much better than others

for f1, f3, f4 and f5. The performances of DE and jDE

are better for f5 also. The performance of jDE

performs better only for f2. At the second one, the

performance of the HOS algorithm is also compared

with the performances of algorithms namely; PSO

algorithms, UPSO (unified particle swarm

optimizer), CPSO-H (a cooperative particle swarm

optimizer) and CLPSO (comprehensive learning

particle swarm optimizer) [27].

These results suggest that the overall performance of

the HOS algorithm is better for the set of benchmark

functions for f1, f3 and f5; (be marked in boldface) that

are equal to 0 (zero). The HOS algorithm is applied

for the minimization of f2 and f4 that are obtained as

3.82e-04 and 8.88e-16 correspondingly. The

performance of CLPSO-H is performed better on f3

also and CLPSO is performed better than others for

f2 and f4.

In Table 8 is shown the comparative results of the

algorithms; the performance of the HOS algorithm is

generally much better than the performances of

UPSO, CPSO-H and CLPSO algorithms.

In the third stage, the performance of the HOS

algorithm has been compared with algorithms,

namely; CRbABC, m-ABC and CLIPSO from

eleven test suite functions [29]. The HOS algorithm

is also evaluated by considering the cases in which

the problem dimension is a set of dimensions. At

first problem dimension is set as 30D, the maximum

function evaluations (FEs) is set at D*104 for all test

suite functions. The mean and the standard deviation

of the results obtained by each algorithm for these

functions are summarized in Table 9. These results

suggest that the overall performance of the HOS

algorithm is the best for the problems f6-f8, f10-f13 and

f15 (be marked in boldface). CRbABC performed

well on f6, f9, f14 and f16. CLIPSO algorithms

performed well on f6 also. The comparative results

have been demonstrated that the HOS algorithm has

better performances on a set of problems. In the next

stage, the dimensions are set as 100D for all specific

five benchmark functions. The mean and the

standard deviation of the results obtained by each

Table 8. Simulation Results for Some Benchmark

Functions for Dimension of 30.

Functions HOS CLPSO CPSO-H UPSO

f1
Mean 0 2.10e+01 7.08e+00 1.51e+01

StD. 0 2.98e+00 8.01e+00 8.14e-01

f2
Mean 3.82e-04 1.27e-12 1.08e+03 4.84e+03

StD. 0.00e+00 8.79e-13 2.59e+02 4.76e+02

f3
Mean 0 4.85e-10 0 6.59e+01

StD. 0 3.63e-10 0 1.22e+01

f4
Mean 8.88e-16 0 4.93e-14 1.22e-15

StD. 8.96e-31 0 1.10e-14 3.16e-15

f5
Mean 0 3.14e-10 3.63e-02 1.66e-03

StD. 0 4.64e-10 3.60e-02 3.07e-03

Table 9. Experimental Results for Test suite functions for

Dimension of 30.

f HOS m-ABC CLIPSO CRbABC_Dt

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

57

f6 0.00e+00 8.57e+04 0.00e+00 0.00e+00

f7 1.89e-06 2.12e+07 1.82e+08 3.52e+06

f8 0.00e+00 1.87e+03 1.38e+04 1.17e+02

f9 2.65e+02 4.43e+02 2.00e+02 1.93e+02

f10 8.89e+01 3.16e+03 9.20e+02 3.03e+02

f11 1.55e+02 4.61e+03 8.26e+03 4.34e+03

f12 4.46e+01 3.15e+02 2.60e+02 2.23e+02

f13 1.13e+02 3.04e+02 2.99e+02 2.86e+02

f14 2.36e+02 4.06e+02 3.33e+02 2.00e+02

f15 2.65e+02 1.41e+03 9.50e+02 5.70e+02

f16 4.15e+02 3.00e+02 3.00e+02 2.83e+02

Table 10. Experimental Results for Some Benchmark

Functions for Dimension of 100.

