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Abstract. In 1974, Krivonosov defined the concept of localized sequence that
is defined as a generalization of Cauchy sequence in metric spaces. In this
present work, the A-statistically localized sequences in n-normed spaces are de-
fined and some main properties of A-statistically localized sequences are given.
Also, it is shown that a sequence is A-statistically Cauchy iff its A-statistical
barrier is equal to zero. Moreover, we define the uniformly A-statistically
localized sequences on n-normed spaces and investigate its relationship with
A-statistically Cauchy sequences.

1. Introduction and Background

In 1922, Banach defined normed linear spaces as a set of axioms. Since then,
mathematicians keep on trying to find a proper generalization of this concept.
The first notable attempt was by Vulich [41]. He introduced K-normed space in
1937. In another process of generalization, Siegfried Gähler [5] introduced 2-metric
in 1963. As a continuation of his research, Gähler [6] proposed a mathematical
structure, called 2-normed space, as a generalization of normed linear spaces. A.H.
Siddiqi delivered a series of lectures on this theme in various conferences in India
and Iran. His joint paper with Gähler and Gupta [8] also provide valuable results
related to the theme of this paper. Results up to 1977 were summarized in the
survey paper by Siddiqi [40]. As a further extension, he introduced n-metric and
n-norm in his subsequent works Gähler [7] and regarded normed linear spaces as 1-
normed spaces. However, many researchers disagree to consider 2-norm and n-norm
as generalization of norm. In spite of this disagreement, several researchers have
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worked on this topic for decades Gürdal and Pehlivan [10,11], Gürdal and Açık [12],
Gürdal and Şahiner [13], Gürdal et al. [14], Mohiuddine et al. [23], Mursaleen [24],
Savaş and Sezer [37], Savaş and Gürdal [31—33], Savaş et al. [34] and Yegül and
Dündar [45,46]. They have found out many interesting properties of this space and
lots of fixed point theorems are established.
This paper was inspired by Krivonosov [18], where the concept of a localized

sequence was introduced, which can be treated as a generalization of a Cauchy
sequence in metric spaces. We will often quote some results from Krivonosov [18],
that can be easily transferred to the concept of A-statistically localized sequence
and the A-statistical localor of a sequence in n-normed space. Let X is a metric
space with a metric d(·, ·) and (xn) is a sequence of points in X. It is an interesting
fact that if F : X → X is a mapping with the condition d(Fx, Fy) ≤ d(x, y)
for all x, y ∈ X, then for every x ∈ X the sequence (Fnx) is localized at every
fixed point of the mapping F. This means that fixed points of the mapping F is
contained in the localor of the sequence (Fnx) . Motivating the above facts and the
fact that the localor of a sequence can be extended by changing the usual limit to
the statistical limit (see Fridy [4]) of a sequence. Recently, the authors in [25] have
extended the concepts and results, which were given in [18], by changing the usual
limit to the statistical limit in metric spaces. This definition has been extended to
statistical localized and ideal localized in metric space Nabiev et al. [25,26] and in
2-normed spaces Yamancıet al. [43,44], and they obtained interested results about
this concept.
This paper consists of three sections with the new results in sections 2-3. In

Section 2 the concept of the A-statistically localized sequence and the A-statistical
localor of a sequence in n-normed space is introduced and fundamental properties
of A-statistically localized sequences are studied. In Section 3, we prove that a
sequence is A-statistically Cauchy sequence if and only if its A-statistical barrier is
equal to zero. Moreover, we define the uniformly A-statistically localized sequences
on n-normed spaces and investigate its relationship with A-statistically Cauchy
sequences and prove that in n-normed linear spaces each A-statistically bounded
sequence has everywhere A-statistically localized subsequence.
Throughout this paper, let A be a nonnegative regular matrix and N will denote

the set of all positive integers. Let X and Y be two sequence spaces and A = (ank)

be an infinite matrix. If for each x ∈ X the series An(x) =

∞∑
k=1

ankxk converges

for each n and the sequence Ax = {An(x)} ∈ Y, we say that A maps X into Y.
By (X,Y ) we denote the set of all matrices which maps X into Y. In addition if
the limit is preserved, then we denote the class of such matrices by (X,Y )reg . A
matrix A is called regular if A ∈ (c, c) and limk→∞Ak(x) = limk→∞ xk for all
x = {xk}k∈N ∈ c when c, as usual, stands for the set of all convergent sequences.
It is well known that the necessary and suffi cient condition for A to be regular are
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i) ‖A‖ = supn
∑
k

|ank | <∞;

ii) lim ank = 0, for each k;

iii) limn

∑
k

ank = 1.

