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Abstract:  
This study paper is devoted to the design of a novel evolutionary search algorithm 

to solve optimization of multivariate systems. Nowadays for many real world 

optimization problems the designing of evolutionary search algorithm with high 

optimization accuracy is a crucial optimization of multivariate systems. The 

proposed optimization search algorithm is a new intense stochastic search method 

that is based on a hypercube evolution driven. This algorithm is inspired from the 

behaviour of a pigeon that discovers new location of areas for seeds in natural 

world. The hypercube is used a statement that shows the area of life for the 

behaviour of a pigeon in real life.   

The performance of the proposed algorithm is tested on optimization functions as 

some Benchmark function and test suite functions including; four unimodal 

functions and composition functions. The performance of the proposed algorithm 

are shown much better experimental results in EAs and is encouraging in terms of 

solution accuracy for global optimization. In addition, the proposed algorithm 

approach is applied to solve a timetabling problem as two exams in adjoining 

periods, conflict of exams, two or more exams in one day etc. They are very 

difficult to solve for many institutions of higher education and as resulted in a 

significant increase in their complexity.   

  
 

1. Introduction 
 
In this study review of optimization search 

algorithms are given. A derivative based and 

derivative free optimization search algorithms are 

specified. The importance of evolutionary search 

algorithms for multimodal optimization is shown. 

The research is based on evolutionary search 

algorithms including genetic algorithms, differential 

evaluation, particle swarm optimization, ant colony 

optimization and other evolutionary search 

algorithms have been analysed. The design of the 

high accuracy evolutionary search algorithm for 

solving complex multidimensional optimization 

problems is noticed.  

In many real-world optimization problems, different 

optimization strategies have been designed for 

finding solution of these kinds of issues. One of them 

is the simultaneous perturbation stochastic 

approximation (SPSA) method for multivariate 

optimization issues. For this purpose in the proposed 

method has been developed considerable application 

in areas such as statistical parameter estimation, 

feedback control, signal and image processing, 

simulation-based optimization and experimental 

design. In problem solution the proposed method 

uses gradient approximation in any case of 

dimension of the optimization problem. The SPSA 

method decreases especially in problems to be 

optimized for cost of optimization solutions. For 

more details are referred in [1]. 

Many optimization problems mainly consist in 

finding the "best solution" from the values of 

objective function within certain ranges. The 

solutions of nonlinear optimization acquire great 

http://dergipark.org.tr/en/pub/ijcesen
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importance. These optimization problems can have 

multiple local optimal (minimum and maximum) 

solutions. The basic problem is to find the best of 

these local optimal solutions. The aim of global 

optimization is to find a feasible region solutions x 

in a solution space set X, for which the objective 

function F obtains its smallest (or largest) value.  

One of widely used adaptive heuristic search 

algorithm used for multiobjective optimization. The 

proposed algorithm is relies on the evolutionary 

conception of natural selection. By means 

of  Genetic algorithms (GAs) is inspired by natural 

evolution using searching problems techniques. The 

Genetic Algorithms (GAs) mainly consist of 

selection process, a crossover process and a mutation 

process for search optimization solutions [10]. The 

natural evolution is generated individuals from a 

population randomly. The population is selected 

according to fitness values. The best population is 

more likely to be selected. Thus, the populations 

have been selected based on their physical condition 

and so we excepted that selected population is 

among the strongest in the population and so we 

excepted that selected population will gradually 

increase in the average fitness, used in the next 

iteration, as the current solution [2]. 

Genetic algorithms provides in complex adaptive 

systems for in economic theory to the use of machine 

learning methods. Adaptation is a biological process 

survives in environments confronting organisms that 

evolve by rearranging genetic material. Holland 

presents using mathematical model that seek out a 

solution for nonlinearity such as complex 

interactions [25].  

The modification of genetic algorithm is a biased 

random key using for solving tactical berth 

allocation problem (TBAP) aiming. The TBAP 

aiming allocates incoming ships to berthing 

positions for assigning quay crane profiles (i.e. 

number of quay cranes per time step) [14].  

The design of the TBAP are both the minimization 

of the housekeeping expenses; first one got from the 

transhipment compartment streams in the middle of 

ships, second one is the amplification of the 

aggregate estimation of the quay crane profiles doled 

out of the ships. The acquired results for handling the 

TBAP have demonstrated that the proposed 

calculation which is appropriate to proficiently take 

care of this issue. 

A new structured population approach is built a 

hierarchy of hypercube is represented as population 

of GA. GA is about structured population that 

generally leads to higher performance than the 

palmitic genetic algorithm; because it can control 

two opposite processes, namely exploration and 

exploitation in the search space. GA is about several 

spatially structured populations that were introduced 

in the literature [9, 19]. These are cellular, GA-social 

patchwork basis, island-style or model, terrain-

based, graph-based and religion-based. This 

research does not build subpopulations based on the 

information of the genes of individuals themselves. 

The structuring of subpopulations could help to 

achieve better performance and more efficient 

search strategy. The algorithm can dynamically 

build the structure of a population by dividing the 

search space. The structured population is 

represented as hierarchical hypercube 

subpopulations that are dynamically built and 

adapted to the search time. Each subpopulation 

represents a subdivision of the real space of genes. 

This structure could help guide research towards the 

promising sub-areas. 

A new tendency search optimization is modified 

artificial chromosomes with genetic algorithm 

(ACGA). The proposed algorithm has been applied 

real world problems successfully in order to solve 

scheduling problems. However, ACGA cannot 

perform function well in some planning problems 

due to the fact that its probabilistic model does not 

take into account the variable interactions, in 

particular if the sequence-dependent setup times are 

taken into account. This is due to the fact that the 

previous job will improve variable interactions for 

influence the processing time. The improvement of 

artificial chromosomes with genetic algorithm 

(ACGA) is successfully applied single machine 

scheduling problems. This improvement of ACGA 

is a bi-variate probabilistic model called an ACGA 

II. The design of ACGA II has very broad concept 

including some heuristics and local search 

algorithm, variable neighbourhood search (VNS) 

[11]. The proposed is successfully demonstrated 

solving single machine scheduling problems with 

sequence-dependent setup times for date 

environment.  

Traditional computational intelligent systems are 

basically based on private "internal" cognitive and 
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computational processes. However, Swarm 

Intelligence argues that human intelligence comes 

from the interactions of individuals in a social world. 

This proposed model of intelligence commonly can 

be used in artificial intelligent systems.  

The foundations of approach presents through social 

psychology, cognitive science, and evolutionary 

computation. The authors describe is referred in 

[4,8]. The Particle swarm optimization (PSO) 

algorithm is evaluated objective function in a search 

space. Each particle determines its movement by 

using the history of its own current and best locations 

with the member of swarm and with the random 

perturbations. The swarm like a flock of birds 

foraging for a food and move close to optimum 

point. The proposed algorithm provides a problem 

solving method.   

There are in many real-world optimization problems 

to use mathematical algorithms that seek an iterative 

solution because the function or the constraints of 

objective problem can be modified over time. If 

these cases are undefined past in the optimization 

process, we are called dynamic for these types of 

problems. There are some difficulties in optimizing 

dynamic environments with the goal that the 

calculations for rationalization in these situations 

would be to use some systems keeping in mind the 

ultimate objective of overcoming difficulties. There 

are many algorithms for optimization problems. One 

of them is a new optimization algorithm based on 

dynamic environments the particle swarm 

optimization (PSO) in which a new mechanism has 

been carried out for improving solutions in [23]. In 

this mechanism, it is attempted to increase local 

research capacity around with optimal focusing on 

the best pic found in each environment. 