Functions HOS DE jDE FEs

f1
Mean 0 9.5e+01 7.2e+01

6.103
StD. (0) (1.4e+01) (1.1e+01)

f2
Mean 7.9e–02 3.2e+04 4.9e+03

103
StD.

(1.2e–

01)
(4.7e+02) (4.1e+02)

f3
Mean 0 8.6e+02 2.1e–04

3.103
StD. (0) (2.2e+01) (2.1e–04)

f4
Mean 8.8e–16 1.3e–01 9.9e–14

3.103
StD.

(8.9e–

31)
(2.4e–02) (2.0e–14)

f5
Mean 0 2.0e–01 0

3.103
StD. (0) (5.8e–02) (0)

algorithm are summarized in Table 10. The

comparative results demonstrate experimental

results for the performance of the HOS algorithm is

much better than others for high dimensional

optimization function (be marked in boldface).

Using test suite functions the simulation results of

the HOS algorithm are compared with the results of

the evolutionary algorithms given in research [37-

49] which are referred in test suite functions. The

comparative results as the mean and standard

deviation for 10D and 30D are given in Table 11 and

in Table 12 respectively. As shown in tables the

results of the HOS algorithm has shown better

performances than other algorithms in most of the

functions. On 10D problem the HOS algorithm has

performed better for f9-f12, f14 and f16. The HOS has

also shown good performance on f6 and f7. RSDE

[47]– on f6-f8 and f15. FCDE [44]-on f7 - f8 and f13.

GaAPADE [37] performed well on f7. On 30D

problems the HOS algorithm has performed much

better for f8-f16. The HOS has also shown good

performance on f6. GaAPADE [39] - on f6-f8, FCDE

[46] - on f7, RSDE [49] – on f7 also.

Table 11. Comparative Results of 10D for Test Suite

Functions

f (10D) HOS
RSDE

[47]
FCDE

[44]
GaAPADE

[37]

f6
Mean 0 0 3.06e-04 1.3e+01

StD. 0 0 2.18e-03 1.4e+01)

f7
Mean 0 0 0 7.9e–11

StD. 0 0 0 (1.3e–10)

f8
Mean 2.44e-06 0 0 1.5e–04

StD. 2.99e-06 0 0 (2.0e–04)