The idea of A-statistical convergence was introduced by Kolk [17] using a non-
negative regular matrix A. For a nonnegative regular matrix A = (ank), a set
K ⊂ N will be said to have A-density if δA(K) = limn→∞

∑
k∈K

ank exists. The

real number sequence x = {xk}k∈N is said to be A-statistically convergent to
L provided that for every ε > 0 the set K(ε) = {k ∈ N : |xk − L| > ε} has A-
density zero. Note that the idea of A-statistical convergence is an extension of the
idea of statistical convergence introduced by Fast [3] using the idea of asymptotic
density and later studied by Fridy [4], Connor [1], Salat [29], Gürdal and Ya-
mancı[15], Mohiuddine and Alamri [20], Yamancıand Gürdal [42] and Savaş [30]
(also, see [16,19,21,22,35,36,38]). Let K = {k (j) : k (1) < k (2) < k (3) < ...} ⊂ N
and {x}K =

{
xk(j)

}
be a subsequence of x. If the set K has A-density zero (i.e.

δA(K) = 0) the subsequence {x}K of the sequence x is called an A-thin sub-
sequence. If the set K does not have A-density zero, the subsequence {x}K is
called an A-nonthin subsequence of x. The statement δA (K) 6= 0 means that either
δA (K) > 0 or δA (K) is not defined (i.e. K does not have A-density).
In [2], Connor and Kline extended the concept of a statistical limit (cluster) point

of a number sequence x to a A-statistical limit (cluster) point replacing the matrix
C1 by a nonnegative regular matrix A. Recall that the number λ is a A-statistical
limit point of the number sequence x provided that there is a subset K = {k (j)}∞j=1

of positive integers with δA (K) 6= 0 and xk(j) → λ is j →∞ (see [2]). The number
γ is a A-statistical cluster point of the number sequence x = (xk) provided that for
every ε > 0, δA(Kε) 6= 0 where Kε := {k ∈ N : |xk − γ| < ε} (see [2]).
Now we recall the n-normed space which was introduced in [9] and some defini-

tions on n-normed space (see [39]).

Definition 1. Let n ∈ N and X be a real vector space of dimension d ≥ n. (Here we
allow d to be infinite.) A real-valued function ‖., ..., .‖ on Xnsatisfying the following
four properties

(i) ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent;
(ii) ‖x1, x2, ..., xn‖ is invariant under permutation;
(iii) ‖x1, x2, ..., xn−1, αxn‖ = |α| ‖x1, x2, ..., xn−1, xn‖, for any α ∈ R;
(iv) ‖x1, x2, ..., xn−1, y + z‖ ≤ ‖x1, x2, ..., xn−1, y‖+ ‖x1, x2, ..., xn−1, z‖ ,

is called an n-norm on X and the pair (X, ‖., ..., .‖) is called an n-normed space.

It is well-known fact from the following corollary that n-normed spaces are ac-
tually normed spaces (see also [7]).
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Corollary 1. ( [9]) Every n-normed space is an (n − r)-normed space for all
r = 1, ..., n− 1. In particular, every n-normed space is a normed space.

Example 1. A standard example of an n-normed space is X = Rn equipped with
the n-norm is

‖x1, x2, ..., xn−1, xn‖ := the volume of the n-dimensional parallelepiped spanned

by x1, x2, ..., xn−1, xn in X.

Observe that in any n-normed space (X, ‖., ..., .‖) we have

‖x1, x2, ..., xn−1, xn‖ ≥ 0

and

‖x1, x2, ..., xn−1, xn‖ = ‖x1, x2, ..., xn−1, xn + α1x1 + ...+ αn−1xn−1‖

for all x1, x2, ..., xn ∈ X and α1, ..., αn−1 ∈ R.
Let X be a real inner product space of dimension d ≥ n. Equip X with the

standard n-norm

‖x1, x2, ..., xn‖S :=

∣∣∣∣∣∣∣
〈x1, x1〉 · · · 〈x1, xn〉
...

. . .
...

〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣∣∣∣∣
1/2

,

where 〈., .〉 denotes the inner product on X. If X = Rn, then this n-norm is the
same as the n-norm in Example 1.