Experimental and comparative results demonstrated 

the superiority of the proposed method.  

The particle swarm optimization (PSO) is modified 

a new cooperative coevolving with PSO (CCPSO) 

algorithm to optimize large-scale and complex 

multimodal optimization problems. The updating 

rules of the PSO is also changed a new cooperative 

coevolving with PSO (CCPSO II) algorithm. The 

new proposed algorithm is based on Cauchy and 

Gaussian method distributions to sample new points 

in the search space. The design of CCPSO II scheme 

dynamically determines the coevolving 

subcomponent sizes of the variables. For more 

description of details are referred in [26].  

The performance of CCPSO II was tested on large-

scale and complex multimodal optimization 

problems. The experimental results have 

demonstrated the performance of CCPSO II that is 

successfully applied solving many difficult 

optimization search problems. The performance of 

CCPSO II is successfully also evaluated by 

considering the cases in which the problem 

dimension are as a set of high dimensional problems.  

There is a new alternative way for PSO to optimize 

multimodal problems. The PSO is changed and 

modified creating a new design of comprehensive 

learning particle swarm optimizer (CLPSO). The 

performance of CLPSO was successfully tested on 

multimodal problems. The design of CLPSO is 

applied in a novel learning strategy. This strategy 

allows the diversity of the swarm to be preserved to 

discourage premature convergence so that the 

updating of the appropriate speed for PSO provides 

best information. For details are briefly referred in 

[27]. 

The particle swarm optimization builds the differing 

qualities of the particles such as a two-layer is 

proposed. The downside of catching in a 

neighbourhood ideal is kept away from a structure 

with two layers (upper layer and lower layer) is 

proposed [20]. Swarms of particles and one swarm 

of particles are created in the lower layer and the 

upper layer respectively. Each better global position 

in every swarm of the lower layer is to be the 

position of the particle in the swarm of the upper 

layer. A variety of particles increases to avoid 

capture in a local optimum. A mutation is also 

included into the particles of every swarm in the 

lower layer so that the particles jump the 

neighbourhood ideal to locate the global optimum. 

The proposed algorithm was tested on various types 

of large-scale optimization problems and 

experimental results have shown convergence 

properties successfully. The proposed algorithm 

works much better for types of large-scale 

optimization problems. 

Nowadays there are many the popular trends to 

optimize power flow. The well-known is both 

popular algorithms, GAs and PSO are applied to 

optimize the power flow. A direction particle swarm 

optimization algorithm of ant evolution to solve the 

optimal power flow problem with non-smooth and 
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non-convex cost characteristics of the generator is 

considered. Here, the search for ant colony is used to 

find an update operator of the appropriate speed for 

particle swarm optimization and ant colony emerge 

parameter settings using genetic algorithm approach. 

The updating of the appropriate speed for particle 

swarm optimization has five operators used.  

The proposed method is tested on mainly including 

as 30-bus IEEE, 39-bus IEEE and 57-bus IEEE - 

systems with three different objective functions [15]. 

The simulation results have demonstrated better 

results for the proposed method. The simulation 

results have demonstrated the proposed optimization 

search algorithm that gives better results and it is 

comparable with classical particle swarm 

optimization for solving a set of optimization 

problems.  

The swarm-inspired projection (SIP) is inspired by 

data projection algorithm for swarm optimization. 

The algorithm makes it possible to visually estimate 

the number of existing clusters in a data set in [18]. 

The results are based on the projection then we can 

partition the data to put in the corresponding number 

of clusters.  

The design of simulated-annealing (SA) algorithm is 

employed to design fuzzy control systems. SA 

algorithms are provided for minimizing the objective 

functions. A design of PI-FCs (Takagi-Sugeno 

proportional-integral fuzzy controllers) is proposed 

using SA. The proposed algorithm is implemented 

on a case study on the control of the angular position 

of a servo system. The system is used as test bed to 

confirm the controller design in [12, 21].   

There is a new differential evolution (DE) algorithm 

to develop about the performance of a new mutation 

strategy. This is a called ‘DE/current-to-p-best’ 

which is about the performance of a new mutation 

strategy. This mutation strategy is a generalization of 

‘DE/current-to-best’ then. This is a called JADE. It 

differentiates the population. However it still gets 

the fast convergence property so that self-adaptation 

is used to improve for its performance. For more 

details are referred in [28].  In this study avoids the 

requirement for parameter settings and so that it 

works well without user interaction.  

Self-adaptive control parameter settings are inspired 

by the DE  (differential evolution) algorithm. The 

differential evolution  has been applied practical 

situation successfully in order to solve many difficult 

optimization search problems. The proposed 

algorithm has demonstrated the best convergence 

features. The proposed algorithm is based on only a 

few control parameters, which are kept constant 

throughout the whole evolutionary process, but it is 

difficult to properly arrange control parameters in 

DE [24, 30]. 

Self-adaptation of the mutation distribution in 

evolutionary strategies develops two useful 

methods. These are the ideas of de-randomization 

and cumulating. Standard deficiencies of the idea of 

mutative strategy parameter control and two levels 

of de-randomization are looked into. Fundamental 

requests on the self-adjustment of self-assertive 

(ordinary) transformation circulations are produced 

in [17]. Applying subjective, typical mutation 

distributions is equal to applying a general, straight 

issue encoding. The performances of these schemes 

are comparable only on perfectly scaled functions. 

On severely scaled, non-distinguishable functions 

for the most part a velocity up variable of a few 

requests of greatness is watched. On decently mis-

scaled functions a velocity up factor of three to ten 

can be expected.       

There is a new heuristic approach is applied for 

minimizing nonlinear and non-differentiable 

continuous space functions in [5]. The proposed 

algorithm selects the difference vector of two 

randomly. By means of the proposed algorithm 

perturbs an existing vector for chosen population 

vectors. The perturbation is done for every 

population vector. The proposed method is 

demonstrated converges faster for multi objective 

optimization.  

There is also a viable new approach to stochastic 

combinatorial optimization is inspired by the 

behaviour of ant. The proposed algorithm mainly 

features are constructive greedy heuristic, 

distributed of computation and positive of feedback. 

Firstly the greedy heuristic finds acceptable 

solutions for the search process. Secondly the 

distributed of computation avoids premature 

convergence. Finally the positive of feedback 

explains fast discovery of the best solutions. The 

proposed methodology is applied in practical 

problems to solve set of especially in problems for 

the robustness of the approach in [6]. 

The design of the artificial bee colony (ABC) 

algorithm is modified a hybrid variant of a swarm-

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAAahUKEwi_zuSnq4vHAhWBlRQKHRdBDKU&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDifferential_evolution&ei=CIu-Vb-qGYGrUpeCsagK&usg=AFQjCNHeYYLL8FHagbgv3mXanh_LJH-NLg&bvm=bv.99261572,d.bGg
https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBsQFjAAahUKEwi_zuSnq4vHAhWBlRQKHRdBDKU&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDifferential_evolution&ei=CIu-Vb-qGYGrUpeCsagK&usg=AFQjCNHeYYLL8FHagbgv3mXanh_LJH-NLg&bvm=bv.99261572,d.bGg
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based metaheuristics. This is referred to Collective 

Resource-based ABC with Decentralized tasking 

(CRbABC_Dt) in [29]. The proposed algorithm 

combines the attraction of de-centralization from 

neighbourhood information for wider exploration of 

search space.  