f9
Mean 1.35e+02 3.29e+02 3.29e+02 3.29e+02

StD. 1.15e+01 2.78e-13 2.66e-13 0.00e+00

f10
Mean 6.79e+00 1.19e+02 1.38e+02 1.08e+02

StD. 2.82e-01 6.59e+00 1.37e+01 2.08e+00

f11
Mean 3.47e+01 1.30e+02 1.84e+02 1.68e+02

StD. 2.15e+00 1.93e+01 2.07e+01 4.11e+01

f12
Mean 9.86e+00 1.00e+02 1.00e+02 1.00e+02

StD. 2.27e+00 3.65e-02 1.59e-01 1.74e-02

f13
Mean 6.67e+01 9.12e+01 2.55e+01 9.56e+01

StD. 5.75e+00 1.40e+02 7.77e+01 1.63e+02

f14
Mean 1.29e+02 3.87e+02 4.90e+02 3.84e+02

StD. 3.42e+01 4.88e+01 9.61e+01 3.36e+01

f15
Mean 3.49e+02 2.13e+02 2.06e+05 2.22e+02

StD. 1.16e-13 2.59e+01 7.25e+05 6.81e-01

f16
Mean 6.69e+01 5.05e+02 8.87e+02 4.68e+02

StD. 2.59e+00 1.06e+02 3.48e+02 1.90e+01

Table 12. Comparative Results of 30D for Test Suite

Functions

f (30D) HOS RSDE FCDE GaAPADE

f6
Mean 0 1.50e+03 6.54e+04 0
StD. 0 1.70e+03 4.90e+04 0

f7
Mean 1.89e-06 0.00e+00 0.00e+00 0

StD. 1.45e-06 5.99e-09 0.00e+00 0

f8
Mean 0 4.74e-02 3.51e+01 0

StD. 0 1.16e-01 1.26e+02 0

f9
Mean 2.65e+02 3.15e+02 3.15e+02 3.15e+02

StD. 2.38e+01 1.62e-06 1.67e-12 0.00e+00

f10
Mean 8.89e+01 2.24e+02 2.50e+02 2.24e+02

StD. 1.08e+00 1.65e+00 6.82e+00 8.64e-01

f11
Mean 1.55e+02 2.03e+02 2.05e+02 2.03e+02

StD. 3.65e-01 1.17e-01 2.29e+00 7.19e-02

f12
Mean 4.46e+01 1.00e+02 1.01e+02 1.00e+02

StD. 1.17e+00 4.14e-02 1.10e-01 2.40e-02

f13
Mean 1.13e+02 4.69e+02 6.18e+02 3.19e+02

StD. 5.53e+00 9.46e+01 2.32e+02 3.46e+01

f14
Mean 2.36e+02 9.05e+02 1.50e+03 8.38e+02

StD. 9.42e+01 1.21e+02 3.75e+02 2.96e+01

f15
Mean 2.65e+02 6.52e+05 1.06e+06 7.17e+02

StD. 8.96e+01 2.66e+06 3.28e+06 3.99e+00

f16
Mean 4.15e+02 1.70e+03 2.53e+03 1.52e+03

StD. 2.40e+02 8.67e+02 9.82e+02 8.02e+02

4. Application of HOS Algorithm for

Timetabling Problems

In this chapter presents the real-life application of

the HOS algorithm for timetabling problems. Exam

timetabling problem have been considered and the

problem is solved using the HOS algorithm. The

timetabling problems seem to be difficult to solve

finding optimal results for the scheduling of exams

in institutions of higher education. The scheduling of

examination timetabling problems consist of

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

58

allocating a number of exams to a limited number of

periods with specific constraints related to the

avoiding the overlapping of exams having students

in common, satisfying room and time constraints,

etc. These constraints may depend on certain

limitations that are given the following general

conditions:

 No students should have to take two exams in

adjoining periods.

 No students should have to take two exams in

one day.

For each period, these constraints mainly form the

basis for a feasible scheduling of exams timetabling

problem. For a more detailed description of

timetabling, for the reader is referred in [50]. There

are similar and differing characteristic problems for

course scheduling and examination scheduling

problems. In both problems for solving examination

scheduling problems; students should have to take

one examination or adjoining one period at a time.

On the other hand, there may have a fixed time

period in examination scheduling problems. This

means that students should have to take one exam in

one day so that students will be rested for the next

exams. There are finding new methods and

improvements for known evolutionary algorithms

used in optimization. In this study, a novel

Hypercube Optimization Search (HOS) method

which references the best elements from an

evaluation function to solve applied examination

scheduling problems for optimization is designed.

This method can be expressed as a hypercube

evolution.

The performance of the HOS method tested on

scheduling of examination timetabling problems, a

set of evaluation functions implemented as

MATLAB program. The proposed method used

specified evaluation functions defined as following:

1. Every exam should be scheduled only once in

the timetable.

M

iF
N

i





1

1

)(

min (4.1)

2. No clashing exams should be scheduled within

the same period.

 0
1

1

1








P

p
ijjpp

E

ij

E

i

CTTi (4.2) where

ijC is defined both exams i and j (both exams).

3. All periods have limited seats. If a number of

students taking exam for any period are less than

the limited seats, it is available.

 





1

1

P

p
ip SST i (4.3) where iS is defined

student taking exam i.

4. P (penalty) is based on function (evaluation) for

a period. This is defined as below;

 Penalty =)1()1(
1

1

1







 ppijpjip

E

ij

E

i

DCTT (4.4)

Penalty is clearly relative for necessity something to

compute the mean penalty per period of the best

solution as defined following;

Periods Total

 Fitness ofbest The
 =Mean (4.5)

For each period, the HOS method can compute a

probability of being disrupted according to equation

4.6. This equation is shown how the probability of

being disrupted is computed with bias being a

definable value (0.1) to vary the probability of

periods being disrupted. Periods reasoning greater

than mean penalty (equation 4.5) are disrupted as

below;













Mean*2

bias)*2(Penalty
MeanPenalty if

1 Mean,Penalty if

yProbabilit
 ,

 =

(4.6)

The following experimental data is taken from

ftp://ftp.cs.nott.ac.uk/ttp/Data/ for modelling of

timetabling problem. Experiments are carried out on

an actual dataset from University of Carleton and

University of King Fahd, University of Nottingham.

