

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

Sık alt çizge madenciliği algoritmalarının

bellek gereksinimlerini en aza indirmek için

yeni bir yaklaşım

A new approach to minimize memory

requirements of frequent subgraph mining

algorithms

Yazar(lar) (Author(s)): Turgay Tugay BİLGİN1, Murat OĞUZ2

ORCID1: 0000-0002-9245-5728

ORCID2: 0000-0002-2757-5504

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Bilgin T. T. ve Oğuz M., “A new

approach to minimize memory requirements of frequent subgraph mining algorithms”, Politeknik Dergisi,

24(1): 237-246, (2021).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.678921

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

A New Approach to Minimize Memory Requirements of Frequent

Subgraph Mining Algorithms

Highlights

 Frequent subgraphs

 Graph mining

 Space complexity

 Structure Packaging

 Graph Data Structures

Graphical Abstract

In this study, a new approach called Predictive Dynamic Sized Structure Packing (PDSSP) have been proposed

to minimize the memory requirement of FSM algorithms. Proposed approach redesigns the internal data structures

of FSM algorithms without any algorithmic modifications.

Figure. Avg. Memory usage (MBytes) and avg. Run Time durations (secs) comparison of Gaston to Gaston +

PDSSP.

Aim

In this study, a new approach called Predictive Dynamic Sized Structure Packing (PDSSP) have been proposed

to minimize the memory requirement of FSM algorithms.

Design & Methodology

Proposed approach redesigns the internal data structures of FSM algorithms without any algorithmic

modifications.

Originality

PDSSP has two contributions. The first one is the Dynamic Sized Integer Type (ds_Int) which is a newly designed

unsigned integer data type. The second contribution is “Data Structure packaging” component that uses a data

structure packing technique which changes the behaviour of the compiler.

Findings

A number of experiments have been conducted to examine the effectiveness and efficiency of the PDSSP approach

by embedding it into two state-of-art algorithms called gSpan and Gaston. Proposed implementation have been

compared to the official one. Almost all results show that the proposed implementation consumes less memory on

each support level.

Conclusion

Predictive Dynamic Sized Structure Packing (PDSSP) extensions can save memory and the peak memory usage

may decrease up to 38% depending on the dataset.

Declaration of Ethical Standards

The author(s) of this article declare that the materials and methods used in this study do not require ethical

committee permission and/or legal-special permission.

Politeknik Dergisi, 2021; 24(1) : 237-246 Journal of Polytechnic, 2021; 24 (1): 237-246

237

 Sık Alt Çizge Madenciliği Algoritmalarının Bellek

Gereksinimlerini En Aza İndirmek İçin Yeni Bir

Yaklaşım
Araştırma Makalesi / Research Article

Turgay Tugay BİLGİN1*, Murat OĞUZ2
1Mühendislik ve Doğa Bilimler Fakültesi, Bursa Teknik Üniversitesi, Bursa, TÜRKİYE

2Microsoft Türkiye, İstanbul, TÜRKİYE

 (Geliş/Received : 24.01.2020 ; Kabul/Accepted : 13.03.2020)

 ÖZ

Sık alt çizge madenciliği (SAÇM), çizge sınıflandırma ve çizge kümeleme için yaygın olarak kullanılan bir çizge madenciliği alt

türüdür. Son on yılda, birçok verimli SAÇM algoritması geliştirilmiştir. Geliştirmeler genellikle algoritma yapısını değiştirerek

veya paralel programlama teknikleri kullanarak zaman karmaşıklığını azaltmaya odaklanmıştır. SAÇM algoritmalarının çözülmesi

gereken en önemli problemlerinden biri yüksek bellek tüketimidir. Bu çalışmada, SAÇM algoritmalarının bellek gereksinimini en

aza indirmek için Öngörücü Dinamik Boyutlu Yapı Paketleme (ÖDBYP) adı verilen yeni bir yaklaşım önerilmiştir. Önerilen

yaklaşım SAÇM algoritmalarının iç veri yapılarında herhangi bir algoritmik değişiklik yapmadan yeniden tasarlamaya olanak

sağlamaktadır. Bu çalışma kapsamında geliştirilen ÖDBYP ile very madenciliği alanına iki önemli katkı sağlanmaktadır. Birincisi,

yeni tasarlanmış işaretsiz bir tamsayı veri türü olan Dinamik Boyutlu Tamsayı Türüdür (ds_Int). İkinci katkı, derleyicinin

davranışını değiştiren bir veri yapısı paketleme tekniği kullanan “Veri Yapısı paketleme” bileşenidir. ÖDBYP yaklaşımının

etkinliğini ve verimliliğini, gSpan ve Gaston adlı güncel algoritmalara gömerek çeşitli deneyler gerçekleştirilmiştir. Çalışma

kapsamında geliştirilen yöntem ile algoritmaların original halleri ile kıyaslanmıştır. Neredeyse tüm sonuçlar, önerilen uygulamanın

her destek düzeyinde daha az bellek harcadığını göstermektedir. Sonuç olarak, ÖDBYP uzantıları bellek tasarrufu sağlayabilir ve

veri kümesine bağlı olarak maksimum bellek kullanımı % 38 kadar düşürülebilmektedir.

Anahtar Kelimeler: Sık alt çizgeler, veri madenciliği, alan karmaşıklığı.