A population-based search algorithm takes its name 

from the behaviour of honey bee colonies 

discovering new areas for the food foraging in 

natural land. The proposed algorithm is inspired by 

Bees algorithm.  The behaviours of honey bee 

colonies look for the best solution for optimization 

problem. Each candidate solution is about a flower 

(food source) to define search the solution space, a 

colony (population) and bees (n agents). This 

algorithm evaluates fitness (profitability), and lands 

on a flower (solution) at each time. The algorithm 

performs a kind of neighbourhood for search 

combined with global search and has been 

successfully applied in various optimization areas 

for both combinatorial optimization and continuous 

optimization in order to solve many difficult 

optimization problems. The proposed algorithm is 

demonstrated the effectiveness and specific abilities 

for optimization solution in [7]. 

As it was mentioned above different multi-objective 

evolutionary algorithms such as bees algorithm, ant 

colony algorithm, genetic algorithms (GAs), particle 

swarm optimization (PSO) and differential 

evaluation algorithm have been designed. These 

algorithms have found many practical applications. 

Different evolutionary algorithms have been applied 

optimization issues successfully in order to solve 

many difficult optimization search problems. Many 

improvements have been done in order to develop 

optimization for search the best solution of the 

problems.  

There have been many studies on finding new 

methods for optimization. Recently the field of 

combinatorial optimization has witnessed with the 

metaheuristic methods. Most of them are based on 

natural scientific happening. The development of 

new method is metaphor or man-made process 

increasing use of metaphors as inspiration and 

justification to lead the area of metaheuristics away 

from scientific. For more details are referred in [16].  

In this study paper presents specify that the capacity 

MAs for unravelling various sorts of computerized 

IIR channel outlines is still restricted in [22]. Within 

a framework of two-step set memorization algorithm 

(TSMA) is designed to synthesize the advantages of 

evolutionary global research and local search 

techniques. The first one is about a competition is 

held among the candidate local search procedures. 

Its significant thought is to pick the best nearby 

inquiry system and to acquire great introductory 

state. The second one is about implement effective 

adaptive MA pursues the best solution. 

Many research methods desire to find the best 

solution for global problems and increase the 

accuracy of the optimization. In this study paper, a 

novel Hypercube Optimization Search (HOS) 

algorithm which references the best elements from 

an extreme function to solve applied multivariate 

systems for optimization is designed in [3, 13]. This 

algorithm approaches in optimization which gets the 

best optimization elements to minimize (or 

maximize) since min f(x) =-max (-f(x)).  

In this study paper, the performance of the HOS 

algorithm will be tested on test suite functions and 

some benchmark functions. The general 

performance of the algorithm will be evaluated in 

terms of solution accuracy and then the proposed 

algorithm will also be applied a timetabling problem. 

Experimental results have demonstrated the 

efficiency of the proposed method will be presented 

in terms of optimization accuracy. 

 

2. The Design of Hypercube Optimization 

Search Algorithm 

The structure of the HOS algorithm is used basic 

processes are described. The flowcharts of HOS 

algorithm mainly presents Fly process (initialization-

evaluation), Displacement-Shrink process and 

Searching Areas process are described in Figure 1. 

The functions of each block are described and 

mathematical formulas and basic operations used in 

each processes are presented. The HOS algorithm is 

inspired by the behaviour of pigeon to discover new 

areas for seeds (food) in natural life. The behaviour 

of pigeon (flying) searches a moving for new 

locations of seeds. The behaviour of pigeon moves its 

around and contracts according to specific rules. In 

fact, the aim of pigeon discovers new places (areas) 

for seeds like as in natural life in [31]. In such 

behaviour, a moving pigeon searches for new 

locations of seed. The pigeon moves 3600 swivel its 

around for in a unique way for mark areas and seeds. 

The possibility of a higher accumulation of location 

of seeds (or food) may be found in undiscovered 

https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Continuous_optimization
https://en.wikipedia.org/wiki/Continuous_optimization
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Figure 1. The structure of Hypercube Optimization 

Search Algorithm 

 

 
 

Figure 2. The behaviour of pigeon is simulated to 

searching seeds in real life 

 

branches of the marked area. We have distributed the 

seeds on some area with different distribution a 

higher accumulation. In one of the point of this area, 

we had sown seeds with a higher accumulation of 

location of seeds (maximum). We detect that when a 

pigeon looking for the seeds in the area it does not 

directly moving (fly) to the area having a higher 

accumulation of location of seeds. The pigeon is 

starting from some arbitrary point time by time 

shrinkage the area and at the end come to the higher 

accumulation of location that has maximum seeds.   

In a search process, the pigeon is not limited to a 

single area. The pigeon picks new search area 

according to the higher accumulation of location of 

seeds. The pigeon stops moving and keeps in mind 

the area which has seeds. After eating the seeds, the 

pigeon looks for a new search area. The pigeon 

moves another area branch to find a new area. The 

pigeon does not move to another area when it gets to 

an area that has the most seeds. For this investigation, 

some experiments have been done with the pigeons 

in real life. The behaviour of pigeon is simulated to 

searching seeds in Figure 2 in real life.  In this study, 

the hypercube is used to describe the “searching 

area”. Inside the search area, the objective function is 

evaluated at each solution. Beginning at the root area, 

any solutions which help us are ‘neighbour’ 

solutions. The value of an objective function is 

evaluated according to the quantity and accumulation 

of location of seeds. Then, the functional distances 

between each of the two solutions are determined 

evaluating best solution (lowest distances) for the 

next new search area. The HOS algorithm is mainly 

consist of processes that are given following below. 

2.1 Fly Process (Initialization-Evaluation) 

As mentioned above the HOS algorithm simulates 

the behaviour of a pigeon discovers new marking of 

areas. These marking of areas are performed and the 

pigeon is looking for new one after eating the food. 

By means of evaluating in the objective function in 

a given hypercube, the pigeons' positions are 

changed step by step from the initial points. Initial 

points in the process of fly are given in Table 1 in 

detail. The HOS algorithm begins the initialization 

of matrices and variables for the generation of a 

hypercube. The hypercube is represented by its 

centre (xc) and radii (side R). Then the X matrix is  

 
Table 1. Initial points in the process of fly. 

Symbol Definition 
m Dimension of hypercube 

R Radii of hypercube 

x =xi take initial each Hypercube’s position 

LB, UB lower and upper bounds  

N number of points  

X N X m  points, solutions 

F N X 1  points, Values of functions 

Create 

matrices: 

 

 

X (N x m) 

F (N x 1) 

FBEST: BEST VALUE 
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generated within the boundaries of the hypercube. 

The search area is bounded with the sides of a 

hypercube. The size of X solution is defined by 

(Nx1).  

Initialization and evaluation is the first block of the 

HOS algorithm. The starting conditions are:  

1. Lower (LB) and upper (UB) boundaries are used 

to generate the hypercube for all points. Initial 

points (xi) are generated inside hypercube.    

xi = (xi1, xi2 , …,xim) 

2. Points (xi) are generated inside hypercube for it is 

generated best point (xbest) randomly is 

evaluated initialization of solutions according to 

the objective function.   