In Table 13, the data used is represented by the

following information:

carf92 University of Carleton (1992), Ottawa

kfu University of King Fahd, Dhahran

nott University of Nottingham, UK

The HOS method tested on a range of real data with

the exception of varying to represent the real life

ftp://ftp.cs.nott.ac.uk/ttp/Data/

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

59

information. In this method is using exams (E) that

must be scheduled in three periods (P) in one day.

The performance of the Hypercube optimization

search method is tested on three univerties data sets

with sizes subset of 100. These data sets are tested

with all the heuristics given 50 runs each and the

average given results in Table 14.

Table 13. Data set from the universities

Data carf92 Kfu Nott

Period 32 20 23

Exam 543 461 800

Student 18 419 5 349 7 896

Enrolment 55 522 25 118 34 265

Students per

Periods
2000 1955 1550

Conflict Density 0.14 0.06 0.03

A1: The Hypercube Optimization Search Method

A2: Multistage Evolutionary (ME) Method with

Largest Degree

A3: Multistage Evolutionary (ME) Method with

Colour Degree

Table 14. Comparative results of applying dataset

Functions 2nd Order

Same Day

2nd Order

Overnight

Penalty

carf92

A1 298 725 1 836

A2 469 614 2 104

A3 359 773 2 034

Kfu

A1 221 818 1 779

A2 222 838 1 811

A3 260 999 1 836

Nott

A1 102 325 10 990

A2 155 416 14 984

A3 106 330 15 621

The focus of the experiments is demonstrates to the

HOS method effects on quality when has been

started on already better solutions than Multistage

Evolutionary (ME) Method with Largest Degree and

Multistage Evolutionary (ME) Method with Colour

Degree for solving a set of optimal results in [51].

The finding of a near optimal solution of timetabling

is important. Many timetabling process is a little

more complicated when room was an allocation

problem (maximum sitting students per periods)

5. Conclusion

The reviews of optimization search algorithms have

shown that conventional optimization search

algorithms sometimes cannot find a global optimum

and has local optima problem. Evolutionary search

algorithms can outperform conventional

optimization algorithms and find a global optimum,

without being trapped in local optima. Nowadays for

many real world optimization problems the

designing of evolutionary search algorithm with

high optimization accuracy is more important. In this

study, a novel evolutionary search algorithm to solve

optimization of multivariate systems is proposed.

The basic processes of hypercube optimization

search algorithm are designed. The HOS algorithm

is a new intense stochastic search method based on a

hypercube evolution. The algorithm comprises the

fly process, displacement-shrink process and

searching areas process. The design of the basic

processes of HOS algorithm is presented and

simulations of the algorithm have been carried out

for global optimization of a set of CEC’14 test

functions and benchmark functions. The

performances of the HOS algorithm were also

compared with the performances of other

evolutionary algorithms. These are a new differential

evolution (DE) algorithms as jDE; PSO algorithms

including; unified particle swarm optimizer (UPSO),

a cooperative particle swarm optimizer (CPSO-H)

and comprehensive learning particle swarm

optimizer (CLPSO); Artificial Bee Colony with

CRbABC_Dt and others. The comparative results

have more generally been demonstrated that the

HOS algorithm has shown better performance for

optimization most of low and also high dimensional

functions. The large number of generated points and

population size allows it to quickly solve low and

high dimensional optimization problems.

The proposed approach allows increasing the

accuracy of the system. The simulation results of

optimization problems have been demonstrated that

the solution accuracy and success rate of the system

has considerably increased and the algorithm has

advantages over other well-known algorithms. The

algorithm is also applied to the solution of a

timetabling problem. The simulation of the HOS

algorithm on test functions and timetabling problems

have demonstrated the proposed optimization search

algorithm that has shown to be a promising approach

and is comparable with specialized algorithms to

solve a set of global optimization real problems.

References

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

60

[1] Spall, J. (1998). An overview of the

simultaneous perturbation method for efficient

optimization. Johns Hopkins APL Technical

Digest, 19, 482-492.

[2] Goldberg, D., E. (1989). Genetic Algorithms

in Search, Optimization, and Machine

Learning. Boston: Addison–Wesley

Publishing Company.

[3] Mukhopadhyay, A., Maulik, A.,

Bandyopadhyay, S., & Coello, C., A., C.

