Available online: March 16, 2020

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 69, Number 1, Pages 771–781 (2020) DOI: 10.31801/cfsuasmas.680388 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

GRAND LORENTZ SEQUENCE SPACE AND ITS MULTIPLICATION OPERATOR

OĞUZ OĞUR

ABSTRACT. In this paper, we introduce the grand Lorentz sequence spaces $\ell_{p,q}^{\theta}$ and study on some topological properties. Also, we characterize some properties of the multiplication operator, such as compactness, Fredholmness etc., defined on $\ell_{p,q}^{\theta}$.

1. INTRODUCTION

Let (X, S, μ) be a σ -finite measure space and let g be a complex-valued measurable function defined on X. The non-increasing rearrangement g^* of g is defined by

$$g^*(s) = \inf \{t > 0 : F_\mu(t) \le s\}, \ s \ge 0,$$

where $F_{\mu}(t) = \mu \{x \in X : |g(x)| > t\}, t \ge 0$, is the distribution function of g. If μ is counting measure on $S = 2^{\mathbb{N}}$, then we can write the distribution function and the non-increasing rearrangement of a complex-valued sequence (x_n) , respectively, as follows;

$$F_{\mu}(t) = \mu \{ n \in \mathbb{N} : |x_n| > t \}, t \ge 0$$

and

$$x_{\phi(n)} = \inf \{ t > 0 : F_{\mu}(t) \le n - 1 \}$$

if $n-1 \leq t < n$ with $F_{\mu}(t) < \infty$. By the definition of non-increasing rearrangement, we can interpret that $(x_{\phi(n)})$ can be obtained by permuting $(|x_n|)_{n \in \mathbb{R}}$, where $R = \{n \in \mathbb{N} : x_n \neq 0\}$, in the decreasing order. Here, $x_{\phi(n)} = 0$ for $n > \mu(R)$ if $\mu(R) < \infty$ [2].

©2020 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: January 27, 2020, Accepted: February 18, 2020.

²⁰¹⁰ Mathematics Subject Classification. 47B38, 46E30, 46A45.

 $Key\ words\ and\ phrases.$ Grand Lorentz sequence spaces, multiplication operator, compactness, Fredholm operator.

Lorentz introduced the classical Lorentz space $\Lambda_{q,w}$, $0 < q < \infty$, which the space of all measurable functions f defined on (0, 1) with

$$\left\|f\right\|_{\Lambda_{q,w}} = \left(\int_{0}^{1} (f^*(x))^q w(x) dx\right)^{\frac{1}{q}}$$

where f^* is the non-increasing rearrangement of f and w is a weight function [12], [13]. The space $\Lambda_{q,w}$ and its special case $L^{p,q}$, $0 < q, p \leq \infty$, have been widely studied by many authors. For more details see [3], [5], [7].

The Lorentz sequence spaces $\ell_{p,q}$ is the space of all complex-valued sequences $x = (x_n)$ such that

$$\|x\|_{p,q} = \begin{cases} \left(\sum_{n=1}^{\infty} n^{\frac{q}{p}-1} (x_{\phi(n)})^q\right)^{\frac{1}{q}}, & 1 \le p \le \infty, \ 1 \le q < \infty\\ \sup_n n^{\frac{1}{p}} x_{\phi(n)}, & 1 \le p < \infty, \ q = \infty \end{cases}$$

is finite, where $(x_{\phi(n)})$ is non-increasing rearrangement of x. The spaces $\ell_{p,q}$ have been used to introduce and investigate some classes of operators, like (p,q)-nuclear, (p,q;r)-absolutely summing operator [14]. Kato [11] characterized the dual space of $\ell_{p,q} \{E\}$, where E is a Banach space. See also [2], [10], [15].

The idea of grand spaces was raised by Iwaniec and Sbordone [8]. They introduced the grand Lebesgue spaces L^{p} for 1 . Samko and Umarkhadzhiev[17] studied some properties of grand Lebesgue spaces on sets of infinite measure. $Jain and Kumari [9] introduced the grand Lorentz spaces <math>\Lambda_{q),w}$, $0 < q < \infty$ and studied on its basic properties. Also, they characterized boundedness of maximal operator on the space $\Lambda_{q),w}$. Later, Rafeiro and others [16] introduced the grand Lebesgue sequence space $\ell^{p),\theta} = \ell^{p),\theta}(X)$ by the norm

$$\|x\|_{\ell^{p),\theta}(X)} = \sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \sum_{k \in X} |x_k|^{p(1+\varepsilon)} \right)^{\frac{1}{p(1+\varepsilon)}} = \sup_{\varepsilon > 0} \varepsilon^{\frac{\theta}{p(1+\varepsilon)}} \|x\|_{\ell^{p(1+\varepsilon)}(X)}$$

where X is one of the sets \mathbb{Z}^n , \mathbb{Z} , \mathbb{N} and \mathbb{N}_0 for $1 \leq p < \infty$, $\theta > 0$. They studied various operators of harmonic analysis, e. g. maximal, convolution, Hardy etc.