Fi = (Fi1, Fi2,...,Fim) 

The proposed algorithm is based on the generation 

and a uniform distribution of N searching points 

inside the initial hypercube. N should be high, that is 

the data points should be sufficiently dense so as to 

probe all the possible zones. Otherwise, the 

algorithm can take as the best zone (global optimum) 

a simply better one (local optimum). It is generated 

using point of values according to the objective 

function are determined. The idea is to have an 

approximate knowledge of where the lowest values 

of F. As pointed out above, a higher accumulation 

(and hence the number of points N) is a function of 

the dimension m of the hypercube. Problems with 

higher dimensions will require higher N, while 

smoother functions (or low dimensional) can be 

sampled with lower N.  

As mentioned the hypercube is represented by the 

centre and radii. At the beginning, the value of radii 

of first HC is determined according to the change 

interval of objective (test) function. The initial point 

0x  is generated as the centre of the first Hypercube 

(HC). Boundaries of HC determine the boundaries of 

search space. Using the value of HC’s centre 0x  the 

dimensions of the hypercube are derived according 

to formula (2.1.1). In the next iterations, the 

proposed algorithm updates centre and radii of the 

hypercube in the displacement-shrink process. As a 

result of these operations the size of hypercube is 

reduced and search space is shrunk correspondingly. 

Note that in next iterations (i=2,3…) the parameters 

of the hypercube are updated using the values of X 

matrix. We have illustrated the fly process as follows 

with data points to create them with default values; 

1. Dimension of hypercube 

m = length( 0x )                  (2.1.1) 

2. Row vectors with lower and upper boundaries of 

HC  

              LB = min(X bounds), 

UB = max(X bounds)         (2.1.2) 

 

3. Distance between m-dimensional HC’s 

D = UB – LB                     (2.1.3) 

4. Central Values 

cx  = (LB + UB) / 2            (2.1.4) 

5. Vector with radii of HC 

0R  = D/2;   R = 0R            (2.1..5) 

 

In the following iterations, according to the matrix X, 

the row vector with the lower and upper boundaries 

(2.1.2) is determined. Using these boundaries, 

obtained from the first hypercube, the center points 

(2.1.4) and radii (2.1.5) of the next hypercube are 

determined. HOS algorithm begins with the 

initialization of matrices and variables, it goes to the 

main loop, by which convergence towards the global 

minimum is sought. The details regarding the 

visualization of flow-chart for Fly process of the 

HOS algorithm is illustrated in Figure 3. 

In next iterations (i = 2, 3…) each position of the 

pigeon is created using the values of X matrix. These 

points form the new Xnew matrix. This matrix is used 

to evaluate the test functions. Following evaluation, 

the best (minimum) value of function Fbest and the 

corresponding Xbest points are determined. 

 

The Xbest point is improved (updated) using local 

search, that is
new

best bestX X F   . Here 0    1, 

F is the objective function. The improvement is 

continued until F becomes acceptable small value- 

less than present value (tolF). The derived best 

points are used to determine the centre and radii of 

next position points. This operation is realised by 

calculating the mean of the centre of last position 

point (Xlast_centre) and last best (Xbest) point. This 

process is called “displacement”, which is described 

in next section.  
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Figure 3. The flow-chart for process of Fly 

 

2.2 Displacement-Shrink Process 

The center of the next hypercube is calculated as the 

average between the best current point and the center 

of the previous hypercube. The average is about 

between the two values; they are considered to be a 

conservative criterion for avoiding excessive 

fluctuations in the search and avoiding drastically 

moving to a neighbouring area where a lower value 

has been found. The center and the radii of the new 

hypercube are determined as: 

  

SRR

XX
X

oldnew

bestcentrelast

centrenew

*

2

_

.






            (2.2.6) 

 

S is a factor of convergence which is defined in the 

next section (see equation (2.3.11)). As shown the 

calculated second position point is derived from the 

previous position point and the sizes of the second 

position point will be less than the sizes of the 

previous one. The details regarding the visualization 

of the flow-chart Displacement-Shrink process of 

the HOS algorithm is illustrated in Figure 4.The 

points in the HOS algorithm do not move according 

to some rule, nor does the method have memory of 

them, except for the best points Xbest. New data 

points are generated and evaluated according to the 

objective functions. The hypercube size is changed 

according a result of this process the size of 

hypercube is reduced and the search space is shrunk 

correspondingly. The decrease in size of the 

hypercube allows an increase in a higher 

accumulation of the test points. This leads to the 

quick finding of the optimum value of the function. 

The idea of this is that if the best value of  X moves 

significantly, then the global minimum is probably 

not found yet, and we are far from last phase of 

convergence. The number of generated points makes 

the deep search more efficient. This is shown to 

organize by increasing the number of test points in a 

search space by improving the best points using local 

search also. The algorithm evaluates the test 

functions in many points such an approach allows a 

rapid selection of a new best zone for an intense 

search in it. In addition to displacement, the HOS 

must shrink, in order to refine the search and 

converge towards a unique and certain minimum - 

global. This contraction is governed by the 

movement of the average of the best values. For 

large displacements, there is no contraction, because 

we interpret that the total minimum is still very 

uncertain.  For small displacements or null 

displacements, the points will shrink as we approach 

the total minimum: the contraction is more important 

for the small movements. This guarantees rapid 

convergence of the method, while protecting against 
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Figure 4. The flow-chart for process of Displacement-

Shrink 

 

blocking to an undesirable (local) minimum. The 

HOS will pass a set of points from the current 

position which determines the maximum distance. 

The ranges of displacements are shown below; 

Step 1: Normalized x (the previous x for minimum) 

    
D

xx
x c

n

)( 
                        (2.2.7) 

Step 2: Normalized 
minx  (current x for minimum) 

D

xx
x c

n

)( min
min


                 (2.2.8) 

Step 3: Normalized distance  

D

xxsum nn
nd

5.02

min ))(( 
          (2.2.9) 

Step 4: Re-normalized distance      

          
m

d
d n

nn                                (2.2.10) 

For each iteration, the x displacement is computed 

and normalized twice: first each element of x is 

divided by the corresponding initial range (and thus 

the displacement is transformed into a unity-sided 

points) (Step 1 and Step 2), and then that quantity is 

normalized again, dividing it by the diagonal of 

points such as m (Step 3 and Step 4). 

2.3 Searching Area Process 

The search process is determined by computing the 

distances between old optimum (minimum) and new 

optimum values determined by equations (2.2.7 – 

2.2.10) in particular equation (2.2.10). The 

Searching area process controls the movements of X 

according to the interval defined (particularly for

1.0nnd ). The details regarding the visualization of 

flow-chart Searching area process of the HOS 

algorithm is illustrated in Figure 5. If the movement 

of X satisfies the condition then a factor of 

convergence S is calculated and updated it for each 

iterations: 

3
1 0.2

d
nnS e


            (2.3.11) 

where dnn is computed by (2.2.10) and describes the 

normalized distance moved by the average of the last 

two best values of X. Next the update of solutions will 

be performed. The size (in all the dimensions) of the 

hypercube is reduced by multiplying with this factor, 

as mentioned in the previous section. The whole 

process is repeated until specific termination 

conditions are satisfied. When the new hypercube is 

set (centre and size), the function is again evaluated 
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Figure 4. The flow-chart for process of Searching area 

 

at new points, randomly (with uniform distribution) 

chosen inside the hypercube. Again, the new 

minimum is found and compared to the last 

minimum. If new minimum is worst (greater) than 

the previous one, dnn is considered null and a new 

iteration will be done. If the same is found for several 

consecutive times the algorithm ends, and the best 

minimum is considered the global minimum. If the 

solutions found are the nearly the same then for 

obtaining exact solutions “the determination new 

position point and searching solution” process will be 

repeated 50 times. If in all iterations obtained values 

of dnn that are the same, the process will be stopped. 

