https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser.A1 Math.Stat. Volume 69, Number 2, Pages 1484–1497 (2020) DOI: 10.31801/cfsuasmas.704446 ISSN 1303-5991 E-ISSN 2618-6470

Received by the editors: March 16, 2020; Accepted: September 02, 2020

A-STATISTICALLY LOCALIZED SEQUENCES IN *n*-NORMED SPACES

Mehmet GURDAL¹, Nur SARI¹, and Ekrem SAVAS²

¹Department of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey ²Uşak University, 64000, Uşak, Turkey

ABSTRACT. In 1974, Krivonosov defined the concept of localized sequence that is defined as a generalization of Cauchy sequence in metric spaces. In this present work, the A-statistically localized sequences in n-normed spaces are defined and some main properties of A-statistically localized sequences are given. Also, it is shown that a sequence is A-statistically Cauchy iff its A-statistically localized sequences on n-normed spaces and investigate its relationship with A-statistically Cauchy sequences.

1. INTRODUCTION AND BACKGROUND

In 1922, Banach defined normed linear spaces as a set of axioms. Since then, mathematicians keep on trying to find a proper generalization of this concept. The first notable attempt was by Vulich [41]. He introduced K-normed space in 1937. In another process of generalization, Siegfried Gähler [5] introduced 2-metric in 1963. As a continuation of his research, Gähler [6] proposed a mathematical structure, called 2-normed space, as a generalization of normed linear spaces. A.H. Siddiqi delivered a series of lectures on this theme in various conferences in India and Iran. His joint paper with Gähler and Gupta [8] also provide valuable results related to the theme of this paper. Results up to 1977 were summarized in the survey paper by Siddiqi [40]. As a further extension, he introduced *n*-metric and *n*-norm in his subsequent works Gähler [7] and regarded normed linear spaces as 1normed spaces. However, many researchers disagree to consider 2-norm and *n*-norm as generalization of norm. In spite of this disagreement, several researchers have

©2020 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 40A35.

Keywords and phrases. A-statistical convergence, n-normed spaces, A-statistical localor of the sequence.

[⊠] gurdalmehmet@sdu.edu.tr-Corresponding author; nursari32@hotmail.com; ekremsavas@ya hoo.com

b 0000-0003-0866-1869; 0000-0002-3639-975X; 0000-0003-2135-3094.

worked on this topic for decades Gürdal and Pehlivan [10,11], Gürdal and Açık [12], Gürdal and Şahiner [13], Gürdal et al. [14], Mohiuddine et al. [23], Mursaleen [24], Savaş and Sezer [37], Savaş and Gürdal [31–33], Savaş et al. [34] and Yegül and Dündar [45,46]. They have found out many interesting properties of this space and lots of fixed point theorems are established.

This paper was inspired by Krivonosov [18], where the concept of a localized sequence was introduced, which can be treated as a generalization of a Cauchy sequence in metric spaces. We will often quote some results from Krivonosov [18], that can be easily transferred to the concept of A-statistically localized sequence and the A-statistical localor of a sequence in n-normed space. Let X is a metric space with a metric $d(\cdot, \cdot)$ and (x_n) is a sequence of points in X. It is an interesting fact that if $F: X \to X$ is a mapping with the condition $d(Fx, Fy) \leq d(x, y)$ for all $x, y \in X$, then for every $x \in X$ the sequence $(F^n x)$ is localized at every fixed point of the mapping F. This means that fixed points of the mapping F is contained in the localor of the sequence $(F^n x)$. Motivating the above facts and the fact that the localor of a sequence can be extended by changing the usual limit to the statistical limit (see Fridy [4]) of a sequence. Recently, the authors in [25] have extended the concepts and results, which were given in [18], by changing the usual limit to the statistical limit in metric spaces. This definition has been extended to statistical localized and ideal localized in metric space Nabiev et al. [25, 26] and in 2-normed spaces Yamanci et al. [43,44], and they obtained interested results about this concept.

This paper consists of three sections with the new results in sections 2-3. In Section 2 the concept of the A-statistically localized sequence and the A-statistical localor of a sequence in *n*-normed space is introduced and fundamental properties of A-statistically localized sequences are studied. In Section 3, we prove that a sequence is A-statistically Cauchy sequence if and only if its A-statistical barrier is equal to zero. Moreover, we define the uniformly A-statistically localized sequences on *n*-normed spaces and investigate its relationship with A-statistically Cauchy sequences and prove that in *n*-normed linear spaces each A-statistically bounded sequence has everywhere A-statistically localized subsequence.

Throughout this paper, let A be a nonnegative regular matrix and \mathbb{N} will denote the set of all positive integers. Let X and Y be two sequence spaces and $A = (a_{n_k})$ be an infinite matrix. If for each $x \in X$ the series $A_n(x) = \sum_{k=1}^{\infty} a_{n_k} x_k$ converges for each n and the sequence $Ax = \{A_n(x)\} \in Y$, we say that A maps X into Y. By (X, Y) we denote the set of all matrices which maps X into Y. In addition if the limit is preserved, then we denote the class of such matrices by $(X, Y)_{\text{reg}}$. A matrix A is called regular if $A \in (c, c)$ and $\lim_{k\to\infty} A_k(x) = \lim_{k\to\infty} x_k$ for all $x = \{x_k\}_{k\in \mathbb{N}} \in c$ when c, as usual, stands for the set of all convergent sequences.