A New Approach to Minimize Memory Requirements

of Frequent Subgraph Mining Algorithms

ABSTRACT

Frequent subgraph mining (FSM) is a subsection of graph mining domain which is extensively used for graph classification and

graph clustering purposes. Over the past decade, many efficient FSM algorithms have been developed. The improvements generally

focus on reducing time complexity by changing the algorithm structure or using parallel programming techniques. FSM algorithms

have another problem to solve, which is the high memory consumption. In this study, a new approach called Predictive Dynamic

Sized Structure Packing (PDSSP) have been proposed to minimize the memory requirement of FSM algorithms. Proposed approach

redesigns the internal data structures of FSM algorithms without any algorithmic modifications. PDSSP has two contributions. The

first one is the Dynamic Sized Integer Type (ds_Int) which is a newly designed unsigned integer data type. The second contribution

is “Data Structure packaging” component that uses a data structure packing technique which changes the behaviour of the compiler.

A number of experiments have been conducted to examine the effectiveness and efficiency of the PDSSP approach by embedding

it into two state-of-art algorithms called gSpan and Gaston. Proposed implementation have been compared to the official one.

Almost all results show that the proposed implementation consumes less memory on each support level. As a result, PDSSP

extensions can save memory and the peak memory usage may decrease up to 38% depending on the dataset.

Keywords: Frequent subgraphs, data mining, space complexity.

1. INTRODUCTION

The size of the graphs used in the graph mining area is

growing rapidly up to trillion edges [1]. In the year 2015,

one of the largest reported experiments with a real-world

graph involved over 1.5 trillion edges [2]. Today, the

search engines have new infrastructures to support the

bigger web graphs, which has over a trillion vertices [3].

Another important area for graph mining is genome

sequencing. Recent works have attempted to solve the

genome assembly problem by using graphical

representations for genomes. An example of a big

genome graph is the de Bruijn graph which was

generated based on k-mers calculation in Velvet

algorithms. The maximum number of nodes in that graph

was about 4 million [4]. The most widely used

application domain of graph mining is the graph pattern

mining problems, which is also called frequent subgraph

mining (FSM). It is a well-studied problem with

numerous applications in areas such as computational
*Sorumlu Yazar (Corresponding Author)

e-posta : turgay.bilgin@btu.edu.tr

Turgay Tugay BİLGİN, Murat OĞUZ / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2021;24(1): 237-246

238

chemistry, bioinformatics, and social networks [5]. FSM

focuses on the enumeration of the frequent subgraphs,

either in a single graph or in a graph database. During

enumeration of the subgraphs, memory requirements get

exponentially larger compared to the input size of the

input data. For this reason, various methods have been

used to optimise memory and CPU usage of the FSM

algorithms. These improvements have focused on

distributing the computational power and memory

requirements to different nodes by parallelization

techniques like Map/Reduce, Message Passing Interface

(MPI). Using compression techniques, changing the

data-storing structure or format with new technologies

like Cassandra and Hadoop are other solutions that work.

All these techniques are used to modify and optimize the

FSM algorithms.

Using high-performance computing (HPC) for FSM is a

timely subject, especially on symmetric multiprocessing

(SMP) systems. In SMP systems, there is one shared

memory used by more than one core. Any FSM algorithm

paralleled on SMP systems needs more memory than a

single-threaded counterpart for increasing the level of

parallelization due to data sharing needs between threads.

As a result, the space complexity is getting a bigger

problem for these type of systems [6].

In this study, we have developed a new approach to

decrease the memory requirements of FSM algorithms

even if they run as a single-threaded implementation or

an HPC based structure. Our proposed approach does not

require the algorithms to be redesigned and it can also be

applied to various FSM algorithms [7].

The remaining part of this paper is organized as follows:

we define some FSM preliminaries and the problem in

Section 2. In section 3, we discuss our method, in section

4 we have performed an experimental study. The last

section draws the conclusions.

2. DEFINITIONS

A graph is constructed by pairing a set of vertices V and

a set of edges E. The graph is defined by 𝐺 = (𝑉, 𝐸), if

𝐸 ⊆ 𝑉𝑥𝑉 and every edge 𝑒 ∈ 𝐸 relates to a pair of

vertices (𝑣1, 𝑣2).

Two graphs 𝐺1 and 𝐺2 are isomorphic, if 𝐺1 = (𝑉1, 𝐸1)

and 𝐺2 = (𝑉2, 𝐸2) are topologically identical. This means

that there is a mapping from 𝐺1 to 𝐺2 such that each edge

in 𝐸1 is mapped to a single edge in 𝐸2 and vice versa. If

the graph has labels, this mapping must also be between

the labels on the vertices and edges.

Subgraph 𝐺2 = (𝑉2, 𝐸2) of another graph 𝐺1 = (𝑉1, 𝐸1)

is that 𝑉2 ⊆ 𝑉1 and 𝐸2 ⊆ 𝐸1ˆ(𝑣1, 𝑣2) ∈ 𝐸2 → 𝑉1 ∈ 𝑉2

and 𝑣2 ∈ 𝑉2 can be found, as in Fig. 1.

A graph G1= (V1, E1) in Fig 1.(a) with vertex set

V1={a,b,c,d,e} and edge set E1={ab,ad,bc,be,ce,de} is

given. So the graph G2= (V2, E2) in Fig 1.(b) with vertex

set V2={,c,d,e} and edge set E2={ce,de} is a subgraph of

the graph G1.

Figure 1. (a) represents a graph, (b) represents a subgraph of

(a).

Subgraph isomorphism occur between two graphs 𝐺1 =
(𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is when you find an

isomorphism between 𝐺2 and a subgraph of 𝐺1, that is, to

determine whether or not 𝐺2 is included in 𝐺1.

