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GRAND LORENTZ SEQUENCE SPACE AND ITS
MULTIPLICATION OPERATOR

OĞUZ OĞUR

Abstract. In this paper, we introduce the grand Lorentz sequence spaces
`θ
p,q)

and study on some topological properties. Also, we characterize some
properties of the multiplication operator, such as compactness, Fredholmness
etc., defined on `θ

p,q)
.

1. Introduction

Let (X,S, µ) be a σ−finite measure space and let g be a complex-valued measur-
able function defined on X. The non-increasing rearrangement g∗ of g is defined
by

g∗(s) = inf {t > 0 : Fµ(t) ≤ s} , s ≥ 0,

where Fµ(t) = µ {x ∈ X : |g(x)| > t}, t ≥ 0, is the distribution function of g. If µ
is counting measure on S = 2N, then we can write the distribution function and
the non-increasing rearrangement of a complex-valued sequence (xn), respectively,
as follows;

Fµ(t) = µ {n ∈ N : |xn| > t} , t ≥ 0

and

xφ(n) = inf {t > 0 : Fµ(t) ≤ n− 1}

if n−1 ≤ t < n with Fµ(t) <∞. By the definition of non-increasing rearrangement,
we can interpret that

(
xφ(n)

)
can be obtained by permuting (|xn|)n∈R, where R =

{n ∈ N : xn 6= 0}, in the decreasing order. Here, xφ(n) = 0 for n > µ(R) if µ(R) <
∞ [2].
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Lorentz introduced the classical Lorentz space Λq,w, 0 < q <∞, which the space
of all measurable functions f defined on (0, 1) with

‖f‖Λq,w =

 1∫
0

(f∗(x))qw(x)dx


1
q

,

where f∗ is the non-increasing rearrangement of f and w is a weight function [12],
[13]. The space Λq,w and its special case Lp,q, 0 < q, p ≤ ∞, have been widely
studied by many authors. For more details see [3], [5], [7].
The Lorentz sequence spaces `p,q is the space of all complex-valued sequences

x = (xn) such that

‖x‖p,q =


( ∞∑
n=1

n
q
p−1(xφ(n))

q

) 1
q

, 1 ≤ p ≤ ∞, 1 ≤ q <∞

supn n
1
pxφ(n), 1 ≤ p <∞, q =∞

is finite, where
(
xφ(n)

)
is non-increasing rearrangement of x. The spaces `p,q have

been used to introduce and investigate some classes of operators, like (p, q)−nuclear,
(p, q; r)−absolutely summing operator [14]. Kato [11] characterized the dual space
of `p,q {E}, where E is a Banach space. See also [2], [10], [15].
The idea of grand spaces was raised by Iwaniec and Sbordone [8]. They intro-

duced the grand Lebesgue spaces Lp) for 1 < p < ∞. Samko and Umarkhadzhiev
[17] studied some properties of grand Lebesgue spaces on sets of infinite measure.
Jain and Kumari [9] introduced the grand Lorentz spaces Λq),w, 0 < q < ∞ and
studied on its basic properties. Also, they characterized boundedness of maximal
operator on the space Λq),w. Later, Rafeiro and others [16] introduced the grand
Lebesgue sequence space `p),θ = `p),θ(X) by the norm

‖x‖`p),θ(X) = sup
ε>0

(
εθ
∑
k∈X
|xk|p(1+ε)

) 1
p(1+ε)

= sup
ε>0

ε
θ

p(1+ε) ‖x‖`p(1+ε)(X)

where X is one of the sets Zn, Z, N and N0 for 1 ≤ p < ∞, θ > 0. They studied
various operators of harmonic analysis, e. g. maximal, convolution, Hardy etc.
In this paper, we are inspired by this work and introduce the grand Lorentz

sequence spaces `θp,q) as follows; let θ > 0. The grand Lorentz sequence space `θp,q)
is the set of all sequences a = (an) such that ‖a‖p,q),θ < ∞, where ‖a‖p,q),θ is
defined by supε>0