It is well known that the necessary and sufficient condition for A to be regular are

i) $||A|| = \sup_{n} \sum_{k} |a_{n_k}| < \infty;$ ii) $\lim_{n \to \infty} a_{n_k} = 0$, for each k; iii) $\lim_{n \to \infty} \sum_{k} a_{n_k} = 1.$

The idea of A-statistical convergence was introduced by Kolk [17] using a nonnegative regular matrix A. For a nonnegative regular matrix $A = (a_{n_k})$, a set $K \subset \mathbb{N}$ will be said to have A-density if $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{n_k}$ exists. The

real number sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be A-statistically convergent to L provided that for every $\varepsilon > 0$ the set $K(\varepsilon) = \{k \in N : |x_k - L| \ge \varepsilon\}$ has Adensity zero. Note that the idea of A-statistical convergence is an extension of the idea of statistical convergence introduced by Fast [3] using the idea of asymptotic density and later studied by Fridy [4], Connor [1], Salat [29], Gürdal and Yamancı [15], Mohiuddine and Alamri [20], Yamancı and Gürdal [42] and Savaş [30] (also, see [16, 19, 21, 22, 35, 36, 38]). Let $K = \{k(j) : k(1) < k(2) < k(3) < ...\} \subset \mathbb{N}$ and $\{x\}_K = \{x_{k(j)}\}$ be a subsequence of x. If the set K has A-density zero (i.e. $\delta_A(K) = 0$) the subsequence $\{x\}_K$ of the sequence x is called an A-thin subsequence. If the set K does not have A-density zero, the subsequence $\{x\}_K$ is called an A-nonthin subsequence of x. The statement $\delta_A(K) \neq 0$ means that either $\delta_A(K) > 0$ or $\delta_A(K)$ is not defined (i.e. K does not have A-density).

In [2], Connor and Kline extended the concept of a statistical limit (cluster) point of a number sequence x to a A-statistical limit (cluster) point replacing the matrix C_1 by a nonnegative regular matrix A. Recall that the number λ is a A-statistical limit point of the number sequence x provided that there is a subset $K = \{k(j)\}_{j=1}^{\infty}$ of positive integers with $\delta_A(K) \neq 0$ and $x_{k(j)} \to \lambda$ is $j \to \infty$ (see [2]). The number γ is a A-statistical cluster point of the number sequence $x = (x_k)$ provided that for every $\varepsilon > 0$, $\delta_A(K_{\varepsilon}) \neq 0$ where $K_{\varepsilon} := \{k \in \mathbb{N} : |x_k - \gamma| < \varepsilon\}$ (see [2]).

Now we recall the *n*-normed space which was introduced in [9] and some definitions on *n*-normed space (see [39]).

Definition 1. Let $n \in \mathbb{N}$ and X be a real vector space of dimension $d \ge n$. (Here we allow d to be infinite.) A real-valued function $\|., ..., .\|$ on X^n satisfying the following four properties

(i) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent;

(ii) $||x_1, x_2, ..., x_n||$ is invariant under permutation;

(*iii*) $||x_1, x_2, ..., x_{n-1}, \alpha x_n|| = |\alpha| ||x_1, x_2, ..., x_{n-1}, x_n||$, for any $\alpha \in \mathbb{R}$;

(*iv*) $||x_1, x_2, ..., x_{n-1}, y + z|| \le ||x_1, x_2, ..., x_{n-1}, y|| + ||x_1, x_2, ..., x_{n-1}, z||$,

is called an n-norm on X and the pair $(X, \|., ..., .\|)$ is called an n-normed space.

It is well-known fact from the following corollary that n-normed spaces are actually normed spaces (see also [7]).

Corollary 1. ([9]) Every n-normed space is an (n - r)-normed space for all r = 1, ..., n - 1. In particular, every n-normed space is a normed space.

Example 1. A standard example of an n-normed space is $X = \mathbb{R}^n$ equipped with the n-norm is

 $||x_1, x_2, ..., x_{n-1}, x_n|| :=$ the volume of the n-dimensional parallelepiped spanned by $x_1, x_2, ..., x_{n-1}, x_n$ in X.

Observe that in any *n*-normed space $(X, \|., ..., .\|)$ we have

$$||x_1, x_2, \dots, x_{n-1}, x_n|| \ge 0$$

and

$$||x_1, x_2, \dots, x_{n-1}, x_n|| = ||x_1, x_2, \dots, x_{n-1}, x_n + \alpha_1 x_1 + \dots + \alpha_{n-1} x_{n-1}||$$

for all $x_1, x_2, ..., x_n \in X$ and $\alpha_1, ..., \alpha_{n-1} \in \mathbb{R}$.

Let X be a real inner product space of dimension $d \ge n$. Equip X with the standard *n*-norm

$$\|x_1, x_2, \dots, x_n\|_S := \begin{vmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{vmatrix}^{1/2},$$

where $\langle ., . \rangle$ denotes the inner product on X. If $X = \mathbb{R}^n$, then this *n*-norm is the same as the *n*-norm in Example 1.

Definition 2. A sequence $\{x_k\}$ in an n-normed space $(X, \|., ..., .\|)$ is said to convergent to an $l \in X$ if

$$\lim_{k \to \infty} \|x_k - l, z_1, z_2, ..., z_{n-1}\| = 0$$

for every $z_1, z_2, ..., z_{n-1} \in X$.

Definition 3. A sequence $\{x_k\}$ in an n-normed space $(X, \|., ..., .\|)$ is called a Cauchy sequence if

$$\lim_{k,l\to\infty} \|x_k - x_l, z_1, z_2, ..., z_{n-1}\| = 0$$

for every $z_1, z_2, ..., z_{n-1} \in X$.

Let $a, x_1, ..., x_{n-1} \in X$ and for each $\varepsilon > 0$ define the ε -neighborhood of the points $a, x_1, ..., x_{n-1}$ as the set

$$U_{\varepsilon}(a, x_1, ..., x_{n-1}) = \{z : ||a - z, x_1 - z, ..., x_{n-1} - z|| < \varepsilon\}.$$

As it is known (see [28]) that the family of all sets

$$W_{\Sigma} = \bigcap_{i=1}^{n} U_{\varepsilon_i} \left(a, x_{1i}, \dots, x_{(n-1)i} \right)$$

with arbitrary pairs $\Sigma = \{(x_{11}, ..., x_{(n-1)1}, \varepsilon_1), ..., (x_{1n}, ..., x_{(n-1)n}, \varepsilon_n)\}$ forms a complete system of neighborhoods of the point $a \in X$. Note that a set M in a linear *n*-normed space $(X, \|..., \|)$ is said to be bounded if $\beta(M) < \infty$, where

$$\beta(M) = \sup \left\{ \|a - z, x_1 - z, ..., x_{n-1} - z\| : a, x_1, ..., x_{n-1}, z \in M \right\}.$$

We also suppose that for any $\varepsilon > 0$ there exists a neighborhood U of 0 such that $||x_1^*, x_2^*, ..., x_n^*|| < \varepsilon$ for all points $x_1^*, x_2^*, ..., x_n^*$ in U.