The frequent subgraph is defined as a graph that occurs

frequently in the graph database, which is a special type

of database that comprises a single large graph or some

multiple small graphs. Given a labelled graph dataset

𝐺𝐷 = {𝐺1, 𝐺2, … , 𝐺𝑘}, support or frequency of a subgraph

𝑔 is the percentage (or number) of graphs in 𝐺𝐷 where 𝑔

is a subgraph [8]. If 𝐷 is the input database, the graph

support 𝐺𝐷 is denoted by Sup (𝐺𝐷).

Frequent subgraph mining is the discovery of subgraphs

of the given set of graphs [9]. Let Fig. 2 (a) and Fig. 2 (b)

be the given graphs. An example of frequent subgraph

would be the graph shown in Fig. 2 (c).

Figure 2. (a), (b) are input graphs, (c) is a frequent subgraph.

Many efficient frequent subgraph mining algorithms

have been developed, such as gSpan [10], Gaston [11],

CloseGraph [12], SPIN [13], Mofa [14], EDC [15], FSG

[16]. Behind these studies, there are two basic approaches

to the frequent subgraph mining problem. The first

approach shares similar characteristics with Apriori-

based frequent item set mining algorithms. It starts to

search for small-size subgraphs and extends it by joining

subsequently found subgraphs. The well-known Apriori-

based frequent subgraph mining algorithms are AGM,

FSG and an edge-disjoint path-join algorithm [17].

 SIK ALT ÇİZGE MADENCİLİĞİ ALGORİTMALARININ BELLEK GEREKSİNİMLERİNİ EN A… Politeknik Dergisi, 2021; 24 (1) : 237-246

239

The second approach employs pattern-growth algorithms

that start from an initial edge and extend the graph by

directly adding a new edge in every possible position,

then checking whether or not this graph supports the

threshold. Well-known pattern-growth based graph

mining algorithms are gSpan, MoFa, SPIN, and Gaston

[18][19].

In this work, two algorithms gSpan and Gaston are used

to test our approach. gSpan (graph-based Substructure

pattern) uses DFS-codes for presenting and storing the

graphs. Searching and comparing frequent subgraphs for

isomorphism check test is done via DFS code tree. With

this feature, gSpan does not require any candidate pattern

generation. It generates all exact frequent subgraphs.

gSpan guarantees the completeness of mining results

with the minimum DFS codes, pruning non-minimal

children in the solution space. Table 1 describes the

pseudo-code of gSpan. This pseudo-code is an

integration of the algorithm descriptions presented in

[10].

All pattern growth algorithms generate duplicated

candidates during the enumeration process. In gSpan, the

duplicated candidates are non-minimal codes. Instead of

calculating the minimum DFS code of s from all possible

DFS codes, picking up the smallest one and comparing it

against s, gSpan defines a more efficient function

isMin(s) in Subgraph_mining method. A

heuristic search was designed using the DFS

lexicographic order. Whenever some prefix of a DFS is

generated and it is less than s, then s is not minimal and

the search concludes.

Table 1. Pseudo-code of the gSpan algorithm

Algorithm gSpan

Metod 1: GraphSet_projection(GS, FS)

 sort labels of the vertices and edges in GS by frequency;

 remove infrequent vertices and edges;

 relabel the remaining vertices and edges (descending);

 S
1

:= all frequent 1-edge graphs;

 sort S
1

 in DFS lexicographic order;

 FS := S
1

;

 for each edge e in S
1

do

 init g with e, set g.DS={h | h∈GS, e∈E(h)};

 Subgraph_mining(GS, FS, g);
 GS := GS - e;

 if |GS| < minSup

 break;

Metod 2: Subgraph_mining(GS, FS, g)

 if g ≠ min(g)

 return;

 FS := FS ∪ {g};

 enumerate g in each graph in GS and count g's children;

 for each c (child of g) do

 if support(c) ≥ minSup

 Subgraph_mining(GS, FS, c);

Enumeration of g: Finding all the exact positions of g in

another graph

For support calculation and candidate enumeration,

gSpan uses a TID list. The TID list (Transaction ID list)

contains the ID of each graph in the database that holds

the corresponding subgraph.

Table 2. Pseudo-code of Gaston algorithm

Algorithm Gaston

Input: U, one of the units of the database

sup, minimum support.

Output: P(U), the set of frequent subgraphs in U.

F1 = {frequent edges in U};

for each p ∈ F1 {

 L = {allowable extended edges of p};

 for each allowable extended edge l ∈ L {

 G` = Adding l to p;

 L` = {allowable extended edges of G` };

 if l is a node refinement {

 if G` is a path

 find paths with G` and L` ;

 else

 find trees with G` and L` ;

 }

 else

 find cyclic graphs with G` and L` ;

 }

}

Many memory-based algorithms have been proposed to

discover the frequent graphs. In this work, we use the

Gaston algorithm to find the set of frequent graphs. The

Gaston (Graph sequence tree extraction) algorithm is

based on the observation that most frequent substructures

in practical graph databases are actually free trees and

employs a highly effective strategy to enumerate the

frequent free trees first. Gaston stores all embeddings

(both nodes and edges), to generate only refinements that

actually appear and to achieve fast isomorphism testing.

It firstly checks paths and trees, subgraph isomorphism

test is done as the last job. Gaston only outputs the cycled

graphs. So that, Gaston works faster than both gSpan,

FFSM or Mofa.

Table 2 gives an outline of the Gaston algorithm. Let

P(U) be a subgraph found in the U. The first line finds all

the frequent edges in the database (F1.) For each frequent

edge p, the algorithm generates the descendants G` of p

with the set of allowable extended edges L (for each

block). According to the types of G` and the extended

edges, the algorithm will decide to find paths, trees or

cyclic graphs in the database. If-else sections perform

these operations in pseudo-code given in Table 2.