In this paper, we are inspired by this work and introduce the grand Lorentz sequence spaces $\ell_{p,q)}^{\theta}$ as follows; let $\theta > 0$. The grand Lorentz sequence space $\ell_{p,q)}^{\theta}$ is the set of all sequences $a = (a_n)$ such that $||a||_{p,q),\theta} < \infty$, where $||a||_{p,q),\theta}$ is defined by

$$\begin{cases} \sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} \left(n^{\frac{1}{p(1+\varepsilon)}} a_{\phi(n)} \right)^{q(1+\varepsilon)} n^{-1} \right)^{\frac{1}{q(1+\varepsilon)}}, & 1 \le p \le \infty, 1 \le q < \infty \\ \sup_{n \ge 1} n^{\frac{1}{p}} a_{\phi(n)}, & 1 \le p < \infty, q = \infty \end{cases}$$

where $(a_{\phi(n)})$ is the non-increasing rearrangement of the sequence $a = (a_n)$. In case p = q, the grand Lorentz sequence space $\ell_{p,q}^{\theta}$ coincides with the grand Lebesgue

space $\ell^{p),\theta}(\mathbb{N})$. In this work, we study on some topological properties and inclusion theorems of the space $\ell_{p,q}^{\theta}$. Also, we characterize some properties of multiplication operator on the $\ell_{p,q)}^{\theta}$. We will need the following lemma:

Lemma 1. (Hardy, Littlewood and Polya) Let (r_n^*) and $(*r_n)$ be the non-increasing and non-decreasing rearrangements of a finite sequence (r_n) of positive numbers. Then, we have for any two sequences (a_n) and (b_n) of positive numbers such that

$$\sum_{n} a_n^{**} b_n \le \sum_{n} a_n b_n \le \sum_{n} a_n^* b_n^*$$

[6].

2. Main Results

2.1. Grand Lorentz Sequence Space.

Theorem 2. The grand Lorentz sequence space $\ell_{p,q}^{\theta}$ is a normed space for $1 \leq q \leq p \leq \infty$ and a quasi-normed space for $1 \leq p < q \leq \infty$.

Proof. By definition of the norm of $\ell_{p,q}^{\theta}$, we can write

$$\|a\|_{p,q),\theta} = \sup_{\varepsilon > 0} \varepsilon^{\frac{\theta}{q(1+\varepsilon)}} \|a\|_{p,q(1+\varepsilon)}.$$
 (1)

Let $1 \leq q . For any <math>a, b \in \ell_{p,q}^{\theta}$, since $n^{\frac{q}{p}-1}$ is decreasing sequence of positive numbers and so by Lemma 1, we have

$$\begin{aligned} \|a+b\|_{p,q),\theta} &= \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} n^{\frac{q}{p}-1} \left(a_{\vartheta(n)} + b_{\vartheta(n)} \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &= \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} \left(n^{\left(\frac{q}{p}-1\right)\frac{1}{q(1+\varepsilon)}} \left(a_{\vartheta(n)} + b_{\vartheta(n)} \right) \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &\leq \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} n^{\frac{q}{p}-1} \left(a_{\vartheta(n)} \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &+ \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} n^{\frac{q}{p}-1} \left(b_{\vartheta(n)} \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &\leq \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} n^{\frac{q}{p}-1} \left(a_{\varphi(n)} \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &+ \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} n^{\frac{q}{p}-1} \left(b_{\psi(n)} \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \end{aligned}$$

OĞUZ OĞUR

$$= \|a\|_{p,q),\theta} + \|b\|_{p,q),\theta}$$

where $(a_{\vartheta(n)} + b_{\vartheta(n)})$, $(a_{\phi(n)})$ and $(b_{\psi(n)})$ are the non-increasing rearrangements of $(a_n + b_n)$, (a_n) and (b_n) , respectively.