2. Definitions and notations

In this section, we introduce some basic definitions and notations in *n*-normed space $(X, \|., ..., .\|)$.

Definition 4. (a) A sequence (x_n) in n-normed space $(X, \|., ..., .\|)$ is said to be Astatistically localized in the subset $K \subset X$ if the sequence $||x_n - x, z_1, z_2, ..., z_{n-1}||$ A-statistically converges for all $x, z_1, z_2, ..., z_{n-1} \in K$.

(b) the maximal set on which a sequence is A-statistically localized is said to be a A-statistical localor of the sequence. We denote by $\log^{\text{st}_A}(x_n)$ the A-statistically localor of the sequence (x_n) .

(c) A sequence (x_n) in n-normed space $(X, \|., ..., .\|)$ is said to be A-statistically localized everywhere if the A-statistical localor of (x_n) coincides with X.

(d) A sequence (x_n) in n-normed space $(X, \|., ..., .\|)$ is called A-statistically localized in itself if the A-statistically localor contains x_n for almost all n, that is,

 $\delta_A\left(\left\{n: x_n \notin \operatorname{loc}^{\operatorname{st}_A}(x_n)\right\}\right) = 0 \text{ or } \delta_A\left(\left\{n: x_n \in \operatorname{loc}^{\operatorname{st}_A}(x_n)\right\}\right) = 1.$

(e) A sequence (x_n) is said to be A-statistically localized if the $\operatorname{loc}^{\operatorname{st}_A}(x_n)$ is not empty.

Definition 5. Let (x_n) be a sequence in an n-normed space $(X, \|., ..., .\|)$. Then the sequence (x_n) is said to be A-statistical convergent to L if for each $\varepsilon > 0$ and any nonzero $z_1, z_2, ..., z_{n-1}$ in X,

$$\delta_A \left(\{ k \in \mathbb{N} : \| x_n - L, z_1, z_2, ..., z_{n-1} \| \ge \varepsilon \} \right) = 0.$$

In this case we write $x_n \stackrel{st_A}{\to} L$ or

$$st_A - \lim_{n \to \infty} \|x_n - L, z\| = 0.$$

Definition 6. A sequence (x_n) in a linear n-normed space $(X, \|., ..., .\|)$ is said to be a A-statistically Cauchy sequence in X if for every $\varepsilon > 0$ and any nonzero $z_1, z_2, ..., z_{n-1} \in X$ there exists a number $N = N(\varepsilon, z_1, z_2, ..., z_{n-1})$ such that

$$\delta_A \left(\{ k \in \mathbb{N} : \| x_k - x_m, z_1, z_2, ..., z_{n-1} \| \ge \varepsilon \} \right) = 0$$

for all $m \geq N$.

We can see from the above definitions that every A-statistically Cauchy sequence in *n*-normed space $(X, \|., ..., .\|)$ is A-statistically localized everywhere in $(X, \|., ..., .\|)$. Actually, due to

 $|||x_n - L, z_1, z_2, ..., z_{n-1}|| - ||x - x_m, z_1, z_2, ..., z_{n-1}||| \le ||x_n - x_m, z_1, z_2, ..., z_{n-1}||,$ we get

 $\{n \in \mathbb{N} : \|x_n - x_m, z_1, z_2, \dots, z_{n-1}\| \ge \varepsilon\}$

 $\supset \{n \in \mathbb{N} : |||x_n - L, z_1, z_2, ..., z_{n-1}|| - ||x_m - L, z_1, z_2, ..., z_{n-1}||| \ge \varepsilon \}.$

Hence, the number sequence $||x_n - L, z_1, z_2, ..., z_{n-1}||$ is an A-statistically Cauchy sequence, then $||x_n - L, z_1, z_2, ..., z_{n-1}||$ is A-statistically convergent for every $L \in X$ and every nonzero $z \in X$. So, $||x_n - L, z_1, z_2, ..., z_{n-1}||$ in *n*-normed space (X, ||., ..., .||) is A-statistically localized everywhere.

Lemma 1. A sequence (x_n) in linear n-normed space $(X, \|., ..., \|)$ is an A-statistically Cauchy sequence if and only if there exists a subsequence $K = (k_n)$ of \mathbb{N} with $\delta_A(K) = 1$ such that

$$\lim_{n,m\to\infty} \|x_{k_n} - x_{k_m}, z_1, z_2, \dots, z_{n-1}\| = 0$$

for all $z_1, z_2, ..., z_{n-1}$ in X.

Proof. Let (x_n) be an A-statistically Cauchy sequence in $(X, \|., ..., .\|)$. By definition, we can construct a decreasing sequence

$$(K_j) \subset \mathbb{N} \ (K_{j+1} \subset K_j, \ j = 1, 2, \ldots)$$

such that $\delta_A(K_j) = 1$ and $||x_{k_1} - x_{k_2}, z_1, z_2, ..., z_{n-1}|| \leq \frac{1}{j}$ for all $z_1, z_2, ..., z_{n-1} \in X$, $k_1, k_2 \in K_j$, $j \in \mathbb{N}$. Further, let $v_1 \in K_1$. Then we can find $v_2 \in K_2$ with $v_2 > v_1$ such that $\frac{|K_2(n)|}{n} > \frac{1}{2}$ for each $n > v_2$. Inductively, we can construct a subsequence $(v_j) \in \mathbb{N}$ such that $v_j \in K_j$ for each $j \in \mathbb{N}$ and

$$\frac{\left|K_{j}\left(n\right)\right|}{n} > \frac{j-j}{j}$$

for each $n \ge v_j$. Then, as in [27], it is easy to prove that $\delta_A(K) = 1$ if

$$K = \{k \in \mathbb{N} : 1 \le k < v_1\} \cup \left[\bigcup_{j \in \mathbb{N}} \{k : v_j \le k < v_{j+1}\} \cap K_j\right].$$