(
εθ
∞∑
n=1

(
n

1
p(1+ε) aφ(n)

)q(1+ε)

n−1

) 1
q(1+ε)

, 1 ≤ p ≤ ∞, 1 ≤ q <∞

supn≥1 n
1
p aφ(n), 1 ≤ p <∞, q =∞

where
(
aφ(n)

)
is the non-increasing rearrangement of the sequence a = (an). In case

p = q, the grand Lorentz sequence space `θp,q) coincides with the grand Lebesgue



GRAND LORENTZ SEQUENCE SPACE AND ITS MULTIPLICATION OPERATOR 773

space `p),θ(N). In this work, we study on some topological properties and inclusion
theorems of the space `θp,q). Also, we characterize some properties of multiplication

operator on the `θp,q).
We will need the following lemma:

Lemma 1. (Hardy, Littlewood and Polya) Let (r∗n) and (∗rn) be the non-increasing
and non-decreasing rearrangements of a finite sequence (rn) of positive numbers.
Then, we have for any two sequences (an) and (bn) of positive numbers such that∑

n

a∗∗n bn ≤
∑
n

anbn ≤
∑
n

a∗nb
∗
n

[6].

2. Main Results

2.1. Grand Lorentz Sequence Space.

Theorem 2. The grand Lorentz sequence space `θp,q) is a normed space for 1 ≤ q ≤
p ≤ ∞ and a quasi-normed space for 1 ≤ p < q ≤ ∞.

Proof. By definition of the norm of `θp,q), we can write

‖a‖p,q),θ = sup
ε>0

ε
θ

q(1+ε) ‖a‖p,q(1+ε) . (1)

Let 1 ≤ q < p ≤ ∞. For any a, b ∈ `θp,q), since n
q
p−1 is decreasing sequence of

positive numbers and so by Lemma 1, we have

‖a+ b‖p,q),θ = sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
aϑ(n) + bϑ(n)

)q(1+ε)

) 1
q(1+ε)

= sup
ε>0

(
εθ
∞∑
n=1

(
n( qp−1) 1

q(1+ε)
(
aϑ(n) + bϑ(n)

))q(1+ε)
) 1
q(1+ε)

≤ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
aϑ(n)

)q(1+ε)

) 1
q(1+ε)

+ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
bϑ(n)

)q(1+ε)

) 1
q(1+ε)

≤ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
aφ(n)

)q(1+ε)

) 1
q(1+ε)

+ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
bψ(n)

)q(1+ε)

) 1
q(1+ε)
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= ‖a‖p,q),θ + ‖b‖p,q),θ
where

(
aϑ(n) + bϑ(n)

)
,
(
aφ(n)

)
and

(
bψ(n)

)
are the non-increasing rearrangements

of (an + bn), (an) and (bn), respectively.
Let 1 ≤ p < q <∞. Then, we have p < q(1 + ε) for ε > 0 and hence ‖a‖p,q(1+ε)

is a quasi-norm. Thus, we get

‖a+ b‖p,q),θ = sup
ε>0

ε
θ

q(1+ε) ‖a+ b‖p,q(1+ε)

≤ sup
ε>0

ε
θ

q(1+ε)

(
2
1
p

(
‖a‖p,q(1+ε) + ‖b‖p,q(1+ε)

))
≤ 2

1
p

(
‖a‖p,q),θ + ‖b‖p,q),θ

)
.

For 1 ≤ p < ∞ and q = ∞, we have ‖a‖p,∞),θ = ‖a‖p,∞. The proof is completed.
�

Remark 3. Let α > 0 and let us take the sequence

(an) =
(
n
−1
p (ln(n+ 1))

−α
)

as in [16]. It is easy to see that the sequence (an) is decreasing and thus the non-
increasing rearrangement of (an) is itself. Therefore, we have

∞∑
n=1

(
n
1
pn

−1
p (ln(n+ 1))

−α
)q
n−1 =

∞∑
n=1

n−1 (ln(n+ 1))
−αq .