Let $1 \le p < q < \infty$. Then, we have $p < q(1 + \varepsilon)$ for $\varepsilon > 0$ and hence $||a||_{p,q(1+\varepsilon)}$ is a quasi-norm. Thus, we get

$$\begin{split} \|a+b\|_{p,q),\theta} &= \sup_{\varepsilon > 0} \varepsilon^{\frac{\theta}{q(1+\varepsilon)}} \|a+b\|_{p,q(1+\varepsilon)} \\ &\leq \sup_{\varepsilon > 0} \varepsilon^{\frac{\theta}{q(1+\varepsilon)}} \left(2^{\frac{1}{p}} \left(\|a\|_{p,q(1+\varepsilon)} + \|b\|_{p,q(1+\varepsilon)} \right) \right) \\ &\leq 2^{\frac{1}{p}} \left(\|a\|_{p,q),\theta} + \|b\|_{p,q),\theta} \right). \end{split}$$

For $1 \le p < \infty$ and $q = \infty$, we have $||a||_{p,\infty}, \theta = ||a||_{p,\infty}$. The proof is completed.

Remark 3. Let $\alpha > 0$ and let us take the sequence

$$(a_n) = \left(n^{\frac{-1}{p}} \left(\ln(n+1)\right)^{-\alpha}\right)$$

as in [16]. It is easy to see that the sequence (a_n) is decreasing and thus the nonincreasing rearrangement of (a_n) is itself. Therefore, we have

$$\sum_{n=1}^{\infty} \left(n^{\frac{1}{p}} n^{\frac{-1}{p}} \left(\ln(n+1) \right)^{-\alpha} \right)^{q} n^{-1} = \sum_{n=1}^{\infty} n^{-1} \left(\ln(n+1) \right)^{-\alpha q}.$$

If $\alpha > \frac{1}{q}$, then $(a_n) \in \ell_{p,q}$. Using similar technique as in [16], we get $(a_n) \in \ell_{p,q}^{\theta}$ if and only if $\alpha \ge \frac{1-\theta}{q}$. Thus, we get $(a_n) \in \ell_{p,q}^{\theta}$ and $(a_n) \notin \ell_{p,q}$ whenever $\frac{1-\theta}{q} \le \alpha \le \frac{1}{q}$.

Definition 4. The vanishing grand Lorentz sequence space $\mathring{\ell}^{\theta}_{p,q}$, $1 \leq p \leq \infty$, $1 \leq q < \infty$, consists of all sequences $(a_n) \in \ell^{\theta}_{p,q}$ such that

$$\lim_{\varepsilon \to 0} \varepsilon^{\theta} \sum_{n=1}^{\infty} \left(n^{\frac{1}{p(1+\varepsilon)}} a_{\phi(n)} \right)^{q(1+\varepsilon)} n^{-1} = 0.$$

Lemma 5. The space $\hat{\ell}^{\theta}_{p,q}$ is a closed subspace of the space $\ell^{\theta}_{p,q}$.

Proof. The proof can be obtained by using similar technique as in [16].

Remark 6. It is enough to take the supremum in (1) on the finite interval for ε , which means

$$\|a\|_{p,q),\theta} = \sup_{0 < \varepsilon < \frac{1}{W(1/\epsilon)}} \varepsilon^{\frac{\delta}{q(1+\varepsilon)}} \|a\|_{p,q(1+\varepsilon)}$$

where W(t) is the Lambert function. Note that $\frac{1}{W(1/e)} \approx 3.59$ (see [4], [16]).

Lemma 7. Let $a = (a_n) \in \ell_{p,q}^{\theta}$, $1 \leq p, q < \infty$ and $\theta > 0$. Then, we have the following inequalities for all $n \in \mathbb{N}$:

$$a_{\phi(n)} \le h\left(\frac{1}{W(e^{-1})}\right)^{\frac{-\theta}{q}} \left(\frac{p}{q}R(\varepsilon_0)\right)^{\frac{-1}{q}} n^{\frac{-1}{p}} \|a\|_{p,q),\theta}$$

if $1 \le p \le q < \infty$ and

$$a_{\phi(n)} \le h\left(\frac{1}{W(e^{-1})}\right)^{-\frac{\theta}{q}} n^{\frac{1}{q}-\frac{1}{p}} \|a\|_{p,q),\theta}$$

if $1 \le q , where <math>h(x) = x^{\frac{1}{1+x}}$, $R(x) = (1+x)^{-\frac{1}{1+x}}$ and $\varepsilon_0 \approx 1,7182$.