Now, for $\varepsilon > 0$ choose $j \in \mathbb{N}$ such that $j > \frac{1}{\varepsilon}$. If $m, n \in K$ and $m, n > v_j$ we can find $r, s \ge j$ such that $v_r \le m < v_{r+1}, v_s \le n < v_{s+1}$. Hence, $m \in K_r$ and $n \in K_s$. For definite, suppose that $r \le s$. Then $K_s \subset K_r$ which implies $m, n \in K_r$. Therefore, for every $z \in X$ we have

$$||x_m - x_n, z_1, z_2, ..., z_{n-1}|| \le \frac{1}{r} \le \frac{1}{j} < \varepsilon.$$

Then we have

$$\lim_{\substack{n,m \to \infty \\ m,n \in K}} \|x_m - x_n, z_1, z_2, ..., z_{n-1}\| = 0.$$

Let us prove the converse. Suppose that $K = (k_n) \subset \mathbb{N}$ is a subsequence of subsets \mathbb{N} such that $\delta_A(K) = 1$ and $\lim_{n,m\to\infty} ||x_{k_n} - x_{k_m}, z_1, z_2, ..., z_{n-1}|| = 0$ for all z in X. Then, for any $\varepsilon > 0$ there exists $p_0 = p_0(\varepsilon, z) \in \mathbb{N}$ such that $||x_{k_n} - x_{k_m}, z_1, z_2, ..., z_{n-1}|| < \varepsilon$ for all $n, m \geq p_0$. This yields

$$\left\{k \in \mathbb{N} : \left\|x_k - x_{k_{p_0}}, z_1, z_2, ..., z_{n-1}\right\| \ge \varepsilon\right\} \subset \mathbb{N} \setminus \left\{k_{p_0+1}, k_{p_0+2}, ...\right\}.$$

Hence

$$\delta_A \left\{ k \in \mathbb{N} : \left\| x_k - x_{k_{p_0}}, z_1, z_2, ..., z_{n-1} \right\| \ge \varepsilon \right\} \le \delta_A \left(\mathbb{N} \setminus \{ k_{p_0+1}, k_{p_0+2}, ... \} \right) = 0.$$

So, (x_k) is an A-statistically Cauchy sequence in X.

Lemma 2. A sequence
$$(x_k)$$
 in $(X, \|., ..., .\|)$ is a A-statistically Cauchy sequence
if and only if for every neighborhood U of the origin there is an integer $N(U)$
such that $n, m \ge N(U)$ implies that $x_{k_n} - x_{k_m} \in U$, where $K = (k_n) \subset \mathbb{N}$ and
 $\delta_A(K) = 1$.

Proof. Let $z \in X$ and $\varepsilon > 0$. Suppose that there is $K = (k_n) \subset \mathbb{N}$ such that $x_{k_n} - x_{k_m} \in U_{\varepsilon}(0, z_1, z_2, ..., z_{n-1})$ for $n, m \geq N(U)$, where $U_{\varepsilon}(0, z_1, z_2, ..., z_{n-1})$ is a neighborhood of zero. This implies $||x_{k_n} - x_{k_m}, z_1, z_2, ..., z_{n-1}|| < \varepsilon$ for every $n, m \geq N(U)$. Then $\lim_{n, m \to \infty} ||x_{k_n} - x_{k_m}, z_1, z_2, ..., z_{n-1}|| = 0$, i.e., (x_k) is an A-statistically Cauchy sequence in X.

Conversely, assume that $\lim_{n,m\to\infty} ||x_{k_n} - x_{k_m}, z_1, z_2, ..., z_{n-1}|| = 0$, where $K = (k_n) \subset \mathbb{N}$ and $\delta_A(K) = 1$. Let $W_{\Sigma}(0)$ be an arbitrary neighborhood of 0 with $\Sigma = \{(b_{11}, ..., b_{(n-1)1}, \alpha_1), ..., (b_{1r}, ..., b_{(n-1)r}, \alpha_r)\}$. By hypothesis, we have

$$\lim_{n,m\to\infty} \left\| x_{k_n} - x_{k_m}, b_{1j}, b_{2j}, \dots, b_{(n-1)j} \right\| = 0 \text{ for } j = 1, \dots, r.$$

Thus for each α_j there exists an integer N_j such that

$$||x_{k_n} - x_{k_m}, b_{1j}, b_{2j}, \dots, b_{(n-1)j}|| < \alpha_j$$

for $n, m \ge N_j$. Let $N = \max\{N_1, ..., N_r\}$. Then

$$\begin{aligned} \left\| x_{k_n} - x_{k_m} - b_{1j}, \dots, x_{k_n} - x_{k_m} - b_{(n-1)j}, x_{k_n} - x_{k_m} \right\| \\ &= \left\| x_{k_n} - x_{k_m}, b_{1j}, b_{2j}, \dots, b_{(n-1)j} \right\| < \alpha_j \end{aligned}$$

for $n, m \ge N$ implies that $x_{k_n} - x_{k_m} \in W_{\Sigma}(0)$ for $n, m \ge N$ and thus it follows that (x_k) is an A-statistically Cauchy sequence in X.

3. Main Results

Proposition 1. Let (x_n) be an A-statistically localized sequence in linear n-normed space $(X, \|., ..., \|)$. Then (x_n) is A-statistically bounded in X.

Proof. Let (x_n) be an A-statistically localized sequence. So, the number sequence $(||x_n - L, z_1, z_2, ..., z_{n-1}||)$ A-statistically converges for some $L \in X$ and every $z \in X$. Then the number sequence $(||x_n - L, z_1, z_2, ..., z_{n-1}||)$ is A-statistically bounded, i.e., there is S > 0 such that

$$\delta_A \left(\{ n \in \mathbb{N} : \| x_n - L, z_1, z_2, ..., z_{n-1} \| \ge S \} \right) = 0.$$

This implies that almost all elements of (x_k) are located in the neighborhood $U_S(0, z_1, z_2, ..., z_{n-1})$ of the origin. Then, sequence (x_k) is A-statistically bounded in X.

Proposition 2. Let $M = \operatorname{loc}^{\operatorname{st}_A}(x_n)$ and the point $y \in X$ be such that there exists $x \in M$ for any $\varepsilon > 0$ and every nonzero $z_1, z_2, ..., z_{n-1} \in M$ satisfying

$$\delta_A \left(\{ n \in \mathbb{N} : |||x - x_n, z_1, z_2, ..., z_{n-1}|| - ||y - x_n, z_1, z_2, ..., z_{n-1}||| \ge \varepsilon \} \right) = 0.$$
(1)
Then $y \in M$.