Definition 2. A sequence {xk} in an n-normed space (X, ‖., ..., .‖) is said to con-
vergent to an l ∈ X if

lim
k→∞

‖xk − l, z1, z2, ..., zn−1‖ = 0

for every z1, z2, ..., zn−1 ∈ X.

Definition 3. A sequence {xk} in an n-normed space (X, ‖., ..., .‖) is called a
Cauchy sequence if

lim
k,l→∞

‖xk − xl, z1, z2, ..., zn−1‖ = 0

for every z1, z2, ..., zn−1 ∈ X.

Let a, x1, ..., xn−1 ∈ X and for each ε > 0 define the ε-neighborhood of the points
a, x1, ..., xn−1 as the set

Uε (a, x1, ..., xn−1) = {z : ‖a− z, x1 − z, ..., xn−1 − z‖ < ε} .

As it is known (see [28]) that the family of all sets

WΣ =
n⋂
i=1

Uεi
(
a, x1i, ..., x(n−1)i

)



1488 M.GURDAL, N. SARI, E. SAVAŞ

with arbitrary pairs Σ =
{(
x11, ..., x(n−1)1, ε1

)
, ...,

(
x1n, ..., x(n−1)n, εn

)}
forms a

complete system of neighborhoods of the point a ∈ X. Note that a set M in a
linear n-normed space (X, ‖., ..., .‖) is said to be bounded if β (M) <∞, where

β (M) = sup {‖a− z, x1 − z, ..., xn−1 − z‖ : a, x1, ..., xn−1, z ∈M} .

We also suppose that for any ε > 0 there exists a neighborhood U of 0 such that
‖x∗1, x∗2, ..., x∗n‖ < ε for all points x∗1, x

∗
2, ..., x

∗
n in U.

2. Definitions and notations

In this section, we introduce some basic definitions and notations in n-normed
space (X, ‖., ..., .‖).

Definition 4. (a) A sequence (xn) in n-normed space (X, ‖., ..., .‖) is said to be A-
statistically localized in the subset K ⊂ X if the sequence ‖xn − x, z1, z2, ..., zn−1‖
A-statistically converges for all x, z1, z2, ..., zn−1 ∈ K.

(b) the maximal set on which a sequence is A-statistically localized is said to be
a A-statistical localor of the sequence. We denote by locstA (xn) the A-statistically
localor of the sequence (xn).

(c) A sequence (xn) in n-normed space (X, ‖., ..., .‖) is said to be A-statistically
localized everywhere if the A-statistical localor of (xn) coincides with X.

(d) A sequence (xn) in n-normed space (X, ‖., ..., .‖) is called A-statistically lo-
calized in itself if the A-statistically localor contains xn for almost all n, that is,

δA
({
n : xn /∈ locstA (xn)

})
= 0 or δA

({
n : xn ∈ locstA (xn)

})
= 1.

(e) A sequence (xn) is said to be A-statistically localized if the locstA (xn) is not
empty.

Definition 5. Let (xn) be a sequence in an n-normed space (X, ‖., ..., .‖). Then the
sequence (xn) is said to be A-statistical convergent to L if for each ε > 0 and any
nonzero z1, z2, ..., zn−1 in X,

δA ({k ∈ N : ‖xn − L, z1, z2, ..., zn−1‖ ≥ ε}) = 0.

In this case we write xn
stA→ L or

stA − lim
n→∞

‖xn − L, z‖ = 0.

Definition 6. A sequence (xn) in a linear n-normed space (X, ‖., ..., .‖) is said
to be a A-statistically Cauchy sequence in X if for every ε > 0 and any nonzero
z1, z2, ..., zn−1 ∈ X there exists a number N = N (ε, z1, z2, ..., zn−1) such that

δA ({k ∈ N : ‖xk − xm, z1, z2, ..., zn−1‖ ≥ ε}) = 0

for all m ≥ N.
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We can see from the above definitions that every A-statistically Cauchy se-
quence in n-normed space (X, ‖., ..., .‖) is A-statistically localized everywhere in
(X, ‖., ..., .‖). Actually, due to
|‖xn − L, z1, z2, ..., zn−1‖ − ‖x− xm, z1, z2, ..., zn−1‖| 6 ‖xn − xm, z1, z2, ..., zn−1‖ ,
we get

{n ∈ N : ‖xn − xm, z1, z2, ..., zn−1‖ > ε}
⊃ {n ∈ N : |‖xn − L, z1, z2, ..., zn−1‖ − ‖xm − L, z1, z2, ..., zn−1‖| > ε} .