Proof. Let $a = (a_n) \in \ell_{p,q}^{\theta}$ and let $1 \le p \le q < \infty$. Since $p \le q(1 + \varepsilon)$, we have by Lemma 2 in [11] that

$$\begin{aligned} \|a\|_{p,q),\theta} &= \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \|a\|_{p,q(1+\varepsilon)} \\ &\geq \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(n^{\frac{1}{p}} \left(\frac{p}{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} a_{\phi(n)} \right) \\ &\geq \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(\frac{p}{q} \right)^{\frac{1}{q}} (1+\varepsilon)^{-\frac{1}{q(1+\varepsilon)}} n^{\frac{1}{p}} a_{\phi(n)} \\ &= \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(\frac{p}{q} \right)^{\frac{1}{q}} (R(\varepsilon))^{\frac{1}{q}} n^{\frac{1}{p}} a_{\phi(n)}. \\ &\geq \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(\frac{p}{q} \right)^{\frac{1}{q}} (R(\varepsilon_0))^{\frac{1}{q}} n^{\frac{1}{p}} a_{\phi(n)}. \end{aligned}$$

Here $R(x) = (1+x)^{-\frac{1}{1+x}}$ attains the minimum at the point $\varepsilon_0 \approx 1,7182$. Let $1 \le q . Then, since <math>n^{\frac{q}{p}-1}$ is decreasing, we have

$$\begin{aligned} \|a\|_{p,q),\theta} &= \sup_{0<\varepsilon<\frac{1}{W(\varepsilon^{-1})}} h(\varepsilon)^{\frac{q}{q}} \|a\|_{p,q(1+\varepsilon)} \\ &\geq \sup_{0<\varepsilon<\frac{1}{W(\varepsilon^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(\sum_{n=1}^{k} \left(n^{\frac{1}{p(1+\varepsilon)}} a_{\phi(n)}\right)^{q(1+\varepsilon)} n^{-1}\right)^{\frac{1}{q(1+\varepsilon)}} \\ &\geq a_{\phi(k)} \sup_{0<\varepsilon<\frac{1}{W(\varepsilon^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(\sum_{n=1}^{k} n^{\frac{q}{p}-1}\right)^{\frac{1}{q(1+\varepsilon)}} \end{aligned}$$

OĞUZ OĞUR

$$\geq a_{\phi(k)} \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \left(k^{\frac{q}{p}-1}\right)^{\frac{1}{q(1+\varepsilon)}}$$
$$\geq h\left(\frac{1}{W(e^{-1})}\right)^{\frac{\theta}{q}} n^{\frac{1}{p}-\frac{1}{q}} a_{\phi(k)}.$$

Theorem 8. The space $\ell_{p,q}^{\theta}$ is complete for $1 \leq p, q \leq \infty$.

Proof. Let $a^{(s)} = \left(a_n^{(s)}\right) \in \ell_{p,q}^{\theta}$ such that $\lim \|a^{(s)} - a^{(t)}\|$

$$\lim_{s,t \to \infty} \left\| a^{(s)} - a^{(t)} \right\|_{p,q),\theta} = 0.$$

For $q = \infty$, the proof is clear. Let $q < \infty$. Then, there exists a natural number s_0 such that

$$\left\|a^{(s)} - a^{(t)}\right\|_{p,q),\theta} < \eta$$

whenever $s, t \geq s_0$. By Lemma 3, we have

$$\begin{aligned} \left| a_{k}^{(s)} - a_{k}^{(t)} \right| &\leq h \left(\frac{1}{W(e^{-1})} \right)^{-\frac{\theta}{q}} \begin{cases} k^{\frac{1}{q} - \frac{1}{p}} \left\| a^{(s)} - a^{(t)} \right\|_{p,q),\theta}, & q$$

where $h(x) = x^{\frac{1}{1+x}}$, $R(x) = (1+x)^{-\frac{1}{1+x}}$. This shows that $\left(a_k^{(s)}\right)$ is a Cauchy sequence in \mathbb{C} . Thus, we have $(a_k) \in \mathbb{C}$ such that $\lim_{s \to \infty} \left|a_k^{(s)} - a_k\right| = 0$. By using the equality (1) with classical method, we get $\ell_{p,q}^{\theta}$ is a complete space. \Box

Lemma 9. Let $1 \le p < \infty$, $1 \le q < q_1 \le \infty$. Then, we have the following $\ell_{p,q_1}^{\theta} \subset \ell_{p,q_1}^{\theta}$.