Proof. To show that the sequence $\beta_n = ||x_n - y, z_1, z_2, ..., z_{n-1}||$ satisfies the Astatistically Cauchy criteria is enough. Let $\varepsilon > 0$ and $x \in M = \log^{\text{st}_A}(x_n)$ is a point that has the property (1). Because the sequence $||x_n - x, z_1, z_2, ..., z_{n-1}||$ satisfying the property (1) is A-statistically Cauchy sequence, then there exists a subsequence $K = (k_n)$ of \mathbb{N} with $\delta_A(K) = 1$ such that

$$||x - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||y - x_{k_n}, z_1, z_2, ..., z_{n-1}||| \to 0$$

and

$$||x_{k_n} - x, z_1, z_2, \dots, z_{n-1}|| - ||x_{k_m} - x, z_1, z_2, \dots, z_{n-1}||| \to 0$$

as $m, n \to \infty$. Clearly, there exists $n_0 \in \mathbb{N}$ for any $\varepsilon > 0$ and every nonzero $z_1, z_2, ..., z_{n-1} \in M$ such that for all $n \ge n_0, m \ge m_0$, we get

$$|||x - x_{k_n}, z_1, z_2, \dots, z_{n-1}|| - ||y - x_{k_n}, z_1, z_2, \dots, z_{n-1}||| < \frac{\varepsilon}{3}$$
(2)

$$|||x - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||x - x_{k_m}, z_1, z_2, ..., z_{n-1}||| < \frac{\varepsilon}{3}.$$
 (3)

From (2), (3) and (4)

$$\begin{aligned} &|||y - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||y - x_{k_m}, z_1, z_2, ..., z_{n-1}||| \\ &\leq |||y - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||x - x_{k_n}, z_1, z_2, ..., z_{n-1}||| \\ &+ |||x - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||x - x_{k_m}, z_1, z_2, ..., z_{n-1}||| \\ &+ |||x - x_{k_m}, z_1, z_2, ..., z_{n-1}|| - ||y - x_{k_n}, z_1, z_2, ..., z_{n-1}||| \end{aligned}$$

$$(4)$$

we have that

$$|||y - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||y - x_{k_m}, z_1, z_2, ..., z_{n-1}||| < \varepsilon$$
(5)

for all $n \ge n_0$, $m \ge n_0$, i.e.,

 $|||y - x_{k_n}, z_1, z_2, ..., z_{n-1}|| - ||y - x_{k_m}, z_1, z_2, ..., z_{n-1}||| \to 0 \text{ as } m, n \to \infty$

for the subset $K = (k_n) \subset N$ with $\delta_A(K) = 1$. This means that the sequence $||y - x_n, z_1, z_2, ..., z_{n-1}||$ is an A-statistically Cauchy sequence, which finishes the proof.

Definition 7. A point *a* in a *n*-normed space $(X, \|., ..., \|)$ is called a limit point of *a* set *M* in *X* if for an arbitrary $\Sigma = \{(x_{11}, ..., x_{(n-1)1}, \varepsilon_1), ..., (x_{1n}, ..., x_{(n-1)n}, \varepsilon_n)\}$ there is a point $a_{\Sigma} \in M$, $a_{\Sigma} \neq a$ such that $a_{\Sigma} \in W_{\Sigma}(a)$.

Moreover, a subset $Y \subset X$ is called a closed subset of X if Y contains every its limit point. If Y^0 is the set of all points of a subset $Y \subset X$, then the set $\overline{Y} = Y \cup Y^0$ is called the closure of the set Y.

Proposition 3. A-statistically localor of any sequence is a closed subset of the *n*-normed space $(X, \|., ..., .\|)$.

Proof. Let $y \in \overline{\operatorname{loc}^{\operatorname{st}_A}}(x_n)$. Then, for arbitrary

$$\Sigma = \{ (x_{11}, ..., x_{(n-1)1}, \varepsilon_1), ..., (x_{1n}, ..., x_{(n-1)n}, \varepsilon_n) \}$$

there is a point $x \in \text{loc}^{\text{st}_A}(x_n)$ such that $x \neq y$ and $x \in W_{\Sigma}(y)$. Hence

 $\delta_A \left(\{ n \in \mathbb{N} : |||x - x_n, z_1, z_2, ..., z_{n-1}|| - ||y - x_n, z_1, z_2, ..., z_{n-1}||| \ge \varepsilon \} \right) = 0$

for any $\varepsilon > 0$ and every $z_1, z_2, ..., z_{n-1} \in \mathrm{loc}^{\mathrm{st}_A}(x_n)$, because we get

$$|||x - x_n, z_1, z_2, ..., z_{n-1}|| - ||y - x_n, z_1, z_2, ..., z_{n-1}|||$$

$$\leq ||y - x_n, z_1, z_2, ..., z_{n-1}|| < \varepsilon$$

for almost all n. As a result, the hypothesis of Proposition 2 is satisfied. So, $y \in \log^{\operatorname{st}_A}(x_n)$, that is, $\log^{\operatorname{st}_A}(x_n)$ is closed.

Recall that the point y is an A-statistical limit point of the sequence (x_n) in n-normed space $(X, \|., ..., .\|)$ if there is a set $K = \{k_1 < k_2 < ...\} \subset \mathbb{N}$ such that $\delta_A(K) \neq 0$ and $\lim_{n\to\infty} \|x_{k_n} - y, z_1, z_2, ..., z_{n-1}\| = 0$. A point ξ is called an A-statistical cluster point if

$$\delta_A \left(\{ n \in \mathbb{N} : \| x_n - \xi, z_1, z_2, ..., z_{n-1} \| < \varepsilon \} \right) \neq 0$$

for each $\varepsilon > 0$ and every $z_1, z_2, ..., z_{n-1} \in X$.