3. PREDICTIVE DYNAMIC SIZED STRUCTURE

PACKING (PDSSP)

In this section, we have described our contribution to the

standard FSM algorithm. FSM algorithm read the

datasets from an external resource, process the data and

Turgay Tugay BİLGİN, Murat OĞUZ / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2021;24(1): 237-246

240

write them into the disk. Basic flowchart of standard

FSM algorithm is depicted in Fig. 3 (a).

Our proposed PDSSP approach redesigns the internal

data structures of the FSM algorithm without any

algorithmic modifications, therefore it acts as an

extension to the FSM algorithm. After applying the

PDSSP to standard FSM implementation

(FSM_PDSSP), modifications are depicted in Fig. 3 (b).

Figure 3. Flowcharts of standard FSM and PDSSP_FSM.

Generally, all FSM implementations use a fixed-type

integer for all variables. The main idea behind PDSSP is

that, if the maximum value to be stored in the integer-

based variables could be estimated, then varying-length

integer data types could be employed. In this way,

memory requirements of FSM implementations may be

reduced.

We have analyzed the FSM implementations and we

noticed that, due to the structure of the input data, only

unsigned integers are employed. Table 3 shows the

standard unsigned integer types with their storage sizes

and value ranges [20]. We have observed that choosing

improper integer data types causes high memory usage.

Consequently, we have focused on finding a solution to

create varying-length unsigned integer data type.

FSM_PDSSP has two contributions. The first one is the

Dynamic Sized Integer Type (ds_Int) which is a newly

designed unsigned integer data type that has a varying

capacity range from 0 to 264 . The capacity of ds_Int

could be changed on demand. The second contribution is

“Data Structure packaging” component that uses a data

structure packing technique which changes the behaviour

of the compiler. The details of the contributions are given

in the following sections.

Table 3. Standard unsigned integer types and their storage

sizes and ranges.

Type Storage

size

Value range

unsigned

char

1 byte 0 to 255 (28)

unsigned

short int

2 bytes 0 to 65,535 (216)

unsigned

int

4 bytes 0 to 4,294,967,295 (232)

unsigned

long int

8 bytes 0 to

18,446,744,073,709,551,616

(264)

Table 4. Input dataset file format.

t # <graph_id>

v <vertex_id> <vertex_label>

e <edge_from> <edge_to>

<edge_label>

<next_graph_or_end_of_file>

FSM implementations work in such a way that they store

maximum possible values of graph features in memory

as integer data type regardless of the number of samples,

the number of edges and vertices in the data set. PDSSP

is designed to convert this static memory usage into a

dynamic state. Our proposed model has 2 stages. The

flowchart of our implementation has been given in Fig 4.

The first stage is Predictive Version Switch (PVS) that

scans the input dataset file which stores the graphs

digitized in DIMACS [21] format as shown in Table 4.

On the “analyze dataset” module in Fig 4, PVS

determines the proper integer value range and then

chooses the appropriate precompiled PDSSP version to

execute. FSM_PDSSP is an FSM version of which

primitive integer data types replaced by dynamic length

ds_Int data type. An appropriate size of ds_Int is

determined by the range of values given in Table 7.

C/C ++ languages allow changing primitive integer data

types only at compile time, not during runtime.

Therefore, the FSM_PDSSP code is pre-compiled before

the operation for each type of ds_Int. As shown in Fig 4,

a determiner module chooses the optimum pre-compiled

binary FSM_PDSSP, according to the number of edges,

vertices and graph size.

If the determiner module cannot determine which version

to execute, then the original binary executed. In the end,

the detected frequent sub-graphs are written to the disk.

 SIK ALT ÇİZGE MADENCİLİĞİ ALGORİTMALARININ BELLEK GEREKSİNİMLERİNİ EN A… Politeknik Dergisi, 2021; 24 (1) : 237-246

241

Figure 4. Our proposed flowchart to use FSM with PDSSP.

3.1. Predictive Version Switch (PVS)

PVS is a preprocessing module that has been developed

as independent software. In this study, it has been

modified to meet the requirements of gSpan and Gaston.

PVS takes the following input parameters: input dataset

file, the name of the algorithm, minimum support level

and output file. The pseudo-code of PVS is given in

Table 5.

Table 5. Pseudo-code of Predictive Version Switch

(PVS)

Algorithm PVS

PVS (A dataset file ds_file, an algorithm selection

alg_select, a minimum support level min_sup, an output

file out_file)

Set TransactionCount, maxVertex, maxEdge, maxLabel

to zero;

Read graphs from ds_file into Dataset

for each row in Dataset do

 if type of row is transaction then

 Increase TransactionCount by 1

 else if type of row is label and label_ID of row is

greater than maxLabel then

 Set maxLabel to label_ID

 else if type of row is vertex and vertex_ID of row is

greater than maxVertex then

 Set maxVertex to vertex_ID

 else if type of row is edge and edge_ID of row is

greater than maxEdge then

 Set maxEdge to edge_ID

 end if

end for

if alg_select is gSpan then

 Run “gSpan_PDSSP” with ds_file, min_sup, out_file

 else if alg_select is Gaston then

 Run “Gaston_PDSSP” with ds_file, min_sup, out_file

end if

PVS scans the input dataset and finds the maximum

integer values that will be used to store transaction count,

vertex number, edge number and label numbers. After the

decision process, PVS runs the appropriate PDSSP

version.