Proof. Let $a = (a_n) \in \ell_{p,q}^{\theta}$ and p < q. Then, we have by Proposition 2 in [11] that

$$\begin{aligned} \|a\|_{p,q_{1}),\theta} &= \sup_{0<\varepsilon<\frac{1}{W(\varepsilon^{-1})}} h(\varepsilon)^{\frac{\theta}{q_{1}}} \|a\|_{p,q_{1}(1+\varepsilon)} \\ &\leq \sup_{0<\varepsilon<\frac{1}{W(\varepsilon^{-1})}} h(\varepsilon)^{\frac{\theta}{q_{1}}} \left(\frac{q(1+\varepsilon)}{p}\right)^{\frac{1}{q(1+\varepsilon)}-\frac{1}{q_{1}}} \|a\|_{p,q(1+\varepsilon)} \\ &\leq \left(\frac{q}{p} \left(1+\frac{1}{W(\varepsilon^{-1})}\right)\right)^{\frac{1}{q}-\frac{1}{q_{1}}} \|a\|_{p,q),\theta} \\ &< \infty. \end{aligned}$$

where $h(x) = x^{\frac{1}{1+x}}$. The inclusion can be obtained by similar way for $p \ge q$ with Lemma 3.

Theorem 10. Let either $1 \le p < p_1 \le \infty$, $1 \le q < \infty$ or $1 \le p < p_1 < \infty$, $q = \infty$. Then, the inclusion

$$\ell^{\theta}_{p,q)} \subset \ell^{\theta}_{p_1,q)}$$

holds.

Proof. Let $a \in \ell^{\theta}_{p,q}$. Then, we have

$$\begin{aligned} |a\|_{p_{1},q),\theta} &= \sup_{0<\varepsilon<\frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \|a\|_{p_{1},q(1+\varepsilon)} \\ &\leq \sup_{0<\varepsilon<\frac{1}{W(e^{-1})}} h(\varepsilon)^{\frac{\theta}{q}} \|a\|_{p,q(1+\varepsilon)} \\ &= \|a\|_{p,q),\theta} \\ &< \infty \end{aligned}$$

which shows $a \in \ell^{\theta}_{p_1,q_1}$.

Corollary 11. Let $1 \le p_1 . Then, the inclusions$

$$\ell^{p_1),\theta} \subset \ell^{\theta}_{p,q)} \subset \ell^{q_1),\theta}$$

hold.

Theorem 12. The grand Lorentz sequence space $\ell_{p,q}^{\theta}$ is strictly convex for $1 and <math>1 < q < \infty$.

Proof. Let $a, b \in \ell_{p,q}^{\theta}$ such that $||a||_{p,q),\theta} = ||b||_{p,q),\theta} = 1$ and $\left\|\frac{a+b}{2}\right\|_{p,q),\theta} = 1$. Then, we have by using similar technique as in [1] that

$$1 = \left\| \frac{a+b}{2} \right\|_{p,q),\theta} = \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} \varepsilon^{\frac{\theta}{q(1+\varepsilon)}} \left\| \frac{a+b}{2} \right\|_{p,q(1+\varepsilon)}$$

$$\leq \sup_{0 < \varepsilon < \frac{1}{W(e^{-1})}} \varepsilon^{\frac{\theta}{q(1+\varepsilon)}} \left(\frac{\|a\|_{p,q(1+\varepsilon)} + \|b\|_{p,q(1+\varepsilon)}}{2} \right)$$

$$\leq \left(\frac{\|a\|_{p,q),\theta} + \|b\|_{p,q),\theta}}{2} \right)$$

$$= 1$$

which shows a = b.

2.2. Multiplication Operator. In this section, we characterize some properties of the multiplication operators on $\ell_{p,q}^{\theta}$. Let $v = (v_n)$ be a complex-valued sequence and let us define the linear transformation M_v on the sequence space X into the linear space of all complex-valued sequences by

$$M_v(x) = vx = (v_n x_n).$$

If the linear transformation M_v is bounded with range in X, then it is called *multiplication operator* on X.

Theorem 13. Let $v = (v_n)$ be a complex-valued sequence. Then, M_v is a multiplication operator on $\ell_{p,q}^{\theta}$, $1 \leq p, q \leq \infty$ if and only if v is a bounded sequence.