We can give the following results because of the inequality

$$|||x_n - y, z_1, z_2, ..., z_{n-1}|| - ||x - y, z_1, z_2, ..., z_{n-1}||| \le ||x_n - x, z_1, z_2, ..., z_{n-1}||$$

Proposition 4. Let $y \in X$ be an A-statistical limit point (an A-statistical cluster point) of a sequence (x_n) in n-normed space $(X, \|., ..., .\|)$. Then the number $\|y - x, z_1, z_2, ..., z_{n-1}\|$ is an A-statistical limit point (an A-statistical cluster point) of the sequence $\{\|x_n - x, z_1, z_2, ..., z_{n-1}\|\}$ for each $x \in X$ and every nonzero $z_1, z_2, ..., z_{n-1} \in X$.

Proposition 5. All A-statistical limit points (A-statistical cluster points) of the Astatistically localized sequence (x_n) in n-normed space $(X, \|., ..., .\|)$ have the same distance from each point x of the A-statistical localor $\log^{\text{st}_A}(x_n)$.

Proof. Actually, if y_1, y_2 are two A-statistical limit points (A-statistical cluster points) of the sequence (x_n) in n-normed space $(X, \|., ..., .\|)$, then the numbers $\|y_1 - x, z_1, z_2, ..., z_{n-1}\|$ and $\|y_2 - x, z_1, z_2, ..., z_{n-1}\|$ are A-statistical limit points of the A-statistically convergent sequence $\|x - x_n, z_1, z_2, ..., z_{n-1}\|$. As a result, $\|y_1 - x, z_1, z_2, ..., z_{n-1}\| = \|y_2 - x, z_1, z_2, ..., z_{n-1}\|$.

Proposition 6. $\operatorname{loc}^{\operatorname{st}_A}(x_n)$ only contains one A-statistical limit (cluster) point of the sequence (x_n) in n-normed space $(X, \|., ..., .\|)$. In particular, everywhere localized sequence only has one A-statistical limit (cluster) point.

Proof. Let $x, y \in \text{loc}^{\text{st}_A}(x_n)$ be two A-statistical limit or cluster points of the sequence (x_n) in *n*-normed space $(X, \|., ..., .\|)$. Then, we have that

 $||x - x, z_1, z_2, ..., z_{n-1}|| = ||x - y, z_1, z_2, ..., z_{n-1}||$

from the Proposition 5. But $||x - x, z_1, z_2, ..., z_{n-1}|| = 0$. This means $||x - y, z_1, z_2, ..., z_{n-1}|| = 0$ for $x \neq y$. This is a contradiction.

Proposition 7. Let $y \in \text{loc}^{\text{st}_A}(x_n)$ be an A-statistical limit point of the sequence (x_n) . Then $x_n \stackrel{\text{st}_A}{\to} y$.

Proof. The sequence $\{\|x_n - y, z_1, z_2, ..., z_{n-1}\|\}$ A-statistically converges and some subsequence of this sequence converges to zero, i.e., $x_n \stackrel{st_A}{\to} y$.

Definition 8. Let (x_n) be the A-statistically localized sequence with the A-statistically localor $M = \log^{\text{st}_A}(x_n)$. The number

$$\mu = \inf_{x \in M} \left(st_A - \lim_{n \to \infty} \|x - x_n, z_1, z_2, ..., z_{n-1}\| \right)$$

is said to be the A-statistical barrier of (x_n) .

Theorem 1. Let (x_n) be the A-statistically localized sequence in n-normed space $(X, \|., ..., .\|)$. Then (x_n) is A-statistically Cauchy sequence if and only if its A-statistical barrier is equal to zero.

Proof. Let (x_n) be an A-statistically Cauchy sequence in *n*-normed space $(X, \|., ..., .\|)$. Then, there exists the set $K = \{k_1 < k_2 < ... < k_n < ...\} \subset \mathbb{N}$ such that $\delta_A(K) = 1$ and $\lim_{n,m\to\infty} \|x_{k_n} - x_{k_m}, z_1, z_2, ..., z_{n-1}\| = 0$. Hence, there exists $n_0 \in \mathbb{N}$ for each $\varepsilon > 0$ and every nonzero $z_1, z_2, ..., z_{n-1} \in X$ such that

$$\left\| x_{k_n} - x_{k_{n_0}}, z_1, z_2, ..., z_{n-1} \right\| < \varepsilon$$

for all $n \geq n_0$. Because an A-statistically Cauchy sequence is A-statistically localized everywhere, we get $st_A-\lim_{n\to\infty} \left\|x_n - x_{k_{n_0}}, z_1, z_2, ..., z_{n-1}\right\| \leq \varepsilon$, that is, $\mu \leq \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have $\mu = 0$.

In contrast, if $\mu = 0$ then there is $x \in M = \operatorname{loc}^{\operatorname{st}_A}(x_n)$ for each $\varepsilon > 0$ such that $||x, z_1, z_2, ..., z_{n-1}|| = st_A - \lim_{n \to \infty} ||x - x_n, z_1, z_2, ..., z_{n-1}|| < \frac{\varepsilon}{2}$ for every nonzero $z_1, z_2, \dots, z_{n-1} \in M$. At this stage,

$$\delta_A\left(\left[n \in \mathbb{N} : |||x, z_1, z_2, ..., z_{n-1}|| - ||x - x_n, z_1, z_2, ..., z_{n-1}||\right]\right) \geq \frac{\varepsilon}{2} - ||x, z_1, z_2, ..., z_{n-1}||\right]\right) = 0.$$

So,

$$\delta_A\left(\left\{n\in\mathbb{N}: \|x-x_n, z_1, z_2, ..., z_{n-1}\| \ge \frac{\varepsilon}{2}\right\}\right) = 0,$$

that is, $st_A-\lim_{n\to\infty} ||x-x_n, z_1, z_2, ..., z_{n-1}|| = 0$. Therefore, (x_n) is an A-statistically Cauchy sequence.

Theorem 2. Let (x_n) be A-statistically localized in itself and let (x_n) contain a A-nonthin Cauchy subsequence. Then (x_n) is an A-statistically Cauchy sequence in itself.