If α > 1
q , then (an) ∈ `p,q. Using similar technique as in [16], we get (an) ∈ `θp,q)

if and only if α ≥ 1−θ
q . Thus, we get (an) ∈ `θp,q) and (an) /∈ `p,q whenever

1−θ
q ≤ α ≤

1
q .

Definition 4. The vanishing grand Lorentz sequence space ˚̀θ
p,q), 1 ≤ p ≤ ∞, 1 ≤

q <∞, consists of all sequences (an) ∈ `θp,q) such that

lim
ε→0

εθ
∞∑
n=1

(
n

1
p(1+ε) aφ(n)

)q(1+ε)

n−1 = 0.

Lemma 5. The space ˚̀θ
p,q) is a closed subspace of the space `

θ
p,q).

Proof. The proof can be obtained by using similar technique as in [16]. �

Remark 6. It is enough to take the supremum in (1) on the finite interval for ε,
which means

‖a‖p,q),θ = sup
0<ε< 1

W (1/e)

ε
θ

q(1+ε) ‖a‖p,q(1+ε)

where W (t) is the Lambert function. Note that 1
W (1/e) ≈ 3.59 (see [4], [16]).
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Lemma 7. Let a = (an) ∈ `θp,q), 1 ≤ p, q < ∞ and θ > 0. Then, we have the
following inequalities for all n ∈ N:

aφ(n) ≤ h
(

1

W (e−1)

)−θ
q
(
p

q
R(ε0)

)−1
q

n
−1
p ‖a‖p,q),θ

if 1 ≤ p ≤ q <∞ and

aφ(n) ≤ h
(

1

W (e−1)

)− θq
n
1
q−

1
p ‖a‖p,q),θ

if 1 ≤ q < p ≤ ∞, where h(x) = x
1

1+x , R(x) = (1 + x)
− 1
1+x and ε0 ≈ 1, 7182.

Proof. Let a = (an) ∈ `θp,q) and let 1 ≤ p ≤ q <∞. Since p ≤ q(1 + ε), we have by
Lemma 2 in [11] that

‖a‖p,q),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p,q(1+ε)

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
n
1
p

(
p

q(1 + ε)

) 1
q(1+ε)

aφ(n)

)

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
p

q

) 1
q

(1 + ε)−
1

q(1+ε)n
1
p aφ(n)

= sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
p

q

) 1
q

(R(ε))
1
q n

1
p aφ(n).

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
p

q

) 1
q

(R(ε0))
1
q n

1
p aφ(n).

= h

(
1

W (e−1)

) θ
q
(
p

q

) 1
q

(R(ε0))
1
q n

1
p aφ(n).

Here R(x) = (1 + x)
− 1
1+x attains the minimum at the point ε0 ≈ 1, 7182.

Let 1 ≤ q < p <∞. Then, since n
q
p−1 is decreasing, we have

‖a‖p,q),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p,q(1+ε)

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
k∑

n=1

(
n

1
p(1+ε) aφ(n)

)q(1+ε)

n−1

) 1
q(1+ε)

≥ aφ(k) sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
k∑

n=1

n
q
p−1

) 1
q(1+ε)
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≥ aφ(k) sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
k
q
p−1
) 1
q(1+ε)

≥ h

(
1

W (e−1)

) θ
q

n
1
p−

1
q aφ(k).

�

Theorem 8. The space `θp,q) is complete for 1 ≤ p, q ≤ ∞.

Proof. Let a(s) =
(
a

(s)
n

)
∈ `θp,q) such that

lim
s,t→∞

∥∥∥a(s) − a(t)
∥∥∥
p,q),θ

= 0.