3.2. Dynamic Sized Integer Type (ds_Int)

A newly designed unsigned integer variable type, ds_Int,

has been developed as the part of the solution. As can be

seen in the pseudo-code of ds_Int implementation given

in Table 6, the main idea is to store unsigned integer

values in an unsigned array by using bit-shifting

operations. With this method, ds_Int can also support

bigger numbers than 264 with minimal algorithmic

modification. For this work, we have limited it to 264 in

order to compare with the unsigned long integer type.

Table 6. Pseudo-code of ds_Int algorithm

Algorithm ds_Int

struct ds_Int (An unsigned integer data InputData,

size of ds_Int value byte_size)

 Set StoredData with an empty unsigned char array

in byte_size size

 function get () returns integer

 Set OutputData to zero

 for i from 0 to byte_size do

 Set OutputData with OutputData & (i × 8-byte

left shifted StoredData[i])

 end for

 return OutputData

Turgay Tugay BİLGİN, Murat OĞUZ / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2021;24(1): 237-246

242

 end function

 function set (InputData) returns nothing

 for j from 0 to byte_size do

 Set StoredData[j] to StoredData & (j × 8-byte

right shifted InputData)

 end for

 end function

The difference between ds_Int and the standard unsigned

integer type is that ds_Int can be declared to store 1 to 7

bytes and from 0 to 264 value correspondingly. In C/C++

languages, the primitive unsigned integers typically

require 1, 2, 4 or 8-bytes, but not 3, 5, 6 or 7 bytes.

Dynamic sized ds_Int enables the programmer to define

3,5,6 or 7 bytes integers, therefore a significant amount

of memory depending on the dataset may be saved.

Table 7. Comparison of ds_Int and standard integer types

Value

Range

Standard Data Type

/ Size (byte)

ds_Int Type /

Size (byte)

Saving

(byte)

0 to 28 unsigned char / 1 ds_Int<1> / 1 0

0 to 216 unsigned short int / 2 ds_Int<2> / 2 0

0 to 224 unsigned int / 4 ds_Int<3> / 3 1

0 to 232 unsigned int / 4 ds_Int<4> / 4 0

0 to 240 unsigned long int / 8 ds_Int<5> / 5 3

0 to 248 unsigned long int / 8 ds_Int<6> / 6 2

0 to 256 unsigned long int / 8 ds_Int<7> / 7 1

0 to 264 unsigned long int / 8 ds_Int<8> / 8 0

A comparison of ds_Int and standard unsigned integer

data types and storage savings are shown in Table 7. As

shown in the table, when the value range upper-limit gets

higher, especially when it is greater than 232, memory

space savings increases. In order to demonstrate the

strength of ds_Int employment, we may give an example.

Assume that there are 222 integer items in an array and

the maximum value which will be stored is 235. If

standard integer types are used to store the array, an

unsigned long integer type has to be preferred due to its

supported size limit. If we calculate the memory space

requirement for this operation, the amount will be

(∑ 8222

n=1)/ 1024 = 32,768 𝐾𝐵. Whereas, when

ds_Int<5> integer type is used for the same operation, the

memory space requirement will be (∑ 5222

n=1)

/1024 = 20,480 𝐾𝐵. It can be clearly stated that, using

ds_Int results in a reduction in memory requirement up

to (1 −
20480

32768
) = 37%.

3.3. Data Structure Packing

Data structure packing is the last and fundamental part of

the PDSSP approach. Before explaining, it is necessary

to understand how data is stored and accessed in the

memory.

In computer systems, stored data in memory has two

properties. The first one is its value and the second is its

storage location (address in memory). Data alignment

means that the address of the data should be evenly

divisible by any power of 2 because the CPU does not

read one byte at a time. By default, the value of the word

size depends on the architecture of a system. Generally,

word size is 4 in most cases. If the size of data is smaller

than a word size, some extra empty spaces are added to

the end of the data for data alignment. This phenomenon

is called “padding”.

The compiler padding is illustrated in the following

example. Here, an int is assumed to be 4 bytes and

a char is a single byte.

struct mydata {

 char C;

 int L;

 char B;

 int J;

};

Fig 5. Illustrates how “struct mydata” would be

padded to align with 4-byte boundaries. As the alignment

of an int on this platform is 4 bytes, 3 bytes are added

after char C, and 3 bytes are added at the end of char B.

Because of the padding, the addresses of the data in this

structure are evenly divisible by 4. This is called structure

member alignment. Obviously, the size of the structure

in memory grows as a consequence.

In this case, the CPU needs to perform extra operations

to access the data, such as loading two chunks of data,

shifting out unwanted bytes then combining them

together. These extra operations slow down the

performance of the CPU [22].

In this study, we have created a new data type called

dynamic sized integer (ds_Int). It is fully adjustable from

1-byte to 8-byte storage sizes and it avoids misaligned

data access by means of compiler alignment options. In

our C/C++ implementation, we use “#pragma”

preprocessor directive. The pragma directive makes the

compiler work with the specified structure packing size

when it is activated [23].

Figure 5. Memory alignment and padding of struct mydata.

 SIK ALT ÇİZGE MADENCİLİĞİ ALGORİTMALARININ BELLEK GEREKSİNİMLERİNİ EN A… Politeknik Dergisi, 2021; 24 (1) : 237-246

243

Predictive Version Switch (PVS) scans the input dataset

file. On the “analyze dataset” step in Fig 4, PVS finds the

integer value range and then determines the appropriate

ds_Int type. As a result, If 3-byte fits for the integer data

type, then our proposed "data structure packaging

system" will select the ds_Int <3> data type.

Figure 6. Memory alignment when ds_Int<3> used.

Fig 6 illustrates the new memory alignment when integer

data type shrinks to 3 bytes. As a result, totally 6 bytes of

waste has been saved by the help of our proposed method.