Proof. Let M_v be a multiplication operator on $\ell_{p,q}^{\theta}$ and let $q < \infty$. Then, there exists a positive number K > 0 such that

$$\left\|M_{v}(a)\right\|_{p,q),\theta} \le K \left\|a\right\|_{p,q),\theta}$$

for all $a \in \ell_{p,q}^{\theta}$. Let us define

$$e_n^{(k)} = \begin{cases} s^{-\frac{\theta}{p}}, & k = n\\ 0, & k \neq n \end{cases}$$

where $s = \left(\frac{1}{W(e^{-1})}\right)^{\frac{W(e^{-1})}{1+W(e^{-1})}}$ for all $n \in \mathbb{N}$. Then, the non-increasing rearrangement of $\left(e_n^{(k)}\right)$ is

$$e_{\phi(n)}^{(k)} = \begin{cases} s^{-\frac{\theta}{p}} & ,n=1\\ 0 & ,n\neq 1 \end{cases}$$

Then, we have $(e_n^{(k)}) \in \ell_{p,q}^{\theta}$ with $||e^{(k)}||_{p,q),\theta} = 1$. By the boundedness of M_v , it can be written $||M_v e^{(k)}||_{p,q),\theta} \leq K ||e^{(k)}||_{p,q),\theta} = K$. Thus, we get

$$\sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \sum_{n=1}^{\infty} \left(n^{\frac{1}{p(1+\varepsilon)}} v_{\psi(n)} e_{\psi(n)}^{(k)} \right)^{q(1+\varepsilon)} n^{-1} \right)^{\frac{1}{q(1+\varepsilon)}} = \sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \left(v_{\psi(1)} e_{\psi(1)}^{(k)} \right)^{q(1+\varepsilon)} \right)^{\frac{1}{q(1+\varepsilon)}} \\ = s^{-\frac{\theta}{p}} \sup_{\varepsilon > 0} \left(\varepsilon^{\frac{\theta}{q(1+\varepsilon)}} v_{\psi(1)} \right) \\ \le K$$

which gives that $v_{\psi(1)} \leq K \cdot s^{-\frac{\theta}{q} + \frac{\theta}{p}}$. This shows that v is bounded. If $q = \infty$, the proof is similar as was used in the classical Lorentz sequence spaces.

Conversely, let v be a bounded sequence. Then, there exists T > 0 such that $|v_k| \leq T$ for all $k \in \mathbb{N}$. Thus, we get

$$\|M_{v}a\|_{p,q),\theta} = \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{k=1}^{\infty} \left(k^{\frac{1}{p(1+\varepsilon)}} v_{\psi(k)}a_{\psi(k)}\right)^{q(1+\varepsilon)} k^{-1}\right)^{\frac{1}{q(1+\varepsilon)}}$$

$$\leq T \sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \sum_{k=1}^{\infty} \left(k^{\frac{1}{p(1+\varepsilon)}} a_{\psi(k)} \right)^{q(1+\varepsilon)} k^{-1} \right)^{\frac{1}{q(1+\varepsilon)}}$$
$$= T \|a\|_{p,q),\theta}$$

for $q < \infty$. If $q = \infty$, then

$$\sup_{k \in \mathbb{N}} k^{\frac{1}{p}} v_{\psi(k)} a_{\psi(k)} \le T \|a\|_{p,q),\theta}.$$

Theorem 14. Let M_v be a multiplication operator on $\ell_{p,q}^{\theta}$, $1 \leq p,q \leq \infty$. Then, M_v is invertible if and only if there exists $\mu > 0$ such that $|v_n| \geq \mu . s^{-\frac{\theta}{q} + \frac{2\theta}{p}}$, where $s = \left(\frac{1}{W(e^{-1})}\right)^{\frac{W(e^{-1})}{1+W(e^{-1})}}$ for all $n \in \mathbb{N}$.

Proof. Let M_v be invertible operator on $\ell_{p,q}^{\theta}$, $1 \leq p,q \leq \infty$. Then, there exists $\rho > 0$ such that

$$\left\|M_{v}a\right\|_{p,q),\theta} \ge \mu \left\|a\right\|_{p,q),\theta}$$

for all $a \in \ell_{p,q}^{\theta}$. Thus, for $\left(e_n^{(k)}\right) \in \ell_{p,q}^{\theta}$, we get

$$\left\|M_{v}e^{(k)}\right\|_{p,q),\theta} = s^{\frac{\theta}{q} - \frac{\theta}{p}} |v_{k}| \ge \mu s^{\frac{\theta}{p}}$$

which gives $|v_k| \ge s^{-\frac{\theta}{q} + \frac{2\theta}{p}} \mu$. Conversely, let define $z_k = (v_k)^{-1}$. By using Theorem 5, the proof can be obtained.