In other case the search of optimal solutions will be 

repeated.  Scaling (the search space dimensionality) 

is implemented by reducing or dividing (distances) 

the initial size of HC (delimited by bounds) at each 

iteration. The movement of the focus (centre of next 

HC) and the new sizes of HC are computed from that 

scale. As shown in the above sections the HOS 

algorithm finds best points in given hypercube 

(search space) and then using this point draws a new 

hypercube, and again finds the next best point and 

creates the next new hypercube and so on. In this 

way the algorithm continues step by step approaches 

to the optimum point. This approach can be 

expressed as a hypercube evolution driven by 

convergence.  

The HOS algorithm can be described as above. Input 

parameters for the algorithm are as follows (Figure 

3.2): Objective function (defined as test function), 

initial lower and upper bounds of hypercube 

(absolute bounds) determined using test function, 

initial values of points (initial solution X0), 

tolerances for function f and solution X (tolF, tolX). 

Output of the algorithm is the best individuals Xbest 

in the final hypercube (HC).  

3. Test Functions 

The test functions used in simulation of the HOS 

algorithm are described. We have used five 

benchmark and eleven test suite functions are given 

in the literatures [26-30,33-49] to test the 

performance of the HOS algorithm and make a 

comparative analysis with other evolutionary 

algorithms. The benchmark function is general 

known described. These functions are summarized 

as follows; Rosenbrock function (f1) is unimodal for 

lowest dimension as 2D and 3D but may have 

multiple minima in high dimensional problems. 

Schwefel 2.26 (f2), Rastrigin function (f3), Ackley 

function (f4) and Griewank function (f5) are 

multimodal.   Next one is about test suite functions 

(Special Session and Competition on Real-

Parameter Optimization). These test suite functions 

including; four unimodal functions and composition 

functions. It consists of eleven test suite functions 

that can be grouped into two types.  

•    Unimodal Functions (1 to 3)  

•    Composition Functions (4 to 11) 

All test suite functions are minimization problems as 

 T21 ,..,),(Min Dxxxxxf  . Here D is the 

dimension,  T211 ,.., iDiii oooo  are the shifted 

global optimum which is randomly distributed in [-

80,80]
D

. These functions are scalable and shifted to 

0. For convenience, the same search ranges are 

defined for all test functions from test suite functions 

for search range is [-100, 100]
D

.  Rotation matrix Mi 

is assigned to each test suite functions and with 

condition number c (Gram-Schmidt ortho-

normalization) that is equal to 1 or 2. For a more 

detailed description of these test functions, the 

reader is referred [36] in details.  
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3.1 Simulation on Test Functions 

In this section, the simulation of the Hypercube 

Optimization Search (HOS) algorithm has been 

performed. The performance of the proposed 

algorithm is tested using five benchmark functions 

and test suite functions are given in the previous 

section.  

 

Table 2. Simulation Results for Some Benchmark 

Functions for Dimension of 30. 

Functions (30D) Results FEs 

Rosenbrock  

(f1) 

Best 0 

1500 Mean 0 

StD. 0 

Schwefel 2.26          

(f2) 

Best 3.82e-04 

103 Mean 3.82e-04 

StD. 0 

Rastrigin 

(f3) 

Best 0 

750 Mean 0 

StD. 0 

Ackley   

(f4) 

Best 8.88e-16 

1500 Mean 8.88e-16 

StD. 8.96e-31 

Griewank  

(f5) 

Best 0 

750 Mean 0 

StD. 0 

The proposed algorithm is applied to minimize a set 

of problems of dimensions as 30D, 50D and 100D 

for five benchmark functions. The proposed 

algorithm has been set the population size equal to 

100 for the cases of 30D and 50D, and 400 for the 

case of 100D, respectively. It is applied to minimize 

a set of problems of dimensions as 10D and 30D for 

test suite functions. At first, the performance of the 

HOS algorithm is statistically applied to minimize a 

set of five benchmark functions of dimensions  as 

 

Table 3. Simulation Results for Some Benchmark 

Functions for Dimension of 50. 

Functions (50D) Results FEs 

Rosenbrock  

(f1) 

Best 0 

1500 Mean 0 

StD. 0 

Schwefel 

2.26          

(f2) 

Best 6.36e-04 

103 Mean 6.36e-04 

StD. 0.00e+00 

Rastrigin 

(f3) 

Best 0 

750 Mean 0 

StD. 0 

Ackley   

(f4) 

Best 8.88e-16 

1500 Mean 8.88e-16 

StD. 8.96e-31 

Griewank  

(f5) 

Best 0 

103 Mean 0 

StD. 0 

 

 

Table 4. Simulation Results for Some Benchmark 

Functions for Dimension of 100. 

Functions (100D) Results FEs 

Rosenbrock  

(f1) 

Best 0 

2. 103 Mean 0 

StD. 0 

Schwefel 2.26          

(f2) 

Best 1.27e-03 

103 Mean 1.27e-03 

StD. 0.00e+00 

Rastrigin 

(f3) 

Best 0 

103 Mean 0 

StD. 0 

Ackley   

(f4) 

Best 8.88e-16 

1750 Mean 8.88e-16 

StD. 8.96e-31 

Griewank  

(f5) 

Best 0 

103 Mean 0 

StD. 0 

 

30D, 50D and 100D.  

We have summarized the mean and standard 

deviation of the results obtained by the HOS 

algorithm that tested functions evaluations over 

successful 50 runs. 

The details regarding the visualization of benchmark 

function results and the number of function 

evaluations (FEs) are shown in Table 2 for dimenson 

of  30, Table 3 for dimenson of 50 and Table 4 for 

dimenson of 100. Next section is about simulation of 

these benchmark function that are given figures as 

dimension of 30, dimension of 50 and dimension of 

100. 

3.1.a Simulation for Rosenbrock Function 

The HOS algorithm is applied for optimization of   

test  function (f1) having 30D, 50D and 100D 

dimensions that are given following figures. f1 was 

obtained as 0 (a), 0 (b) and 0 (c) after  1500, 1500 

and 2000 evaluations respectively. 

 

3.1.b Simulation for Schewel Function 2.26 

The HOS algorithm is applied for optimization of  

test function (f2) having 30D, 50D and 100D 

dimensions that are given the following figures. The 

minimum of Schwefel function 2.26 was obtained as 

3.82e-04 (a), 6.36e-04 (b) and 1.27e-03 (c) after 

1000 evaluations for these dimensions respectively.  
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Figure 5. Rosenbrock for Dimension of 30, 50 and 100 

for (a), (b) and (c) respectively 

 

3.1.c Simulation for Rastrigin Function 

The HOS algorithm is applied for optimization of  

test  function (f3) having 30D, 50D and 100D 

dimensions that are given in figures. Rastrigin 

function was obtained as 0.00e+00 (a), 0.00e+00 (b) 

and 0.00e+00 (c) after  750, 750 and 1000 

evaluations respectively. 

 

3.1.d Simulation for Ackley Function 

The HOS algorithm is applied for optimization of  

test  function (f4) having 30D, 50D and 100D 

dimensions that are given in figures. The minimum 

of Ackley function was obtained as 8.88e-16 (a), 

4.44e-15 (b) and  8.88e-16 (c) after  1500, 1500 and 

1750 evaluations respectively. 