3.4. Embedding PDSSP into FSM Algorithms

As we mentioned in the previous section, PDSSP is an

extension to FSM implementations. In order to embed

PDSSP into an FSM implementation, one should perform

memory profiling to determine the most memory

demanded data structures. If any greedy data structures

found, our proposed ds_Int types may replace these.

In this study, we have used Valgrind and Massif

Visualizer tools [24] to profile the memory consumption

of gSpan and Gaston implementations. By means of these

tools, the most memory demanding data structures have

been determined. The greedy data structures are replaced

with ds_Int type. The original data structures and

replaced ones are shown in Table 8.

Table 8. The comparison of original data structures and

PDSSP structures.

Original data structure

g
S

p
a

n
-1

struct Edge{

 int from;

 int to;

 int elabel;

 unsigned int id;

 //other codes

};

g
S

p
a

n
-2

struct PDFS {

 unsigned int id;

 Edge *edge;

 PDFS *prev;

 //other codes

};

G
a

st
o

n
-1

 struct LegOccurrence{

 Tid tid;

 OccurrenceID ccurrenceid;

 NodeId tonodeid, fromnodeid;

 //other codes

};

PDSSP data structure

g
S

p
a

n
-1

#pragma pack(n)

struct Edge{

 ds_Int<v_max> from;

 ds_Int<v_max>to;

 ds_Int<elabel_max> elabel;

 ds_Int<e_max> id;

 //other codes

};

#pragma pack()

g
S

p
a

n
-2

#pragma pack(n)

struct PDFS {

 ds_Int<tid_max> id;

 Edge *edge;

 PDFS *prev;

 //other codes

};

#pragma pack()

G
a

st
o

n
-1

#pragma pack(n)

struct LegOccurrence{

 ds_Int<tid_max> tid;

 ds_Int<tid_max+1> occurrenceid;

ds_Int<v_max>tonodeid,frmnodeid;

 //other codes

};

#pragma pack()

4. EXPERIMENTS

We conducted experiments to examine the effectiveness

and efficiency of the PDSSP approach by embedding it

into two state-of-art algorithms called gSpan and Gaston.

We compared our proposed FSM_PDSSP

implementations to the official implementations.

4.1. Data Sets

To evaluate the performance of the PDSSP approach, we

have conducted experiments with three real-world data

sets: Anti-cancer screen datasets (NCI) [25], Dobson and

Doig (DD) molecule data set [26] and AIDS antiviral

screen data set (AIDS) [27]. In addition to the real

datasets, we have also generated three synthetic datasets

named T10KV5KE14K, T58KV100E100 and

T114KV200E200. The metadata of the real and synthetic

databases are given in Table 9.

Table 9. Benchmark datasets and their characteristics.

Dataset

Ɠ

|Ɠ| |VMAX

(Ɠ)|

|EMAX

(Ɠ)|

|LMAX-

V|

|LMAX-

E|

NCI 20586 112 119 64 3

DD 1178 5747 14267 88 0

AIDS 56213 221 247 61 3

T10KV5

KE14K

10317 5747 14267 88 3

T58KV1

00E100

58242 112 119 63 3

T114KV

200E200

114455 221 247 63 3

| Ɠ |: the total number of graphs in the dataset

|V MAX(Ɠ)|: maximum number of vertices in any graph

|E MAX(Ɠ)|: maximum number of edges in any graph

| L MAX-V |: maximum number of vertex labels

Turgay Tugay BİLGİN, Murat OĞUZ / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2021;24(1): 237-246

244

|L MAX-E|: maximum number of edge labels

4.2. Test Environment

In this study, gSpanCORK an implementation of the

gSpan algorithm which is developed by Thoma, Marisa,

et al. has been employed. It has been downloaded from

the web page provided in their article entitled

“Discriminative frequent subgraph mining with

optimality guarantees” [28]. Gaston was downloaded

from the Gaston official web site [29]. Since both

implementations are open source and coded in C/C++

programming language, we have easily embedded our

proposed PDSSP implementation into them. All source

codes are compiled for x64 architecture in CentOS Linux

release 7.1, with GCC 4.8.3. The C ++ compiler version

that supports C11 standards was used to compile PDSSP

binaries. The test hardware had 2-core Intel Xeon CPU

E5-2670 2.60GHz processors and 4 GB RAM memory.

The implementations were developed to run in single

threaded mode.

4.3. Experimental Results

We have executed our implementation and the original

one on the benchmark datasets given in Table 9. Original

implementations of gSpanCORK and Gaston are

compared to the corresponding FSM_PDSSP

implementations whose are called gSpan+PDSSP and

Gaston+PDSSP. Total running times and the maximum

memory consumptions (peak memory) are collected for

various support levels. All tests are carried out three

times to make sure that they are consistent.
Table 10. Comparison of gSpan and gSpan+PDSSP on

benchmark datasets.