For q =∞, the proof is clear. Let q <∞. Then, there exists a natural number s0

such that ∥∥∥a(s) − a(t)
∥∥∥
p,q),θ

< η

whenever s, t ≥ s0. By Lemma 3, we have∣∣∣a(s)
k − a

(t)
k

∣∣∣ ≤ h

(
1

W (e−1)

)− θq  k
1
q−

1
p

∥∥a(s) − a(t)
∥∥
p,q),θ

, q < p(
p
qR(ε0)

)− 1
q

k−
1
p

∥∥a(s) − a(t)
∥∥
p,q),θ

, p ≤ q

< h

(
1

W (e−1)

)− θq  k
1
q−

1
p η, q < p(

p
qR(ε0)

)− 1
q

k−
1
p η, p ≤ q

where h(x) = x
1

1+x , R(x) = (1 + x)
− 1
1+x . This shows that

(
a

(s)
k

)
is a Cauchy

sequence in C. Thus, we have (ak) ∈ C such that lims→∞

∣∣∣a(s)
k − ak

∣∣∣ = 0. By using

the equality (1) with classical method, we get `θp,q)is a complete space. �

Lemma 9. Let 1 ≤ p <∞, 1 ≤ q < q1 ≤ ∞. Then, we have the following
`θp,q) ⊂ `θp,q1).

Proof. Let a = (an) ∈ `θp,q) and p < q. Then, we have by Proposition 2 in [11] that

‖a‖p,q1),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q1 ‖a‖p,q1(1+ε)

≤ sup
0<ε< 1

W (e−1)

h(ε)
θ
q1

(
q(1 + ε)

p

) 1
q(1+ε)

− 1
q1

‖a‖p,q(1+ε)

≤
(
q

p

(
1 +

1

W (e−1)

)) 1
q−

1
q1

‖a‖p,q),θ
< ∞.
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where h(x) = x
1

1+x . The inclusion can be obtained by similar way for p ≥ q with
Lemma 3. �

Theorem 10. Let either 1 ≤ p < p1 ≤ ∞, 1 ≤ q <∞ or 1 ≤ p < p1 <∞, q =∞.
Then, the inclusion

`θp,q) ⊂ `θp1,q)
holds.

Proof. Let a ∈ `θp,q). Then, we have

‖a‖p1,q),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p1,q(1+ε)

≤ sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p,q(1+ε)

= ‖a‖p,q),θ
< ∞

which shows a ∈ `θp1,q). �

Corollary 11. Let 1 ≤ p1 < p ≤ q < q1 ≤ ∞. Then, the inclusions

`p1),θ ⊂ `θp,q) ⊂ `q1),θ

hold.

Theorem 12. The grand Lorentz sequence space `θp,q) is strictly convex for 1 <

p <∞ and 1 < q <∞.

Proof. Let a, b ∈ `θp,q) such that ‖a‖p,q),θ = ‖b‖p,q),θ = 1 and
∥∥a+b

2

∥∥
p,q),θ

= 1. Then,
we have by using similar technique as in [1] that

1 =

∥∥∥∥a+ b

2

∥∥∥∥
p,q),θ

= sup
0<ε< 1

W (e−1)

ε
θ

q(1+ε)

∥∥∥∥a+ b

2

∥∥∥∥
p,q(1+ε)

≤ sup
0<ε< 1

W (e−1)

ε
θ

q(1+ε)

(
‖a‖p,q(1+ε) + ‖b‖p,q(1+ε)

2

)

≤
(
‖a‖p,q),θ + ‖b‖p,q),θ

2

)
= 1

which shows a = b. �
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2.2. Multiplication Operator. In this section, we characterize some properties
of the multiplication operators on `θp,q). Let v = (vn) be a complex-valued sequence
and let us define the linear transformation Mv on the sequence space X into the
linear space of all complex-valued sequences by

Mv(x) = vx = (vnxn).

If the linear transformation Mv is bounded with range in X, then it is called
multiplication operator on X.