3.1.e Simulation for Schewel Function 2.26 

The HOS algorithm is applied for optimization of  

test  function (f5) having 30D, 50D and 100D 

dimensions that are given in figures. The minimum 

of Griewank function was obtained as 0.00e+00 (a), 

0.00e+00 (b) and 0.00e+00 (c) after  750, 1000 and 

1000 evaluations respectively. 

 

3.2 Simulation on Test Suit Functions 

The proposed algorithm is applied to minimize a set 

of eleven problems of dimensions 10D and 30D after 

setting the maximum function  evaluations (FEs) 

equal to D*104 for all test suite functions.  

 

Table 5. Simulation Results for Some Test Suit Functions 

for Dimension of 10. 

Functions (10D) Mean 
(f6)  Rotated High Conditioned Elliptic   0   

(f7)  Rotated Bent Cigar                           0   

(f8)  Rotated Discus                                 2.44e-06  

(f9)  Composition 1 (N=5)                         1.35e+02  

(f10) Composition 2 (N=3)                         6.79e+00  

(f11) Composition 3 (N=3)                        3.47e+01  

(f12) Composition 4 (N=5)                         9.86e+00  

(f13) Composition 5 (N=5)                         6.67e+01  

(f14) Composition 6 (N=5)                         1.29e+02  

(f15) Composition 7 (N=3)                       3.49e+02  

(f16) Composition 8 (N=3)                       6.69e+01  

 
We have summarized the mean and the standard 

deviation of the results obtained by the HOS 

algorithm in results of evaluations of test functions 

over successful 50 independent runs. The details 

regarding the visualization of the experimental 

results of test suite functions are shown in Table 5 for 

dimension of 10 and in Table 6 for dimension of 30. 

In Table 5 and in Table 6, these experimental results 
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Figure 6. Schewel 2.26 for Dimension of 30, 50 and 100 

for (a), (b) and (c) respectively 

 

suggest that the overall convergence rates of the 

HOS algorithm still perform better for the set of 

problems. We can see that by increasing learning 

iterations, the accuracy of the HOS algorithm is 

increased for these functions. 

 
Figure 7. Rastrigin for Dimension of 30, 50 and 100 for 

(a), (b) and (c) respectively 

 

3.3 Comparative Results 

This section presents a comparison of the 

performances of the HOS algorithm with different 

evolutionary algorithms by using some Benchmark 
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Figure 8. Ackley  for Dimension of 30, 50 and 100 for (a), 

(b) and (c) respectively 

 

Functions and test suite functions given in above. In 

this study, statistical tests are provided in order to 

show statistical differences between simulation 

results of the HOS algorithm and the simulation 

results of other evolutionary algorithms.  

 

  
Figure 9. Griewank for Dimension of 30, 50 and 100 for 

(a), (b) and (c) respectively 

 

All comparisons of the test optimization search 

methods defined same initial conditions, parameters 

as population size; 100 in the case of 30D and 400 in 

the case of 100D [28]. At the first one, dimension is 

set to 30D, the population size is set at 100 for these 
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Table 6. Simulation Results for Some Test Suit Functions 

for Dimension of 30. 

Functions (30D) Mean 
(f6)  Rotated High Conditioned Elliptic   0   

(f7)  Rotated Bent Cigar                           1.89e-06   

(f8)  Rotated Discus                                 0   

(f9)  Composition 1 (N=5)                         2.65e+02  

(f10) Composition 2 (N=3)                         8.89e+01  

(f11) Composition 3 (N=3)                        1.55e+02  

(f12) Composition 4 (N=5)                         4.46e+01  

(f13) Composition 5 (N=5)                         1.13e+02  

(f14) Composition 6 (N=5)                         2.36e+02  

(f15) Composition 7 (N=3)                       2.65e+02  

(f16) Composition 8 (N=3)                       4.15e+02  

 
 

function evaluations over successful 50 runs. The 

mean and the standard deviation of the results 

obtained by each algorithm for five Benchmark 

functions that are summarized in Table 2, in Table 3 

and in Table 4. The performances for all algorithm 

results are statistically shown the better one that is 

highlighted in bold. For each Benchmark function, 

the results of above mentioned two, namely; DE and 

jDE algorithms are compared and the better result 

(whose mean’s value is less) is selected for statistical 

comparison with the results of the HOS algorithm. 

This idea is used in all future comparisons. The 

performances of HOS algorithm demonstrate much 

better than others to be marked in bold given in Table 

7 in detail.  

 

Table 7. Simulation Results for Some Benchmark 

Functions for Dimension of 30. 

Functions HOS  DE jDE FEs 

f1 
Mean 0 2.1e+00 1.3e+01 

3.103 
StD. 0 (1.5e+00)  1.4e+01) 

f2 
Mean 3.8e–04 5.9e+03 7.9e–11   

103 
StD. (0.0e+00) (1.1e+03) (1.3e–10) 

f3 
Mean 0 1.8e+02 1.5e–04   

103 
StD. 0 (1.3e+01) (2.0e–04) 

f4 
Mean 8.8e–16 9.7e–11   4.7e–15   

2.103 
StD. (8.9e–31) (5.0e–11) (9.6e–16) 

f5 
Mean 0 0 0 

3.103 
StD. 0 0 0 

The HOS algorithm works much better than others 

for f1, f3, f4 and f5. The performances of DE and jDE 

are better for f5 also. The performance of jDE 

performs better only for f2.  At the second one, the 

performance of the HOS algorithm is also compared 

with the performances of algorithms namely; PSO 

algorithms, UPSO (unified particle swarm 

optimizer), CPSO-H (a cooperative particle swarm 

optimizer) and CLPSO (comprehensive learning 

particle swarm optimizer) [27].  

These results suggest that the overall performance of 

the HOS algorithm is better for the set of benchmark 

functions for f1, f3 and f5; (be marked in boldface) that 

are equal to 0 (zero). The HOS algorithm is applied 

for the minimization of f2 and f4 that are obtained as 

3.82e-04 and 8.88e-16 correspondingly. The 

performance of CLPSO-H is performed better on f3 

also and CLPSO is performed better than others for 

f2  and f4.   

In Table 8 is shown  the comparative results of the 

algorithms; the performance of the HOS algorithm is 

generally much better than the performances of 

UPSO, CPSO-H and CLPSO algorithms. 

In the third stage, the performance of the HOS 

algorithm has been compared with algorithms, 

namely; CRbABC, m-ABC and CLIPSO from 

eleven test suite functions [29]. The HOS algorithm 

is also evaluated by considering the cases in which 

the problem dimension is a set of dimensions. At 

first problem dimension is set as 30D, the maximum 

function evaluations (FEs) is set at D*104 for all  test 

suite functions. The mean and the standard deviation 

of the results obtained by each algorithm for these 

functions are summarized in Table 9. These results 

suggest that the overall performance of the HOS 

algorithm is the best for the problems f6-f8, f10-f13 and 

f15 (be marked in boldface). CRbABC performed 

well on f6, f9,  f14 and f16.  CLIPSO algorithms 

performed well on f6 also. The comparative results 

have been demonstrated that the HOS algorithm has 

better performances on a set of problems.  In the next 

stage, the dimensions are set as 100D for all specific 

five benchmark functions. The mean and the 

standard deviation of the results obtained by each  

 

Table 8. Simulation Results for Some Benchmark 

Functions for Dimension of 30. 