Theorem 15. Let M_v be a multiplication operator on $\ell_{p,q}^{\theta}$, $1 \leq p,q \leq \infty$. Then, a necessary and sufficient condition for M_v to have closed range is that for some $\rho > 0$

 $|v_n| \ge \varrho$

for each $n \in R = \{n \in \mathbb{N} : v_n \neq 0\}.$

Proof. Assume that $|v_n| \ge \rho$ for $\rho > 0$ and for all $n \in R$. Let $q < \infty$ and let $g^{(k)}, g \in \ell_{p,q}^{\theta}$ such that $M_v g^{(k)} \to g$ as $k \to \infty$. Then, we write

$$\lim_{n,n\to\infty} \left\| M_v g^{(m)} - M_v g^{(n)} \right\|_{p,q),\theta} = 0.$$

Put $x^{(mn)} = g^{(m)} - g^{(n)}$. Thus, we have

$$\left\{ l \in \mathbb{N} : \left| x_l^{(mn)} \right| > \frac{r}{\varrho} \right\} \subseteq \left\{ l \in \mathbb{N} : \left| v_l x_l^{(mn)} \right| > r \right\}$$

for each r > 0 and so $\rho x_{\phi(l)}^{(mn)} \leq v_{\psi(l)} x_{\psi(l)}^{(mn)}$, where $x_{\phi(l)}^{(mn)}$ and $v_{\psi(l)} x_{\psi(l)}^{(mn)}$ are the non-increasing rearrangement of the sequences $\left(x_l^{(mn)}\right)$ and $\left(v_l x_l^{(mn)}\right)$, respectively.

Thus, we have

$$\begin{split} \left\| vx^{(mn)} \right\|_{p,q),\theta} &= \left\| M_v g^{(m)} - M_v g^{(n)} \right\|_{p,q),\theta} \\ &= \sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \sum_{l \in R} \left(l^{\frac{1}{p(1+\varepsilon)}} v_{\psi(l)} x^{(mn)}_{\psi(l)} \right)^{q(1+\varepsilon)} l^{-1} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &\geq \sup_{\varepsilon > 0} \left(\varepsilon^{\theta} \sum_{l \in R} \varrho^{q(1+\varepsilon)} \left(l^{\frac{1}{p(1+\varepsilon)}} x^{(mn)}_{\phi(l)} \right)^{q(1+\varepsilon)} l^{-1} \right)^{\frac{1}{q(1+\varepsilon)}} \\ &= \varrho \left\| x^{(mn)} \right\|_{p,q),\theta}. \end{split}$$

Since $\|vx^{(mn)}\|_{p,q),\theta} \to 0$ as $m, n \to \infty$, we have $x^{(mn)} \to 0$ as $m, n \to \infty$. This means that $g^{(m)}$ is a Cauchy sequence in $\ell^{\theta}_{p,q}|_{R}$, where

 $\ell_{p,q)}^{\theta}|_{R} = \left\{ a = (a_{k}) \in \ell_{p,q)}^{\theta} : a_{k} = 0 \text{ if } k \in \mathbb{N} \setminus R \right\}$ is a closed subspace of $\ell_{p,q)}^{\theta}$. Thus, we get $f \in \ell_{p,q)}^{\theta}|_{R}$ such that $g^{(m)} \to f$ as $m \to \infty$. Since M_{v} is bounded linear operator, we can write $M_{v}g^{(m)} \to M_{v}f$. This gives $M_{v}f = g$. Because of $Ker(M_{v}) = \ell_{p,q}^{\theta}|_{\mathbb{N}\setminus R}$, M_{v} has closed range.