(2014). A Survey of Multiobjective

Evolutionary Algorithms for Data Mining:

Part II. IEEE Trans. On Evolutionary

Computation, 18(1), 20-35.

[4] Kennedy, J., & Eberhart R., C. (2001). Swarm

Intelligence. San Francisco: Morgan

Kaufmann PublishersInc.

[5] Storn, R., & Price K. (1997). Differential

evolution a simple and efficient heuristic for

global optimization over continuous spaces. J.

Global Optimization, 11(4), 341–359.

[6] Dorigo, M., Maniezzo V., & Colorni A.

(1996). The ant system: optimization by a

colony of cooperative agents. IEEE

Transactions on System Man Cybernet, 26,

29-41.

[7] Karaboga, D., & Basturk, B. (2008). On the

performance of artificial bee colony (ABC)

algorithm. Applied Soft Computing, 8(1), 687-

697.

[8] Beyer, H. & Schwefel, H. (2002). Evolution

strategies-Acomprehensive

introduction.Natural Computing, 1, 3-52.

[9] Ni, H., & Wang, Y. (2013). Stock index

tracking by pareto efficient genetic algorithm.

Applied Softcomputing, 13(12),4519-4535.

[10] Dhiman, R., & Priyanka, J., S. (2014).

Genetic algorithms tuned expert model for

detection of epileptic seizures from EEG

signatures. Applied Softcomputing, 19, 8-17.

[11] Chen, S., H., Chen, M., C., & Liou, Y., C.

(2014). Artificial chromosomes with genetic

algorithm 2 (ACGA2) for single machine

scheduling problems with sequence-

dependent setup times. Applied

Softcomputing, 17, 167-175.

[12] Abiyev, R., H., & Menekay, M. (2007). Fuzzy

Portfolio Selection Using Genetic Algorithm.

Soft Computing- A Fusion of Foundations,

Methodologies and Applications, Springer,

Berlin/ Heidelberg,11(12), 1157-1163.

[13] Abiyev, R. & Tunay, M. (2015). Optimization

of High Dimensional Functions through

Hypercube Evaluation. Computational

Intelligence and Neuroscience, Volume 2015,

2015.

[14] Eduardo, L., R., José Luis, C., V., Belén, M.,

B., & Marcos Moreno-Vega J. (2014). Biased

random key genetic algorithm for the tactical

berth allocation problem. Applied

Softcomputing, 22, 60-76.

[15] Vaisakh, K., Srinivas, L., R., & Meah, K.

(2014). Genetic evolving ant direction particle

swarm optimization algorithm for optimal

power flow with non-smooth cost functions

and statistical analysis. Applied

Softcomputing, 13, 4579-4593.

[16] Sörensen, K. (2013). Metaheuristics—the

metaphor exposed. International Transactions

in Operational Research,22(1), 3–18.

[17] Hansen, N., & Ostermeier, A. (2001).

Completely derandomized self-adaptation in

evolution strategies. Evolutionary

computation, 9(2), 159-195.

[18] Su, M-C., Su, S-Y., & Zhao, Y-X. (2009). A

swarm-inspired projection algorithm. Pattern

Recognition, 42, 2764-2786.

[19] Belal, M., A., & Haggag, M., H. (2013). A

structured-population genetic-algorithm based

on hierarchical hypercube of genes

expressions. International Journal of

Computer Applications, 64(22), 5-18.

[20] Chen, C., C. (2011). Two-layer particle swarm

optimization for unconstrained optimization

problems. Applied Soft Computing, 11(1),

295-304.

[21] Precup, R., E., David, R., C., Petriu, E., M.,

Preitl, S., & Radac, M., B. (2012). Fuzzy

control systems with reduced parametric

sensitivity based on simulated annealing.

IEEE Transactions on Industrial Electronics,

59(8), 3049-3061.

[22] Wang, Y., Li, B., & Weise, T. (2013). Two-

stage ensemble memetic algorithm: Function

optimization and digital IIR filter design.

Information Sciences, 220, 408-424.

[23] Yazdani, D., Nasiri B., Azizi R., Sepas-

Moghaddam, A., & Meybodi, M., R. (2013).