D
at

as
et

S
u

p
p

.
(%

) Mem. Usage (MB's) Run Time (Sec)

gSpan

Orig.

gSpan +

PDSSP

gSpan

Orig.

gSpan +

PDSSP

N
C

I

5 142,57 107,29 37,97 37,84

10 113,4 85,26 11,15 11,03

15 94,33 71,18 6,66 6,44

20 86,01 62,83 4,68 4,58

25 74,36 54,38 3,71 3,69

30 75,8 54,75 3,3 3,32

D
D

5 84,68 59,72 718,24 717,87

10 82,46 57,17 171,21 168,14

15 80,95 55,95 77,03 77,89

20 81,14 55,38 47,72 47,37

25 79,54 54,51 32,56 31,72

30 78,79 54,39 23,47 23,28

A
ID

S

5 147,82 110,12 10,93 10,7

10 96,98 71,83 5,19 5,11

15 92,86 68,18 4,1 4,02

20 86,27 65,86 3,32 3,29

25 78,4 58,27 2,68 2,61

30 75,86 57,26 2,47 2,39

T
5

8
K

V
1
0

0
E

1
0

0

5 2434 1827 684,71 671,71

10 1699 1304 179,46 172,87

15 1418 1050 102,59 99,27

20 1188 906,99 71,42 69,81

25 1001 765,91 58,29 57,62

30 877,57 648,09 47,87 47,7

T
1

1
4

K
V

2
0
0

E
2

0
0

5 1927 1594 236,45 227,01

10 1412 1086 103,9 103,18

15 1191 956,61 73,16 72,45

20 1042 841,67 59,03 57

25 927,74 746,53 51,2 50,99

30 919,89 731,68 46,27 45,88

T
1

0
K

V
5

K
E

1
4

K
 5 190,18 138,58 25,80 25,99

10 153,78 110,98 12,54 12,38

15 145,49 104,14 10,04 10,18

20 135,00 99,48 9,13 9,39

25 128,77 92,43 8,65 8,69

30 125,51 91,95 8,08 8,18

The results of our experiments are shown in Table 10 and

Table 11. For each benchmark, memory usage in

megabytes and run time in seconds are given. “gSpan

Orig.” column corresponds to the original

implementation and “gSpan+PDSSP” column

correspond to the PDSSP employed version. In Table 10

and Table 11, bold values indicate better results.

Tests are repeated for various support levels ranging from

5% to 30%. At lower support levels, the run times are

longer as expected. That's why it requires more time to

find frequent subgraphs at a low support level and

consumes more memory. Owing to the subgraph

isomorphism tests performed during the frequent

subgraph mining, run time and the allocated memory

increases exponentially with the size of the dataset.
Table 11. Comparison of Gaston and Gaston+PDSSP on

benchmark datasets.

D
at

as
et

S
u

p
p

.
(%

) Mem. Usage (MB's) Run Time (Sec)

Gaston

Orig.

Gaston +

PDSSP

Gaston

Orig.

Gaston +

PDSSP

N
C

I

5 77,01 48,48 4,54 5,8

10 55,88 34,81 1,45 1,93

15 45,33 28,62 0,87 1,13

20 36,41 24,13 0,6 0,76

25 30,49 20,13 0,46 0,59

30 28,46 13,89 0,39 0,27

D
D

5 40,27 34,15 142,86 164,15

10 37,68 31,55 40,32 50,37

15 35,2 30,43 21,12 23,32

20 33,88 29,04 12,61 15,42

25 33,33 28,74 8,42 9,83

30 32,47 27,8 6,18 7,06

A
ID

S

5 53,84 34,23 1,36 1,88

10 48,36 29,86 0,7 0,93

15 43,55 27,47 0,51 0,66

20 41,06 26,25 0,4 0,52

25 35,64 23,84 0,32 0,38

30 33,14 21,71 0,25 0,05

T
5

8
K

V
1
0

0
E

1
0

0
 5 1224 772,82 97,68 112,91

10 836,11 513,39 29,58 34,6

15 636,45 397,22 18,15 20,86

20 527,4 331,93 12,37 14,85

25 427,06 279,71 9,82 12,13

30 382,12 246,1 7,95 9,08

T
1

1
4 K V
2

0
0

E
2

0
0

5 964,08 747,84 38,57 44,56

 SIK ALT ÇİZGE MADENCİLİĞİ ALGORİTMALARININ BELLEK GEREKSİNİMLERİNİ EN A… Politeknik Dergisi, 2021; 24 (1) : 237-246

245

10 627,82 490,56 17,79 21,15

15 489,02 390,57 11,21 12,73

20 427,09 351,73 8,22 10,06

25 395,7 318,78 6,61 8,02

30 387,75 309,25 5,48 6,01

T
1

0
K

V
5

K
E

1
4

K
 5 107,21 90,07 6,51 8,71

10 71,99 59,63 1,47 1,83

15 45,63 38,70 0,75 0,83

20 41,35 35,52 0,65 0,73

25 36,81 33,23 0,60 0,66

30 37,25 32,77 0,53 0,41

Table 12 and Table 13 show the overall memory and run

time improvements achieved through our PDSSP

approach. As shown in Table 12, the memory usage is

significantly reduced in all the cases. The memory

savings range from 27.44% to 19.88% on the 6 of the 6

benchmark datasets. The average improvement is

25.66%. The average memory usage and run time

durations for all cases are given in Fig.7.

Table 12 and the charts in Fig 7. indicates that

improvement is accomplished by our PDSSP approach.

On the other hand, the run time is slightly better than the

original implementation. The average run time of 6

benchmarks denotes that our PDSSP employed gSpan

algorithm requires 1.15% less time to run.
Table 12. Memory and run time improvement for the PDSSP

employed gSpan algorithm.

Dataset
Memory Usage

gSpan with

PDSSP (%)

Run Time
gSpan with

PDSSP (%)

NCI -25,90 -1,13

DD -30,87 -0,81

AIDS -25,31 -2,06

T58KV100E100 -24,57 -2,09

T114KV200E200 -19,88 -1,72

T10KV5KE14K -27,44 0,90

AVERAGE -25,66 -1,15

Figure 7. Avg. Memory usage (MBytes) and avg. Run Time

durations (secs) comparison of gSpan to gSpan +

PDSSP.

Table 13. Memory and run time improvement for the PDSSP

employed Gaston algorithm.