Conversely, assume that M_v has closed range and there exists $(l_n) \in R$ such that $|v_{l_n}| < \frac{1}{n}$. Let

$$e_m^{(l_n)} = \begin{cases} s^{-\frac{\theta}{p}}, & m = l_n \\ 0, & m \neq l_n \end{cases}$$

where $s = \left(\frac{1}{W(e^{-1})}\right)^{\frac{W(e^{-1})}{1+W(e^{-1})}}$ and let $q < \infty$. Then, $\left\|e^{(l_n)}\right\|_{p,q),\theta} = 1$. Thus, we get $\left\|M_v e^{(l_n)}\right\|_{p,q),\theta} = \left\|v e^{(l_n)}\right\|_{p,q),\theta}$ $= \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \sum_{m=1}^{\infty} \left(m^{\frac{1}{p(1+\varepsilon)}} v_{\psi(m)} e^{(l_n)}_{\psi(m)}\right)^{q(1+\varepsilon)} m^{-1}\right)^{\frac{1}{q(1+\varepsilon)}}$ $= \sup_{\varepsilon>0} \left(\varepsilon^{\theta} \left(v_{\psi(1)} e^{(l_n)}_{\psi(1)}\right)^{q(1+\varepsilon)}\right)^{\frac{1}{q(1+\varepsilon)}}$ $= s^{\frac{\theta}{p} - \frac{\theta}{q}} v_{l_n}$ $< \frac{1}{n} s^{\frac{\theta}{p} - \frac{\theta}{q}} \left\|e^{(l_n)}\right\|_{p,q),\theta}$

which means M_v is not bounded different from zero. Thus, $|v_n| \ge \rho$ for some $\rho > 0$ and all $n \in \mathbb{R}$. For the case $q = \infty$ the proof can be obtained by similar way. \Box

Theorem 16. Let M_v be a multiplication operator on $\ell_{p,q}^{\theta}$. Then, M_v is compact if and only if $|v_n| \to 0$ as $n \to \infty$.

Proof. The proof can be obtained by the similar way used in the classical Lorentz sequence space. \Box

Corollary 17. Let M_v be a multiplication operator on $\ell_{p,q}^{\theta}$. Then, M_v is Fredholm if and only if the set $\mathbb{N}\backslash R$ has finite elements and there exists $\rho > 0$ such that

$$|v_n| \ge \varrho$$

for all $n \in \mathbb{N}$, where $R = \{n \in \mathbb{N} : v_n \neq 0\}$.

References

- [1] Altshuler, Z., Uniform convexity in Lorentz sequence spaces, Isr. J. Math., 20, (1975), 3-4.
- [2] Arora, S.C., Datt, G. and Verma, S., Operators on Lorentz sequence spaces, Math. Bohem., No:1, (2009), 87-98.
- [3] Bennett, C. and Sharpley, R., Interpolation Operators, Academic Press Inc. Toronto, 1988.
- [4] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. and Knuth, E., On the Lambert W function, Adv. Comput. Math., 5(4), (1996), 329-359.
- [5] Crowe, J. A., Zweibel, J. A and Rosenbloom, P. C., Rearrangement of functions, J. Funct. Anal., 66, (1986), 432-438.
- [6] Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, Cambridge Univ. Press, 1967.
- [7] Hunt, R. A., On *L*(*p*, *q*) spaces, *Enseign. Math.*, 12, (1966), 249-276.
- [8] Iwaniec, T. and Sbordone, C., On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 119(2), (1992), 129-143.
- [9] Jain, P. and Kumari, S., On grand Lorentz spaces and the maximal operator, *Math. Student*, 79, 2010.
- [10] Kaminska, A. and Raynaud, Y., Isomorphic l_p-subspaces in Orlicz-Lorentz sequence spaces, Proc. Amer. Math. Soc., 134, (2006), 2317-2327.
- [11] Kato, M., On Lorentz spaces, *Hiroshima Math. J.*, 6, (1976), 73-93.
- [12] Lorentz, G. G., Some new functional spaces, Ann. of Math, 2(51), (1950), 37-55.
- [13] Lorentz, G. G., On the theory of spaces Λ , Pacific J. Math., 1, (1951), 411-429.
- [14] Miyazaki, K., (p,q)-nuclear and (p,q)-integral operators, *Hiroshima Math. J.*, 4, (1974), 99-132.
- [15] Oğur, O. and Duyar, C., On generalized Lorentz sequence space defined by modulus functions, *Filomat*, 30(2), (2016), 497-504.
- [16] Rafeiro, H., Samko, S. and Umarkhadzhiev, S., Grand Lebesgue sequence spaces, Georgian Math. J., 19(2), (2018), 235-246.
- [17] Samko, S. and Umarkhadzhiev, S., On grand Lebesgue spaces on sets of infinite measure, Math. Nachr., 290, (2017), 913-919.

Current address, O.Oğur: Giresun University, Faculty of Education, Department of Elementary Mathematics, Giresun, Turkey

E-mail address: oguz.ogur@giresun.edu.tr

ORCID Address: http://orcid.org/0000-0002-3206-5330