Hence, the number sequence ‖xn − L, z1, z2, ..., zn−1‖ is an A-statistically Cauchy
sequence, then ‖xn − L, z1, z2, ..., zn−1‖ is A-statistically convergent for every L ∈
X and every nonzero z ∈ X. So, ‖xn − L, z1, z2, ..., zn−1‖ in n-normed space
(X, ‖., ..., .‖) is A-statistically localized everywhere.

Lemma 1. A sequence (xn) in linear n-normed space (X, ‖., ..., .‖) is an A-statistically
Cauchy sequence if and only if there exists a subsequence K = (kn) of N with
δA (K) = 1 such that

lim
n,m→∞

‖xkn − xkm , z1, z2, ..., zn−1‖ = 0

for all z1, z2, ..., zn−1 in X.

Proof. Let (xn) be an A-statistically Cauchy sequence in (X, ‖., ..., .‖). By defini-
tion, we can construct a decreasing sequence

(Kj) ⊂ N (Kj+1 ⊂ Kj , j = 1, 2, ...)

such that δA (Kj) = 1 and ‖xk1 − xk2 , z1, z2, ..., zn−1‖ ≤
1

j
for all z1, z2, ..., zn−1 ∈

X, k1, k2 ∈ Kj , j ∈ N. Further, let v1 ∈ K1. Then we can find v2 ∈ K2 with

v2 > v1 such that
|K2 (n)|

n
>

1

2
for each n > v2. Inductively, we can construct a

subsequence (vj) ∈ N such that vj ∈ Kj for each j ∈ N and
|Kj (n)|

n
>
j − 1

j

for each n ≥ vj . Then, as in [27], it is easy to prove that δA (K) = 1 if

K = {k ∈ N : 1 ≤ k < v1} ∪
[ ⋃
j∈N
{k : vj ≤ k < vj+1}

⋂
Kj

]
.

Now, for ε > 0 choose j ∈ N such that j >
1

ε
. If m,n ∈ K and m,n > vj we

can find r, s ≥ j such that vr ≤ m < vr+1, vs ≤ n < vs+1. Hence, m ∈ Kr and
n ∈ Ks. For definite, suppose that r ≤ s. Then Ks ⊂ Kr which implies m,n ∈ Kr.
Therefore, for every z ∈ X we have

‖xm − xn, z1, z2, ..., zn−1‖ ≤
1

r
≤ 1

j
< ε.
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Then we have

lim
n,m→∞
m,n∈K

‖xm − xn, z1, z2, ..., zn−1‖ = 0.

Let us prove the converse. Suppose that K = (kn) ⊂ N is a subsequence of
subsets N such that δA (K) = 1 and lim

n,m→∞
‖xkn − xkm , z1, z2, ..., zn−1‖ = 0 for

all z in X. Then, for any ε > 0 there exists p0 = p0 (ε, z) ∈ N such that
‖xkn − xkm , z1, z2, ..., zn−1‖ < ε for all n,m ≥ p0. This yields{

k ∈ N :
∥∥xk − xkp0 , z1, z2, ..., zn−1

∥∥ ≥ ε} ⊂ N\ {kp0+1, kp0+2, ...} .

Hence

δA
{
k ∈ N :

∥∥xk − xkp0 , z1, z2, ..., zn−1

∥∥ ≥ ε} ≤ δA (N\ {kp0+1, kp0+2, ...}) = 0.

So, (xk) is an A-statistically Cauchy sequence in X. �

Lemma 2. A sequence (xk) in (X, ‖., ..., .‖) is a A-statistically Cauchy sequence
if and only if for every neighborhood U of the origin there is an integer N (U)
such that n,m ≥ N (U) implies that xkn − xkm ∈ U , where K = (kn) ⊂ N and
δA (K) = 1.