Functions HOS  CLPSO CPSO-H UPSO 

f1 
Mean 0 2.10e+01 7.08e+00 1.51e+01 

StD. 0 2.98e+00 8.01e+00 8.14e-01 

f2 
Mean 3.82e-04 1.27e-12 1.08e+03 4.84e+03 

StD. 0.00e+00 8.79e-13 2.59e+02 4.76e+02 

f3 
Mean 0 4.85e-10 0 6.59e+01 

StD. 0 3.63e-10 0 1.22e+01 

f4 
Mean 8.88e-16 0 4.93e-14 1.22e-15 

StD. 8.96e-31 0 1.10e-14 3.16e-15 

f5 
Mean 0 3.14e-10 3.63e-02 1.66e-03 

StD. 0 4.64e-10 3.60e-02 3.07e-03 

 

Table 9. Experimental Results for Test suite functions for 

Dimension of 30.  

f HOS  m-ABC CLIPSO CRbABC_Dt 
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f6 0.00e+00  8.57e+04  0.00e+00   0.00e+00  

f7 1.89e-06   2.12e+07  1.82e+08   3.52e+06  

f8 0.00e+00  1.87e+03  1.38e+04  1.17e+02 

f9 2.65e+02 4.43e+02  2.00e+02  1.93e+02  

f10 8.89e+01 3.16e+03 9.20e+02  3.03e+02 

f11 1.55e+02 4.61e+03 8.26e+03   4.34e+03  

f12 4.46e+01 3.15e+02  2.60e+02  2.23e+02 

f13 1.13e+02 3.04e+02  2.99e+02  2.86e+02 

f14 2.36e+02 4.06e+02  3.33e+02   2.00e+02  

f15 2.65e+02  1.41e+03 9.50e+02   5.70e+02  

f16 4.15e+02  3.00e+02   3.00e+02   2.83e+02  

Table 10. Experimental Results for Some Benchmark 

Functions for Dimension of 100. 

Functions HOS  DE jDE FEs 

f1 
Mean 0 9.5e+01 7.2e+01 

6.103 
StD. (0) (1.4e+01) (1.1e+01) 

f2 
Mean 7.9e–02 3.2e+04 4.9e+03 

103 
StD. 

(1.2e–

01) 
(4.7e+02) (4.1e+02) 

f3 
Mean 0 8.6e+02 2.1e–04 

3.103 
StD. (0) (2.2e+01) (2.1e–04) 

f4 
Mean 8.8e–16 1.3e–01 9.9e–14 

3.103 
StD. 

(8.9e–

31) 
(2.4e–02) (2.0e–14) 

f5 
Mean 0 2.0e–01 0 

3.103 
StD. (0) (5.8e–02) (0) 

 

algorithm are summarized in Table 10. The 

comparative results demonstrate experimental 

results for the performance of the HOS algorithm is 

much better than others for high dimensional 

optimization function (be marked in boldface).  

Using test suite functions the simulation results of 

the HOS algorithm are compared with the results of 

the evolutionary algorithms given in research [37-

49] which are referred in test suite functions. The 

comparative results  as the mean and standard 

deviation for 10D and 30D are given in Table 11 and 

in Table 12 respectively. As shown in tables the 

results of the HOS algorithm has shown better 

performances than other algorithms in most of the 

functions. On 10D problem the HOS algorithm has 

performed better for f9-f12, f14 and  f16. The HOS has 

also shown good performance on  f6 and f7. RSDE 

[47]– on f6-f8  and  f15. FCDE [44]-on f7 - f8 and  f13. 

GaAPADE [37] performed well on f7. On 30D 

problems the HOS algorithm has performed much 

better for f8-f16. The HOS has also shown good 

performance on  f6. GaAPADE [39] - on f6-f8, FCDE 

[46] - on f7, RSDE [49] – on  f7 also. 

 

Table 11. Comparative Results of 10D for Test Suite 

Functions 

f (10D) HOS 
RSDE                

[47] 
FCDE                  

[44] 
GaAPADE            

[37] 

f6 
Mean 0 0 3.06e-04 1.3e+01 

StD. 0 0 2.18e-03 1.4e+01) 

f7 
Mean 0 0 0 7.9e–11 

StD. 0 0 0 (1.3e–10) 

f8 
Mean 2.44e-06 0 0 1.5e–04 

StD. 2.99e-06 0 0 (2.0e–04) 

f9 
Mean 1.35e+02 3.29e+02 3.29e+02 3.29e+02 

StD. 1.15e+01 2.78e-13 2.66e-13 0.00e+00 

f10 
Mean 6.79e+00 1.19e+02 1.38e+02 1.08e+02 

StD. 2.82e-01 6.59e+00 1.37e+01 2.08e+00 

f11 
Mean 3.47e+01 1.30e+02 1.84e+02 1.68e+02 

StD. 2.15e+00 1.93e+01 2.07e+01 4.11e+01 

f12 
Mean 9.86e+00 1.00e+02 1.00e+02 1.00e+02 

StD. 2.27e+00 3.65e-02 1.59e-01 1.74e-02 

f13 
Mean 6.67e+01 9.12e+01 2.55e+01 9.56e+01 

StD. 5.75e+00 1.40e+02 7.77e+01 1.63e+02 

f14 
Mean 1.29e+02 3.87e+02 4.90e+02 3.84e+02 

StD. 3.42e+01 4.88e+01 9.61e+01 3.36e+01 

f15 
Mean 3.49e+02 2.13e+02 2.06e+05 2.22e+02 

StD. 1.16e-13 2.59e+01 7.25e+05 6.81e-01 

f16 
Mean 6.69e+01  5.05e+02 8.87e+02 4.68e+02 

StD. 2.59e+00 1.06e+02 3.48e+02 1.90e+01 

Table 12. Comparative Results of 30D for Test Suite 

Functions 

f (30D) HOS RSDE FCDE GaAPADE 

f6 
Mean 0 1.50e+03  6.54e+04  0 
StD. 0 1.70e+03 4.90e+04 0 

f7 
Mean 1.89e-06 0.00e+00 0.00e+00 0 

StD. 1.45e-06 5.99e-09 0.00e+00 0 

f8 
Mean 0 4.74e-02 3.51e+01 0 

StD. 0 1.16e-01 1.26e+02 0 

f9 
Mean 2.65e+02 3.15e+02 3.15e+02 3.15e+02 

StD. 2.38e+01 1.62e-06 1.67e-12 0.00e+00 

f10 
Mean 8.89e+01 2.24e+02 2.50e+02 2.24e+02 

StD. 1.08e+00 1.65e+00 6.82e+00 8.64e-01 

f11 
Mean 1.55e+02 2.03e+02 2.05e+02 2.03e+02 

StD. 3.65e-01 1.17e-01 2.29e+00 7.19e-02 

f12 
Mean 4.46e+01 1.00e+02 1.01e+02 1.00e+02 

StD. 1.17e+00 4.14e-02 1.10e-01 2.40e-02 

f13 
Mean 1.13e+02 4.69e+02 6.18e+02 3.19e+02 

StD. 5.53e+00 9.46e+01 2.32e+02 3.46e+01 

f14 
Mean 2.36e+02 9.05e+02 1.50e+03 8.38e+02 

StD. 9.42e+01 1.21e+02 3.75e+02 2.96e+01 

f15 
Mean 2.65e+02 6.52e+05  1.06e+06 7.17e+02 

StD. 8.96e+01 2.66e+06 3.28e+06 3.99e+00 

f16 
Mean 4.15e+02 1.70e+03  2.53e+03 1.52e+03 

StD. 2.40e+02 8.67e+02 9.82e+02 8.02e+02 

 

4. Application of HOS Algorithm for 

Timetabling Problems 

In this chapter presents the real-life application of 

the HOS algorithm for timetabling problems. Exam 

timetabling problem have been considered and the 

problem is solved using the HOS algorithm. The 

timetabling problems seem to be difficult to solve 

finding optimal results for the scheduling of exams 

in institutions of higher education. The scheduling of 

examination timetabling problems consist of 
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allocating a number of exams to a limited number of 

periods with specific constraints related to the 

avoiding the overlapping of exams having students 

in common, satisfying room and time constraints, 

etc. These constraints may depend on certain 

limitations that are given the following general 

conditions:  

 No students should have to take two exams in 

adjoining periods. 