Theorem 13. Let v = (vn) be a complex-valued sequence. Then, Mv is a multipli-
cation operator on `θp,q), 1 ≤ p, q ≤ ∞ if and only if v is a bounded sequence.

Proof. Let Mv be a multiplication operator on `θp,q) and let q < ∞. Then, there
exists a positive number K > 0 such that

‖Mv(a)‖p,q),θ ≤ K ‖a‖p,q),θ
for all a ∈ `θp,q). Let us define

e(k)
n =

{
s−

θ
p , k = n

0, k 6= n

where s =
(

1
W (e−1)

) W (e−1)
1+W (e−1) for all n ∈ N. Then, the non-increasing rearrangement

of
(
e

(k)
n

)
is

e
(k)
φ(n) =

{
s−

θ
p , n = 1

0 , n 6= 1
.

Then, we have
(
e

(k)
n

)
∈ `θp,q) with

∥∥e(k)
∥∥
p,q),θ

= 1. By the boundedness of Mv, it

can be written
∥∥Mve

(k)
∥∥
p,q),θ

≤ K
∥∥e(k)

∥∥
p,q),θ

= K. Thus, we get

sup
ε>0

(
εθ
∞∑
n=1

(
n

1
p(1+ε) vψ(n)e

(k)
ψ(n)

)q(1+ε)

n−1

) 1
q(1+ε)

= sup
ε>0

(
εθ
(
vψ(1)e

(k)
ψ(1)

)q(1+ε)
) 1
q(1+ε)

= s−
θ
p sup
ε>0

(
ε

θ
q(1+ε) vψ(1)

)
≤ K

which gives that vψ(1) ≤ K.s−
θ
q+ θ

p . This shows that v is bounded. If q = ∞, the
proof is similar as was used in the classical Lorentz sequence spaces.
Conversely, let v be a bounded sequence. Then, there exists T > 0 such that

|vk| ≤ T for all k ∈ N. Thus, we get

‖Mva‖p,q),θ = sup
ε>0

(
εθ
∞∑
k=1

(
k

1
p(1+ε) vψ(k)aψ(k)

)q(1+ε)

k−1

) 1
q(1+ε)
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≤ T sup
ε>0

(
εθ
∞∑
k=1

(
k

1
p(1+ε) aψ(k)

)q(1+ε)

k−1

) 1
q(1+ε)

= T ‖a‖p,q),θ
for q <∞. If q =∞, then

sup
k∈N

k
1
p vψ(k)aψ(k) ≤ T ‖a‖p,q),θ .

�

Theorem 14. Let Mv be a multiplication operator on `θp,q), 1 ≤ p, q ≤ ∞. Then,
Mv is invertible if and only if there exists µ > 0 such that |vn| ≥ µ.s−

θ
q+ 2θ

p , where

s =
(

1
W (e−1)

) W (e−1)
1+W (e−1) for all n ∈ N.

Proof. Let Mv be invertible operator on `θp,q), 1 ≤ p, q ≤ ∞. Then, there exists
ρ > 0 such that

‖Mva‖p,q),θ ≥ µ ‖a‖p,q),θ
for all a ∈ `θp,q). Thus, for

(
e

(k)
n

)
∈ `θp,q), we get∥∥∥Mve

(k)
∥∥∥
p,q),θ

= s
θ
q−

θ
p |vk| ≥ µs

θ
p

which gives |vk| ≥ s−
θ
q+ 2θ

p µ. Conversely, let define zk = (vk)
−1. By using Theorem

5, the proof can be obtained. �

Theorem 15. Let Mv be a multiplication operator on `θp,q), 1 ≤ p, q ≤ ∞. Then,
a necessary and suffi cient condition for Mv to have closed range is that for some
% > 0

|vn| ≥ %
for each n ∈ R = {n ∈ N : vn 6= 0}.