Proof. Let z ∈ X and ε > 0. Suppose that there is K = (kn) ⊂ N such that
xkn − xkm ∈ Uε (0, z1, z2, ..., zn−1) for n,m ≥ N (U), where Uε (0, z1, z2, ..., zn−1)
is a neighborhood of zero. This implies ‖xkn − xkm , z1, z2, ..., zn−1‖ < ε for every
n,m ≥ N (U). Then lim

n,m→∞
‖xkn − xkm , z1, z2, ..., zn−1‖ = 0, i.e., (xk) is an A-

statistically Cauchy sequence in X.
Conversely, assume that lim

n,m→∞
‖xkn − xkm , z1, z2, ..., zn−1‖ = 0, where K =

(kn) ⊂ N and δA (K) = 1. Let WΣ (0) be an arbitrary neighborhood of 0 with
Σ =

{(
b11, ..., b(n−1)1, α1

)
, ...,

(
b1r, ..., b(n−1)r, αr

)}
. By hypothesis, we have

lim
n,m→∞

∥∥xkn − xkm , b1j , b2j , ..., b(n−1)j

∥∥ = 0 for j = 1, ..., r.

Thus for each αj there exists an integer Nj such that∥∥xkn − xkm , b1j , b2j , ..., b(n−1)j

∥∥ < αj

for n,m ≥ Nj . Let N = max {N1, ..., Nr}. Then∥∥xkn − xkm − b1j , ..., xkn − xkm − b(n−1)j , xkn − xkm
∥∥

=
∥∥xkn − xkm , b1j , b2j , ..., b(n−1)j

∥∥ < αj

for n,m ≥ N implies that xkn − xkm ∈ WΣ (0) for n,m ≥ N and thus it follows
that (xk) is an A-statistically Cauchy sequence in X. �
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3. Main Results

Proposition 1. Let (xn) be an A-statistically localized sequence in linear n-normed
space (X, ‖., ..., .‖). Then (xn) is A-statistically bounded in X.

Proof. Let (xn) be an A-statistically localized sequence. So, the number sequence
(‖xn − L, z1, z2, ..., zn−1‖) A-statistically converges for some L ∈ X and every
z ∈ X. Then the number sequence (‖xn − L, z1, z2, ..., zn−1‖) is A-statistically
bounded, i.e., there is S > 0 such that

δA ({n ∈ N : ‖xn − L, z1, z2, ..., zn−1‖ ≥ S}) = 0.

This implies that almost all elements of (xk) are located in the neighborhood
US (0, z1, z2, ..., zn−1) of the origin. Then, sequence (xk) is A-statistically bounded
in X. �

Proposition 2. Let M = locstA (xn) and the point y ∈ X be such that there exists
x ∈M for any ε > 0 and every nonzero z1, z2, ..., zn−1 ∈M satisfying

δA ({n ∈ N : |‖x− xn, z1, z2, ..., zn−1‖ − ‖y − xn, z1, z2, ..., zn−1‖| > ε}) = 0. (1)

Then y ∈M .

Proof. To show that the sequence βn = ‖xn − y, z1, z2, ..., zn−1‖ satisfies the A-
statistically Cauchy criteria is enough. Let ε > 0 and x ∈ M = locstA (xn) is
a point that has the property (1). Because the sequence ‖xn − x, z1, z2, ..., zn−1‖
satisfying the property (1) is A-statistically Cauchy sequence, then there exists a
subsequence K = (kn) of N with δA (K) = 1 such that

|‖x− xkn , z1, z2, ..., zn−1‖ − ‖y − xkn , z1, z2, ..., zn−1‖| → 0

and
|‖xkn − x, z1, z2, ..., zn−1‖ − ‖xkm − x, z1, z2, ..., zn−1‖| → 0

as m,n → ∞. Clearly, there exists n0 ∈ N for any ε > 0 and every nonzero
z1, z2, ..., zn−1 ∈M such that for all n ≥ n0, m ≥ m0, we get

|‖x− xkn , z1, z2, ..., zn−1‖ − ‖y − xkn , z1, z2, ..., zn−1‖| <
ε

3
(2)

|‖x− xkn , z1, z2, ..., zn−1‖ − ‖x− xkm , z1, z2, ..., zn−1‖| <
ε

3
. (3)