Proof. Let (x'_n) be a A-nonthin Cauchy subsequence of (x_n) . Without loss of generality we can suppose that all elements of (x'_n) are in $\operatorname{loc}^{\operatorname{st}_A}(x_n)$. Because (x'_n) is a Cauchy sequence by Theorem 1,

$$\inf_{x'_n} \lim_{m \to \infty} \|x'_m - x'_n, z_1, z_2, ..., z_{n-1}\| = 0.$$

In other hand, because (x_n) is A-statistically localized in itself, then

$$st_A - \lim_{m \to \infty} \|x_m - x'_n, z_1, z_2, \dots, z_{n-1}\| = st_A - \lim_{m \to \infty} \|x'_m - x'_n, z_1, z_2, \dots, z_{n-1}\| = 0.$$

This means

 $(X, \|., ..., .\|)$ is said to be

 $\dots < k_n \subset \dots$ of \mathbb{N} such

$$\mu = \inf_{x \in M} \left(st_A - \lim_{m \to \infty} \|x_m - x, z_1, z_2, ..., z_{n-1}\| \right) = 0$$

that is, (x_n) is an A-statistically Cauchy sequence in itself.

Let
$$x \in X$$
 and $\delta > 0$. Recall that the sequence (x_n) in *n*-normed space $[x_n, ..., ...]$ is said to be A-statistically bounded if there is a subset $K = \{k_1 < k_2 < k_n \subset ...\}$ of \mathbb{N} such that $\delta_A(K) = 1$ and $(x_{k_n}) \subset U_\delta(0, z_1, z_2, ..., z_{n-1})$, where $(0, x_1, x_2, ..., x_{n-1})$ is some pair therefore a statistical sequence $(x_n) \in U_\delta(0, z_1, z_2, ..., z_{n-1})$.

<

 $U_{\delta}(0, z_1, z_2, ..., z_{n-1})$ is some neighborhood of the origin. It is obvious that (x_{k_n}) is a bounded sequence in X and it has a localized in itself subsequence. As a result, the following statement is correct:

Theorem 3. Each A-statistically bounded sequence in n-normed space $(X, \|., ..., .\|)$ has an A-statistically localized in itself subsequence.

Definition 9. An infinite subset $L \subset (X, \|., .\|)$ is called thick relatively to a nonempty subset $Y \subset X$ if for each $\varepsilon > 0$ there is the a point $y \in Y$ such that the neighborhood $U_{\varepsilon}(0, z_1, z_2, ..., z_{n-1})$ has infinitely many points of L. In particular, if the set L is thick relatively to its subset $Y \subset L$ then L is said to be thick in itself.

Theorem 4. The following statements are equivalent to each other in n-normed space $(X, \|., ..., .\|)$:

(i) Each bounded subset of X is totally bounded.

(ii) Each bounded infinite set of X is thick in itself.

(iii) Each A-statistically localized in itself sequence in X is an A-statistically Cauchy sequence.

Proof. It is obvious that (i) implies (ii). Now, we prove that (ii) implies (iii). Let $(x_n) \subset X$ be an A-statistically localized in itself. Then (x_n) is A-statistically bounded sequence in X. Then here is an infinite set L of points of (x_n) such that L is a bounded subset of X. By the supposition, the set L is thick in itself. So, we can choose $x_k \in L$ for every $\varepsilon > 0$ such that the neighborhood $U_{\varepsilon}(0, z_1, z_2, ..., z_{n-1})$ contains infinitely many points of X, say $x'_1, ..., x'_n, ...$ The sequence $(||x'_n - x_k, z_1, z_2, ..., z_{n-1}||)$ A-statistically converges and

$$st_A - \lim_{n \to \infty} \|x'_n - x_K, z_1, z_2, \dots, z_{n-1}\| \le \varepsilon$$

for the sequence (x'_n) . Therefore, the A-statistically barrier of (x_n) is equal to zero. Then (x_n) is a Cauchy sequence.

Suppose that (iii) is satisfied, but (i) is not. Then, there is a subset $L \subset X$ such that L is not totally bounded. This means that there exists $\varepsilon > 0$ and a sequence $(x_n) \subset L$ such that $||x_n - x_m, z_1, z_2, ..., z_{n-1}|| > \varepsilon$ for any $n \neq m$ and every nonzero $z_1, z_2, ..., z_{n-1} \in L$.

Because (x_n) is A-statistically bounded by Theorem 3, it has an A-statistically localized in itself sequence (x'_n) . Due to $||x'_n - x'_m, z_1, z_2, ..., z_{n-1}|| > \varepsilon$ for any $n \neq m$, the subsequence is not an A-statistically Cauchy sequence. This contradicts (iii). Therefore, (iii) implies (ii), which finish the proof.

From Theorem 2 and 3, we get the property (iii) is equivalent to

(iv) each A-statistically bounded sequence has an A-statistically Cauchy subsequence.

Definition 10. A sequence (x_n) in n-normed space $(X, \|., ..., .\|)$ is said to be uniformly A-statistically localized on the subset L of X if the sequence $\{\|x - x_n, z_1, z_2, ..., z_{n-1}\|\}$ uniformly A-statistically converges for all $x \in L$ and every nonzero $z_1, z_2, ..., z_{n-1}$ in L.

Proposition 8. Let (x_n) be uniformly A-statistically localized on the set $L \subset X$ and $w \in Y$ is such that for every $\varepsilon > 0$ and every nonzero $z_1, z_2, ..., z_{n-1}$ in L, there is $y \in L$ satisfying the property

 $\delta_A \left(\{ n \in \mathbb{N} : |||w - x_n, z_1, z_2, ..., z_{n-1}|| - ||y - x_n, z_1, z_2, ..., z_{n-1}||| \ge \varepsilon \} \right) = 0.$

Then $w \in \text{loc}^{\text{st}_A}(x_n)$ and (x_n) is uniformly A-statistically localized on a set that contains such points w.