Proof. Assume that |vn| ≥ % for % > 0 and for all n ∈ R. Let q < ∞ and let
g(k), g ∈ `θp,q) such that Mvg

(k) → g as k →∞. Then, we write

lim
m,n→∞

∥∥∥Mvg
(m) −Mvg

(n)
∥∥∥
p,q),θ

= 0.

Put x(mn) = g(m) − g(n). Thus, we have{
l ∈ N :

∣∣∣x(mn)
l

∣∣∣ > r

%

}
⊆
{
l ∈ N :

∣∣∣vlx(mn)
l

∣∣∣ > r
}

for each r > 0 and so %x(mn)
φ(l) ≤ vψ(l)x

(mn)
ψ(l) , where x

(mn)
φ(l) and vψ(l)x

(mn)
ψ(l) are the non-

increasing rearrangement of the sequences
(
x

(mn)
l

)
and

(
vlx

(mn)
l

)
, respectively.
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Thus, we have∥∥∥vx(mn)
∥∥∥
p,q),θ

=
∥∥∥Mvg

(m) −Mvg
(n)
∥∥∥
p,q),θ

= sup
ε>0

(
εθ
∑
l∈R

(
l

1
p(1+ε) vψ(l)x

(mn)
ψ(l)

)q(1+ε)

l−1

) 1
q(1+ε)

≥ sup
ε>0

(
εθ
∑
l∈R

%q(1+ε)
(
l

1
p(1+ε)x

(mn)
φ(l)

)q(1+ε)

l−1

) 1
q(1+ε)

= %
∥∥∥x(mn)

∥∥∥
p,q),θ

.

Since
∥∥vx(mn)

∥∥
p,q),θ

→ 0 as m,n → ∞, we have x(mn) → 0 as m,n → ∞. This
means that g(m) is a Cauchy sequence in `θp,q)|R, where
`θp,q)|R =

{
a = (ak) ∈ `θp,q) : ak = 0 if k ∈ N\R

}
is a closed subspace of `θp,q). Thus,

we get f ∈ `θp,q)|R such that g(m) → f as m → ∞. Since Mv is bounded lin-

ear operator, we can write Mvg
(m) → Mvf . This gives Mvf = g. Because of

Ker (Mv) = `θp,q)|N\R, Mv has closed range.
Conversely, assume thatMv has closed range and there exists (ln) ∈ R such that

|vln | < 1
n . Let

e(ln)
m =

{
s−

θ
p , m = ln

0, m 6= ln

where s =
(

1
W (e−1)

) W (e−1)
1+W (e−1) and let q <∞. Then,

∥∥e(ln)
∥∥
p,q),θ

= 1. Thus, we get∥∥∥Mve
(ln)
∥∥∥
p,q),θ

=
∥∥∥ve(ln)

∥∥∥
p,q),θ

= sup
ε>0

(
εθ
∞∑
m=1

(
m

1
p(1+ε) vψ(m)e

(ln)
ψ(m)

)q(1+ε)

m−1

) 1
q(1+ε)

= sup
ε>0

(
εθ
(
vψ(1)e

(ln)
ψ(1)

)q(1+ε)
) 1
q(1+ε)

= s
θ
p−

θ
q vln

<
1

n
s
θ
p−

θ
q

∥∥∥e(ln)
∥∥∥
p,q),θ

which means Mv is not bounded different from zero. Thus, |vn| ≥ % for some % > 0
and all n ∈ R. For the case q =∞ the proof can be obtained by similar way. �

Theorem 16. Let Mv be a multiplication operator on `θp,q). Then, Mv is compact
if and only if |vn| → 0 as n→∞.
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Proof. The proof can be obtained by the similar way used in the classical Lorentz
sequence space. �
Corollary 17. Let Mv be a multiplication operator on `θp,q). Then, Mv is Fredholm
if and only if the set N\R has finite elements and there exists ρ > 0 such that

|vn| ≥ %
for all n ∈ N, where R = {n ∈ N : vn 6= 0}.
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