From (2) , (3) and (4)

|‖y − xkn , z1, z2, ..., zn−1‖ − ‖y − xkm , z1, z2, ..., zn−1‖|
≤ |‖y − xkn , z1, z2, ..., zn−1‖ − ‖x− xkn , z1, z2, ..., zn−1‖|
+ |‖x− xkn , z1, z2, ..., zn−1‖ − ‖x− xkm , z1, z2, ..., zn−1‖|
+ |‖x− xkm , z1, z2, ..., zn−1‖ − ‖y − xkn , z1, z2, ..., zn−1‖| (4)

we have that

|‖y − xkn , z1, z2, ..., zn−1‖ − ‖y − xkm , z1, z2, ..., zn−1‖| < ε (5)
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for all n ≥ n0, m ≥ n0, i.e.,

|‖y − xkn , z1, z2, ..., zn−1‖ − ‖y − xkm , z1, z2, ..., zn−1‖| → 0 as m,n→∞
for the subset K = (kn) ⊂ N with δA (K) = 1. This means that the sequence
‖y − xn, z1, z2, ..., zn−1‖ is an A-statistically Cauchy sequence, which finishes the
proof. �
Definition 7. A point a in a n-normed space (X, ‖., ..., .‖) is called a limit point of a
set M in X if for an arbitrary Σ =

{(
x11, ..., x(n−1)1, ε1

)
, ...,

(
x1n, ..., x(n−1)n, εn

)}
there is a point aΣ ∈M , aΣ 6= a such that aΣ ∈WΣ (a) .

Moreover, a subset Y ⊂ X is called a closed subset of X if Y contains every its
limit point. If Y 0 is the set of all points of a subset Y ⊂ X, then the set Y = Y ∪Y 0

is called the closure of the set Y .

Proposition 3. A-statistically localor of any sequence is a closed subset of the
n-normed space (X, ‖., ..., .‖) .

Proof. Let y ∈ locstA (xn) . Then, for arbitrary

Σ =
{(
x11, ..., x(n−1)1, ε1

)
, ...,

(
x1n, ..., x(n−1)n, εn

)}
there is a point x ∈ locstA (xn) such that x 6= y and x ∈WΣ (y). Hence

δA ({n ∈ N : |‖x− xn, z1, z2, ..., zn−1‖ − ‖y − xn, z1, z2, ..., zn−1‖| > ε}) = 0

for any ε > 0 and every z1, z2, ..., zn−1 ∈ locstA (xn), because we get

|‖x− xn, z1, z2, ..., zn−1‖ − ‖y − xn, z1, z2, ..., zn−1‖|
≤ ‖y − xn, z1, z2, ..., zn−1‖ < ε

for almost all n. As a result, the hypothesis of Proposition 2 is satisfied. So,
y ∈ locstA (xn) , that is, locstA (xn) is closed. �
Recall that the point y is an A-statistical limit point of the sequence (xn) in

n-normed space (X, ‖., ..., .‖) if there is a set K = {k1 < k2 < ...} ⊂ N such that
δA (K) 6= 0 and limn→∞ ‖xkn − y, z1, z2, ..., zn−1‖ = 0. A point ξ is called an A-
statistical cluster point if

δA ({n ∈ N : ‖xn − ξ, z1, z2, ..., zn−1‖ < ε}) 6= 0

for each ε > 0 and every z1, z2, ..., zn−1 ∈ X.
We can give the following results because of the inequality

|‖xn − y, z1, z2, ..., zn−1‖ − ‖x− y, z1, z2, ..., zn−1‖| ≤ ‖xn − x, z1, z2, ..., zn−1‖ .

Proposition 4. Let y ∈ X be an A-statistical limit point (an A-statistical clus-
ter point) of a sequence (xn) in n-normed space (X, ‖., ..., .‖). Then the num-
ber ‖y − x, z1, z2, ..., zn−1‖ is an A-statistical limit point (an A-statistical cluster
point) of the sequence {‖xn − x, z1, z2, ..., zn−1‖} for each x ∈ X and every nonzero
z1, z2, ..., zn−1 ∈ X.
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Proposition 5. All A-statistical limit points (A-statistical cluster points) of the A-
statistically localized sequence (xn) in n-normed space (X, ‖., ..., .‖) have the same
distance from each point x of the A-statistical localor locstA (xn) .

Proof. Actually, if y1, y2 are two A-statistical limit points (A-statistical cluster
points) of the sequence (xn) in n-normed space (X, ‖., ..., .‖), then the numbers
‖y1 − x, z1, z2, ..., zn−1‖ and ‖y2 − x, z1, z2, ..., zn−1‖ are A-statistical limit points
of the A-statistically convergent sequence ‖x− xn, z1, z2, ..., zn−1‖ . As a result,
‖y1 − x, z1, z2, ..., zn−1‖ = ‖y2 − x, z1, z2, ..., zn−1‖ . �
Proposition 6. locstA (xn) only contains one A-statistical limit (cluster) point
of the sequence (xn) in n-normed space (X, ‖., ..., .‖) . In particular, everywhere
localized sequence only has one A-statistical limit (cluster) point.