Optimization in dynamic environments

utilizing a novel method based on particle

swarm optimization. International Journal of

Artificial Intelligence, 11(A13), 170-192.

[24] Weise, T., Skubch, H., Zapf, M., and Geihs,

K. (2008). Global optimization algorithms and

their application to distributed

systems, Fachbereich 16: Elektrotechnik/

Informatik, Univ. Kassel.

[25] Holland, J. (1992). Adaptation in natural and

artificial systems. Cambridge: University of

http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=6&cacheurlFromRightClick=no
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=6&cacheurlFromRightClick=no
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=1
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=1
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=1
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=3
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=3
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=3
http://apps.webofknowledge.com.library.neu.edu.tr:2048/full_record.do?product=UA&search_mode=GeneralSearch&qid=7&SID=T1DuhHOSAODZcNmNvfQ&page=1&doc=3
http://www.sciencedirect.com/science/article/pii/S1568494613002287
http://www.sciencedirect.com/science/article/pii/S1568494613002287
http://www.sciencedirect.com/science/article/pii/S1568494613002287
http://www.sciencedirect.com/science/article/pii/S1568494613002287
http://onlinelibrary.wiley.com/doi/10.1111/itor.2015.22.issue-1/issuetoc

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

61

Michigan Press, Extended new Edition, MIT

Press.

[26] Li, X., Yao, X. (2012). Cooperatively

Coevolving Particle Swarms for Large Scale

Optimization. IEEE Transaction on

Evolutionary Computation, 16(2), 210-224.

[27] Liang, J., J., Qin, A., K., Suganthan, P., N., &

Baskar, S. (2006). Comprehensive learning

particle swarm optimizer for global

optimization of multimodal functions. IEEE

Transaction on Evolutionary Computation,

10(3), 281-295.

[28] Zhang, J., & Sanderson, A., C. (2007). JADE:

Self-Adaptive Differential Evoluation with

Fast and Reliable Convergence Performance.

In Proceedings of theIEEE Congress on

Evolutionary Computation (pp. 2251-2258).

Singapore.

[29] Bose, D., Biswas, S., Vasilakos, A., V., &

Laha, S. (2014). Optimal filter design using an

improved artificial bee colony algorithm.

Information Sciences 281, 443–461.

[30] Brest, J., Greiner, S., Boskovic, B., Mernik,

M., & Zumer, V. (2006). Self-adapting control

parameters in differential evolution: A

comparative study on numerical benchmark

problems. In IEEE Transactions On

Evolutionary Computation, 10(6), 646-657.

[31] Davison, V. E., and E. G. Sullivan. 1963.

Mourning doves' selection of foods. J. Wildl.

Manage. 27:373-383.

[32] Attracting Doves to Your Land.

http://www.caes.uga.edu/extension/taylor/anr

/documents/AttractingDovestoYourLand.pdf

[33] Hansen, N., Auger, A., Ros, R., Finck, S., &

Pošík, P. (2010). Comparing results of 31

algorithms from the black-box optimization

benchmarking BBOB-2009. In Proceedings of

the 12th annual conference companion on

Genetic and evolutionary computation (pp.

1689-1696). Prague: Czech Technical

University.

[34] Grosan,C. (2009). A. Abraham, A Novel

Global Optimization Technique for High

Dimensional Functions. Inter. Journal of

Intelligent Systems 24, 421–440.

[35] Dixon, L., C., W. and Szegö, G. (1978). “The

global optimization problem: An

introduction,” in Proc. Toward Global

Optimization 2, Amsterdam, Netherlands:

North-Holland, pp. 1–15.

[36] Liang, J., J., Qu, B-Y., & Suganthan P., N.

(2013). Problem Definitions and Evaluation

Criteria for the CEC 2014 Special Session and

Competition on Single Objective Real-

Parameter Numerical Optimization.

Technical Report 201311, Computational

Intelligence Laboratory, Zhengzhou:

Zhengzhou University, and Technical

Report. Singapore: Nanyang Technological

University, China.

[37] Erlich, I., Rueda, J., L., Wildenhues, S., &

Shewarega, F. (2014). Evaluating the Mean-

Variance Mapping Optimization on the IEEE-

CEC 2014 Test Suite. In Proceedings of the

IEEE Congress on Evolutionary Computation

(pp. 1625-1632). Beijing, China.