REFERENCES

- Connor, B. J., The statistical and strong p-Cesaro convergence of sequences, Analysis (Munich), 8 (1988), 47-63.
- [2] Connor, J., Kline, J., On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl., 197 (1996), 392-399.
- [3] Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- [4] Fridy, J. A., On statistical convergence, Analysis (Munich), 5 (1985), 301-313.
- [5] Gähler, S., 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115-148.
- [6] Gähler, S., Lineare 2-normierte räume, Math. Nachr., 28(1-2) (1964), 1-43.
- [7] G\u00e4hler, S., Untersuchungen \u00fcber verallgemeinerte m-metrische r\u00e4ume. I., Math. Nachr., 40(1-3) (1969), 165-189
- [8] Gähler, S., Siddiqi, A. H., Gupta, S.C., Contributions to non-archimedean functional analysis, Math. Nachr., 69 (1963), 162-171.
- [9] Gunawan, H., Mashadi, On n-normed Spaces, Int. J. Math. Sci., 27(10) (2001), 631-639.
- [10] Gürdal, M., Pehlivan, S., The statistical convergence in 2-Banach spaces, Thai. J. Math., 2(1) (2004), 107-113.
- [11] Gürdal, M., Pehlivan, S., The statistical convergence in 2-normed spaces, Southeast Asian Bull. Math., 33(2) (2009), 257-264.
- [12] Gürdal, M., Açık, I., On *I*-cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2) (2008), 349-354.
- [13] Gürdal, M., Şahiner, A., Statistical approximation with a sequence of 2-Banach spaces, Math. Comput. Modelling, 55(3-4) (2012), 471-479.
- [14] Gürdal, M., Şahiner, A., Açık, I., Approximation theory in 2-Banach spaces, Nonlinear Anal., 71(5-6) (2009), 1654-1661.
- [15] Gürdal, M., Yamancı, U., Statistical convergence and some questions of operator theory, Dynam. Syst. Appl., 24 (2015), 305-312.
- [16] Kadak, U., Mohiuddine, S. A., Generalized statistically almost convergence based on the difference operator which includes the (p,q)-gamma function and related approximation theorems, *Results Math.*, (2018), 73:9.
- [17] Kolk, E., The statistical convergence in Banach spaces, Acta et Commentationes Universitatis Tartuensis, 928 (1991), 41-52.
- [18] Krivonosov, L. N., Localized sequences in metric spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 4 (1974), 45-54; Soviet Math. (Iz. VUZ), 18(4), 37-44.
- [19] Mohiuddine, S. A., Statistical weighted A-summability with application to Korovkin's type approximation theorem, J. Inequal. Appl., (2016), 2016:101.
- [20] Mohiuddine, S. A., Alamri, B. A. S., Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, *Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM*, 113 (2019), 1955-1973.
- [21] Mohiuddine, S. A., Asiri, A., Hazarika, B., Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., 48(5) (2019), 492-506.
- [22] Mohiuddine, S. A., Hazarika, B., Alghamdi, M. A., Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, *Filomat*, 33(14) (2019), 4549-4560.
- [23] Mohiuddine, S. A., Şevli, H., Cancan, M., Statistical convergence in fuzzy 2-normed space, J. Comput. Anal. Appl., 12(4) (2010), 787-798.
- [24] Mursaleen, M., On statistical convergence in random 2-normed spaces, Acta Sci. Math. (Szeged), 76 (2010), 101-109.

- [25] Nabiev, A. A., Savaş, E., Gürdal, M., Statistically localized sequences in metric spaces. J. App. Anal. Comp., 9(2) (2019), 739-746.
- [26] Nabiev, A. A., Savaş, E., Gürdal, M., *I*-localized sequences in metric spaces, *Facta Univ. Ser. Math. Inform.*, 35(2) (2020), 459-469.
- [27] Rath, D., Tripathy, B.C., On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math., 25(4) (1994), 381-386.
- [28] Raymond, W. F., Cho, Ye. J., Geometry of linear 2-normed spaces, Huntington, N.Y. Nova Science Publishers, 2001.
- [29] Šalát, T., On statistically convergent sequences of real numbers, Mathematica Slovaca, 30(2) (1980), 139-150.
- [30] Savaş, E., A-statistical convergence of order α via φ-function, Appl. Anal. Discrete Math., 13 (2019), 918-926.
- [31] Savaş E. and Gürdal M., Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 27(4) (2014), 1621-1629.
- [32] Savaş E., Gürdal M., Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell. Fuzzy Syst., 27(4) (2014), 2067-2075.
- [33] Savaş, E., Gürdal, M., Ideal convergent function sequences in random 2-normed spaces, Filomat, 30(3) (2016), 557-567.
- [34] Savaş, E., Yamancı, U., Gürdal, M., *I*-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces, *Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.*, 68(2) (2019), 2324-2332.
- [35] Savaş, R., λ -double statistical convergence of functions, *Filomat*, 33(2) (2019), 519-524.
- [36] Savaş, R., Öztürk, M., On generalized ideal asymptotically statistical equivalent of order α for functions, Ukr. Math. J., 70 (2019), 1901-1912.
- [37] Savaş, R., Sezer, S. A., Tauberian theorems for sequences in 2-normed spaces, *Results Math.*, 72 (2017), 1919-1931.
- [38] Savaş, R., Patterson, R. F., *I*₂-lacunary strongly summability for multidimensional measurable functions, *Pub. I. Math-Beograd*, 107(121) (2020), 93-107.
- [39] Şahiner, A., Gürdal, M., Yiğit, T., Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. Appl., 61(3) (2011), 683-689.
- [40] Siddiqi, A. H., 2-normed spaces, Aligarh Bull. Math., (1980), 53-70.
- [41] Vulich, B., On a generalized notion of convergence in a Banach space, Ann. Math., 38(1) (1937), 156-174.
- [42] Yamancı, U., Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math., 22 (2016), 199-207.
- [43] Yamancı, U., Nabiev, A. A., Gürdal, M., Statistically localized sequences in 2-normed spaces, Honam Math. J., 42(1) (2020), 161-173.
- [44] Yamancı, U., Savaş, E., Gürdal, M., I-localized sequences in two normed spaces, Malays. J. Math. Sci., 14(3) (2020), 491-503.
- [45] Yegül, S., Dündar, E., On statistical convergence of sequences of functions in 2-normed spaces, J. Classical Anal., 10(1) (2017), 49-57.
- [46] Yegül, S., Dündar, E., Statistical convergence of double sequences of functions and some properties in 2-normed spaces, *Facta Univ. Ser. Math. Inform.*, 33(5) (2018), 705-719.