Proof. Let x, y ∈ locstA (xn) be two A-statistical limit or cluster points of the
sequence (xn) in n-normed space (X, ‖., ..., .‖). Then, we have that

‖x− x, z1, z2, ..., zn−1‖ = ‖x− y, z1, z2, ..., zn−1‖
from the Proposition 5. But ‖x− x, z1, z2, ..., zn−1‖ = 0. This means
‖x− y, z1, z2, ..., zn−1‖ = 0 for x 6= y. This is a contradiction. �
Proposition 7. Let y ∈ locstA (xn) be an A-statistical limit point of the sequence

(xn). Then xn
stA→ y.

Proof. The sequence {‖xn − y, z1, z2, ..., zn−1‖} A-statistically converges and some
subsequence of this sequence converges to zero, i.e., xn

stA→ y. �
Definition 8. Let (xn) be the A-statistically localized sequence with the A-statistically
localor M = locstA (xn). The number

µ = inf
x∈M

(
stA- lim

n→∞
‖x− xn, z1, z2, ..., zn−1‖

)
is said to be the A-statistical barrier of (xn) .

Theorem 1. Let (xn) be the A-statistically localized sequence in n-normed space
(X, ‖., ..., .‖). Then (xn) is A-statistically Cauchy sequence if and only if its A-
statistical barrier is equal to zero.

Proof. Let (xn) be anA-statistically Cauchy sequence in n-normed space (X, ‖., ..., .‖).
Then, there exists the set K = {k1 < k2 < ... < kn < ...} ⊂ N such that δA (K) = 1
and limn,m→∞ ‖xkn − xkm , z1, z2, ..., zn−1‖ = 0. Hence, there exists n0 ∈ N for each
ε > 0 and every nonzero z1, z2, ..., zn−1 ∈ X such that∥∥∥xkn − xkn0 , z1, z2, ..., zn−1

∥∥∥ < ε

for all n ≥ n0. Because an A-statistically Cauchy sequence is A-statistically lo-

calized everywhere, we get stA-limn→∞

∥∥∥xn − xkn0 , z1, z2, ..., zn−1

∥∥∥ ≤ ε, that is,

µ ≤ ε. Since ε > 0 is arbitrary, we have µ = 0.
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In contrast, if µ = 0 then there is x ∈ M = locstA (xn) for each ε > 0 such that

‖x, z1, z2, ..., zn−1‖ = stA-limn→∞ ‖x− xn, z1, z2, ..., zn−1‖ <
ε

2
for every nonzero

z1, z2, ..., zn−1 ∈M. At this stage,

δA

([
n ∈ N : |‖x, z1, z2, ..., zn−1‖ − ‖x− xn, z1, z2, ..., zn−1‖|

≥ ε

2
− ‖x, z1, z2, ..., zn−1‖

])
= 0.

So,

δA

({
n ∈ N : ‖x− xn, z1, z2, ..., zn−1‖ ≥

ε

2

})
= 0,

that is, stA-limn→∞ ‖x− xn, z1, z2, ..., zn−1‖ = 0. Therefore, (xn) is anA-statistically
Cauchy sequence. �

Theorem 2. Let (xn) be A-statistically localized in itself and let (xn) contain a
A-nonthin Cauchy subsequence. Then (xn) is an A-statistically Cauchy sequence
in itself.

Proof. Let (x′n) be a A-nonthin Cauchy subsequence of (xn) . Without loss of gen-
erality we can suppose that all elements of (x′n) are in locstA (xn) . Because (x′n) is
a Cauchy sequence by Theorem 1,

inf
x′n

lim
m→∞

‖x′m − x′n, z1, z2, ..., zn−1‖ = 0.

In other hand, because (xn) is A-statistically localized in itself, then

stA- lim
m→∞

‖xm − x′n, z1, z2, ..., zn−1‖ = stA − lim
m→∞

‖x′m − x′n, z1, z2, ..., zn−1‖ = 0.