[38] Chen, L., Zheng, Z., Liu, H., L., Xie, Shengli.

(2014). An Evolutionary Algorithm Based on

Covariance Matrix Leaning and Searching

Preference for Solving CEC 2014 Benchmark

Problems. In Proceedings of theIEEE

Congress on Evolutionary Computation (pp.

2672-2677). Beijing, China.

[39] Mallipeddi, R., Wu, G., Lee M., & Suganthan,

P., N. (2014). Gaussian Adaptation based

Parameter Adaptation for Differential

Evolution. In Proceedings of the IEEE

Congress on Evolutionary Computation (pp.

1760-1767). Beijing, China.

[40] Yashesh D., Deb K., and Bandaru, S. (2014).

Non-Uniform Mapping in Real-Coded

Genetic Algorithms. In Proceedings of the

IEEE Congress on Evolutionary Computation

(pp. 2237-2244). Beijing, China.

[41] Bujok, P., Tvrdık, J., & Polakova, R. (2014).

Differential Evolution with Rotation-Invariant

Mutation and Competing-Strategies

Adaptation. In Proceedings of the IEEE

Congress on Evolutionary Computation (pp.

2253-2258). Beijing, China.

[42] Elsayed, S., M., Sarker, R., A., Essam D., L.,

& Hamza N., M. (2014). Testing United

Multi-Operator Evolutionary Algorithms on

the CEC2014 Real-Parameter Numerical

Optimization. In Proceedings of the IEEE

Congress on Evolutionary Computation (pp.

1650-1657). Beijing, China.

[43] Tanabe, R., & Fukunaga, A., S. (2014).

Improving the Search Performance of SHADE

Using Linear Population Size Reduction. In

Proceedings of theIEEE Congress on

Evolutionary Computation (pp. 1658-1665).

Beijing, China.

[44] Qu, B., Y., Liang, J., J., Xiao, J., M., & Shang,

Z., G. (2014). Memetic Differential Evolution

Based on Fitness Euclidean-Distance Ratio. In

Proceedings of the IEEE Congress on

Evolutionary Computation (pp. 2266-2273).

Beijing, China.

Mustafa TUNAY/ IJCESEN 6-1(2020)42-62

62

[45] Hu Z., Bao Y., and Xiong T. (2014) Partial

Opposition-Based Adaptive Differential

Evolution Algorithms: Evaluation on the CEC

2014 Benchmark Set for Real-parameter

Optimization. . In Proceedings of the IEEE

Congress on Evolutionary Computation (pp.

2259-2265). Beijing, China.

[46] Li, Z., Shang, Z., Qu, B., Y., & Liang J., J.

(2014). Differential Evolution Strategy based

on the Constraint of Fitness Values. In

Proceedings of the IEEE Congress on

Evolutionary Computation (pp. 1454-1460).

Beijing, China.

[47] Polakov, R., Tvrdık J., Bujok, P. (2014).

Controlled Restart in Differential Evolution

Applied to CEC2014 Benchmark Functions.

In Proceedings of the IEEE Congress on

Evolutionary Computation (pp. 2230-2236).

Beijing, China.

[48] Dourado Maia R., Nunes de Castro L., and

Matos Caminhas, W. (2014). Real-Parameter

Optimization with OptBees. In Proceedings of

the IEEE Congress on Evolutionary

Computation (pp. 2649-2655). Beijing, China.

[49] Xu, C., Huang, H., & Ye, S. (2014). A

Differential Evolution with Replacement

Strategy for Real-Parameter Numerical

Optimization. In Proceedings of theIEEE

Congress on Evolutionary Computation (pp.

1617-1624). Beijing, China.

[50] Burke, E., K., Elliman, D., G., & Weare, R., F.

(1995). A Hybrid Genetic Algorithm for

Highly Constrained Timetabling Problems. In

Proceedings of the 6th International

Conference on Genetic Algorithms (pp. 15-

19). Pittsburgh, USA.

[51] Burke, E., K., Newall, J., P. (1999). A

multistage evolutionary algorithm for the

timetable problem. IEEE Transaction on

Evolutionary Computation 3(1), 1085-1092.