 No students should have to take two exams in 

one day. 

For each period, these constraints mainly form the 

basis for a feasible scheduling of exams timetabling 

problem. For a more detailed description of 

timetabling, for the reader is referred in [50]. There 

are similar and differing characteristic problems for 

course scheduling and examination scheduling 

problems. In both problems for solving examination 

scheduling problems; students should have to take 

one examination or adjoining one period at a time. 

On the other hand, there may have a fixed time 

period in examination scheduling problems. This 

means that students should have to take one exam in 

one day so that students will be rested for the next 

exams. There are finding new methods and 

improvements for known evolutionary algorithms 

used in optimization. In this study, a novel 

Hypercube Optimization Search (HOS) method 

which references the best elements from an 

evaluation function to solve applied examination 

scheduling problems for optimization is designed.  

This method can be expressed as a hypercube 

evolution.  

The performance of the HOS method tested on 

scheduling of examination timetabling problems, a 

set of evaluation functions implemented as 

MATLAB program. The proposed method used 

specified evaluation functions defined as following:  

1. Every exam should be scheduled only once in 

the timetable.  

M

iF
N

i





1

1

)(

min             (4.1) 

2. No clashing exams should be scheduled within 

the same period. 
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CTTi  (4.2)   where

ijC  is defined both exams i and j (both exams). 

3. All periods have limited seats. If a number of 

students taking exam for any period are less than 

the limited seats, it is available.     

        
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


1

1
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p
ip SST i     (4.3) where iS  is defined 

student taking exam i.                                           

4. P (penalty) is based on function (evaluation) for 

a period. This is defined as below; 

      Penalty = )1()1(
1

1

1
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 ppijpjip

E

ij

E
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Penalty is clearly relative for necessity something to 

compute the mean penalty per period of the best 

solution as defined following;  

 

           
Periods Total

 Fitness ofbest  The
 =Mean       (4.5) 

 

For each period, the HOS method can compute a 

probability of being disrupted according to equation 

4.6. This equation is shown how the probability of 

being disrupted is computed with bias being a 

definable value (0.1) to vary the probability of 

periods being disrupted. Periods reasoning greater 

than mean penalty (equation 4.5) are disrupted as 

below;          













Mean*2

bias)*2(Penalty
MeanPenalty if

1 Mean,Penalty if

yProbabilit
 ,

 =
                                                            

(4.6) 

The following experimental data is taken from 

ftp://ftp.cs.nott.ac.uk/ttp/Data/ for modelling of 

timetabling problem. Experiments are carried out on 

an actual dataset from University of Carleton and 

University of King Fahd, University of Nottingham. 

In Table 13, the data used is represented by the 

following information: 

carf92 University of Carleton (1992), Ottawa 

kfu      University of King Fahd, Dhahran 

nott     University of Nottingham, UK 

The HOS method tested on a range of real data with 

the exception of varying to represent the real life 

ftp://ftp.cs.nott.ac.uk/ttp/Data/
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information.  In this method is using exams (E) that 

must be scheduled in three periods (P) in one day. 

The performance of the Hypercube optimization 

search method is tested on three univerties data sets 

with sizes subset of 100. These data sets are tested 

with all the heuristics given 50 runs each and the 

average given results in Table 14. 

Table 13. Data set from the universities 

Data carf92 Kfu Nott 

Period 32 20 23 

Exam 543 461 800 

Student 18 419 5 349 7 896 

Enrolment 55 522 25 118 34 265 

Students per  

Periods 
2000 1955 1550 

Conflict Density 0.14 0.06 0.03 

A1: The Hypercube Optimization Search Method 

A2: Multistage Evolutionary (ME) Method with 

Largest Degree 

A3: Multistage Evolutionary (ME) Method with 

Colour Degree 

Table 14. Comparative results of applying dataset 

Functions 2nd Order 

Same Day 

2nd Order 

Overnight 

Penalty 

carf92  

A1 298 725 1 836 

A2 469 614 2 104 

A3 359 773 2 034 

Kfu  

A1 221 818 1 779 

A2 222 838 1 811 

A3 260 999 1 836 

Nott   

A1 102 325 10 990 

A2 155 416 14 984 

A3 106 330 15 621 

The focus of the experiments is demonstrates to the 

HOS method effects on quality when has been 

started on already better solutions than Multistage 

Evolutionary (ME) Method with Largest Degree and 

Multistage Evolutionary (ME) Method with Colour 

Degree  for solving a set of optimal results in [51]. 

The finding of a near optimal solution of timetabling 

is important. Many timetabling process is a little 

more complicated when room was an allocation 

problem (maximum sitting students per periods)  

5. Conclusion 

The reviews of optimization search algorithms have 

shown that conventional optimization search 

algorithms sometimes cannot find a global optimum 

and has local optima problem. Evolutionary search 

algorithms can outperform conventional 

optimization algorithms and find a global optimum, 

without being trapped in local optima. Nowadays for 

many real world optimization problems the 

designing of evolutionary search algorithm with 

high optimization accuracy is more important. In this 

study, a novel evolutionary search algorithm to solve 

optimization of multivariate systems is proposed.  

The basic processes of hypercube optimization 

search algorithm are designed. The HOS algorithm 

is a new intense stochastic search method based on a 

hypercube evolution. The algorithm comprises the 

fly process, displacement-shrink process and 

searching areas process. The design of the basic 

processes of HOS algorithm is presented and 

simulations of the algorithm have been carried out 

for global optimization of a set of CEC’14 test 

functions and benchmark functions. The 

performances of the HOS algorithm were also 

compared with the performances of other 

evolutionary algorithms. These are a new differential 

evolution (DE) algorithms as jDE; PSO algorithms 

including; unified particle swarm optimizer (UPSO), 

a cooperative particle swarm optimizer (CPSO-H) 

and comprehensive learning particle swarm 

optimizer (CLPSO); Artificial Bee Colony with 

CRbABC_Dt and others. The comparative results 

have more generally been demonstrated that the 

HOS algorithm has shown better performance for 

optimization most of low and also high dimensional 

functions. The large number of generated points and 

population size allows it to quickly solve low and 

high dimensional optimization problems. 

The proposed approach allows increasing the 

accuracy of the system. The simulation results of 

optimization problems have been demonstrated that 

the solution accuracy and success rate of the system 

has considerably increased and the algorithm has 

advantages over other well-known algorithms. The 

algorithm is also applied to the solution of a 

timetabling problem. The simulation of the HOS 

algorithm on test functions and timetabling problems 

have demonstrated the proposed optimization search 

algorithm that has shown to be a promising approach 

and is comparable with specialized algorithms to 

solve a set of global optimization real problems.  
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