This means

µ = inf
x∈M

(
stA- lim

m→∞
‖xm − x, z1, z2, ..., zn−1‖

)
= 0,

that is, (xn) is an A-statistically Cauchy sequence in itself. �

Let x ∈ X and δ > 0. Recall that the sequence (xn) in n-normed space
(X, ‖., ..., .‖) is said to beA-statistically bounded if there is a subsetK = {k1 < k2 <
... < kn ⊂ ...} of N such that δA (K) = 1 and

(
x
kn

)
⊂ Uδ (0, z1, z2, ..., zn−1), where

Uδ (0, z1, z2, ..., zn−1) is some neighborhood of the origin. It is obvious that
(
x
kn

)
is a bounded sequence in X and it has a localized in itself subsequence. As a result,
the following statement is correct:

Theorem 3. Each A-statistically bounded sequence in n-normed space (X, ‖., ..., .‖)
has an A-statistically localized in itself subsequence.

Definition 9. An infinite subset L ⊂ (X, ‖., .‖) is called thick relatively to a non-
empty subset Y ⊂ X if for each ε > 0 there is the a point y ∈ Y such that the
neighborhood Uε (0, z1, z2, ..., zn−1) has infinitely many points of L. In particular,
if the set L is thick relatively to its subset Y ⊂ L then L is said to be thick in itself.
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Theorem 4. The following statements are equivalent to each other in n-normed
space (X, ‖., ..., .‖):
(i) Each bounded subset of X is totally bounded.
(ii) Each bounded infinite set of X is thick in itself.
(iii) Each A-statistically localized in itself sequence in X is an A-statistically

Cauchy sequence.

Proof. It is obvious that (i) implies (ii). Now, we prove that (ii) implies (iii). Let
(xn) ⊂ X be an A-statistically localized in itself. Then (xn) is A-statistically
bounded sequence in X. Then here is an infinite set L of points of (xn) such
that L is a bounded subset of X. By the supposition, the set L is thick in it-
self. So, we can choose xk ∈ L for every ε > 0 such that the neighborhood
Uε (0, z1, z2, ..., zn−1) contains infinitely many points of X, say x′1, ..., x

′
n, .... The

sequence (‖x′n − xk, z1, z2, ..., zn−1‖) A-statistically converges and

stA − lim
n→∞

‖x′n − xK , z1, z2, ..., zn−1‖ ≤ ε

for the sequence (x′n) . Therefore, the A-statistically barrier of (xn) is equal to zero.
Then (xn) is a Cauchy sequence.
Suppose that (iii) is satisfied, but (i) is not. Then, there is a subset L ⊂ X such

that L is not totally bounded. This means that there exists ε > 0 and a sequence
(xn) ⊂ L such that ‖xn − xm, z1, z2, ..., zn−1‖ > ε for any n 6= m and every nonzero
z1, z2, ..., zn−1 ∈ L.
Because (xn) is A-statistically bounded by Theorem 3, it has an A-statistically

localized in itself sequence (x′n). Due to ‖x′n − x′m, z1, z2, ..., zn−1‖ > ε for any
n 6= m, the subsequence is not an A-statistically Cauchy sequence. This contradicts
(iii). Therefore, (iii) implies (ii), which finish the proof. �

From Theorem 2 and 3, we get the property (iii) is equivalent to
(iv) each A-statistically bounded sequence has an A-statistically Cauchy subse-

quence.

Definition 10. A sequence (xn) in n-normed space (X, ‖., ..., .‖) is said to be uni-
formly A-statistically localized on the subset L of X if the sequence {‖x− xn, z1, z2,
..., zn−1‖} uniformly A-statistically converges for all x ∈ L and every nonzero z1,
z2, . . . , zn−1 in L.

Proposition 8. Let (xn) be uniformly A-statistically localized on the set L ⊂ X
and w ∈ Y is such that for every ε > 0 and every nonzero z1, z2, ..., zn−1 in L, there
is y ∈ L satisfying the property

δA ({n ∈ N : |‖w − xn, z1, z2, ..., zn−1‖ − ‖y − xn, z1, z2, ..., zn−1‖| > ε}) = 0.

Then w ∈ locstA (xn) and (xn) is uniformly A-statistically localized on a set that
contains such points w.
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[32] Savaş E., Gürdal M., Generalized statistically convergent sequences of functions in fuzzy
2-normed spaces, J. Intell. Fuzzy Syst., 27(4) (2014), 2067-2075.
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