Dataset

Memory Usage

Gaston with

PDSSP (%)

Run Time

Gaston with

PDSSP (%)

NCI -38,42 19,15

DD -14,58 17,25

AIDS -35,87 11,54

T58KV100E100 -36,70 17,55

T114KV200E200 -20,29 16,89

T10KV5KE14K -14,03 11,44

AVERAGE -26,65 15,64

The results of our second set of experiments are shown

in Table 13. As the previous experiment with gSpan with

PDSSP, the memory usage is also significantly reduced

in Gaston with PDSSP. The reduction ranges from

38.42% to 14.03% on the 6 of the 6 benchmark datasets.

The average improvement is 26.65%. The average

memory usage and run time durations for all cases of

Gaston and Gaston + PDSSP are given in Fig.8.

Figure 8. Avg. Memory usage (MBytes) and avg. Run Time

durations (secs) comparison of Gaston to Gaston +

PDSSP.

In this case, total run time on all experiments are slightly

worse than the original implementation. The average run

time is 15.16% longer than the original. gSpan uses

adjacency list for graph representation, whereas Gaston

uses a hash table. This approach makes the Gaston the

fastest out of 4 algorithms named MoFa, gSpan, FFSM

and Gaston [30]. We have used gSpan as “fairly

optimized” representative, whereas the Gaston has been

chosen as “well optimized” representative to demonstrate

our approach. Our PDSSP approach may cause some

delay in Gaston which is the worst case for our approach.

We may say that PDSSP approach may cause delay at

most 15% in the worst case. In general, an actual delay

will be much smaller. A delay of 15% is not bad, since

Gaston algorithm may operate up to 50% faster than

gSpan. The corresponding lines of Table 10 and Table 11

may be used to compare the run times of gSpan and

Gaston on the same dataset with the same support level.

The memory requirements of the FSM algorithms are

inversely proportional to the level of support. Almost all

results show that our proposed PDSSP implementation

consumes less memory on each support level. The

experimental results show that FSM_PDSSP can save

memory and the peak memory usage decreases

dramatically up to 38% depending on the dataset.

5. RESULTS AND DISCUSSION
Frequent subgraph mining is one of the most challenging

problems in the graph-mining domain. This article

Turgay Tugay BİLGİN, Murat OĞUZ / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2021;24(1): 237-246

246

provides a novel approach to minimize the memory

consumption of FSM algorithms. We call our approach

as Predictive Dynamic Sized Structure Packing (PDSSP).

In order to demonstrate the efficiency of PDSSP, a

number of experiments have been carried out on both

real-life datasets and large synthetic datasets. Total run

times and the maximum memory consumption (peak

memory) are compared with the original

implementations. The experimental results clearly stated

that PDSSP can significantly decrease memory usage.

There may be some delay in the total run time of some

well-optimized FSM implementations such as Gaston.

Our PDSSP approach has two contributions. The first one

is the Dynamic Sized Integer Type (ds_Int) which is a

newly designed unsigned integer data type. The second

contribution is “Data Structure packaging” component

that uses a data structure packing technique which

changes the behaviour of the compiler.

As future work, we are planning to use Map/Reduce and

Message Passing Interface (MPI) in order to improve the

overall performance of the PDSSP embedded FSM

algorithms.
ETİK STANDARTLARIN BEYANI (DECLARATION OF

ETHICAL STANDARDS)

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal

ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin

gerektirmediğini beyan ederler.

REFERENCES

[1] Burkhardt P., Waring C., “An NSA big graph experiment”. In

presentation at the Carnegie Mellon University SDI/ISTC
Seminar, Pittsburgh, USA, (2013).

[2] Fleury E., Lattanzi S., Mirrokni V., Perozzi B., “ASYMP: fault-
tolerant mining of massive graphs.” arXiv preprint

arXiv:1712.09731, (2017).

[3] Muttipati A. S., Padmaja P., “Analysis of large graph partitioning
and frequent subgraph mining on graph data”. International

Journal of Advanced Research in Computer Science, 1: 6-7,

(2015).

[4] Carlos G. V., Esteban M., “Comparative Analysis of de Bruijn

Graph Parallel Genome Assemblers”, 2018 IEEE International

Work Conference on Bioinspired Intelligence (IWOBI), 1-8,
(2018).

[5] Talukder N., Zaki, M. J., “A distributed approach for graph

mining in massive networks”. Data Mining and Knowledge

Discovery, 30: 1024-1052, (2016).

[6] Di Fatta G., Berthold M. R., “High performance subgraph

mining in molecular compounds”. In International Conference

on High Performance Computing and Communications, 866-

877, (2005).

[7] Stratikopoulos A., Chrysos G., Papaefstathiou I., and Dollas A.,
“HPC-gSpan: An FPGA-based parallel system for frequent

subgraph mining”. In IEEE 2014 24th International

Conference on Field Programmable Logic and Applications
(FPL),1-4, (2014).

[8] Aggarwal C. C., Bhuiyan M. A., Al Hasan M., “Frequent pattern

mining algorithms: A survey”. In: Aggarwal CC, Han J, editors.
Frequent Pattern Mining. Switzerland: Springer International

Publishing, 19–64, (2014).

[9] Anastasiu D. C., Iverson J., Smith S., Karypis G., “Big data
frequent pattern mining”. In: Frequent Pattern Mining.

Switzerland: Springer International Publishing, 225–259,

(2014).

[10] Yan X., Han J., “gSpan: Graph-based substructure pattern
mining”. In: IEEE 2003 International Conference on Data

Mining, 721–724, (2003).

[11] Nijssen S., Kok J. N., “The Gaston tool for frequent subgraph
mining”. Electronic Notes in Theoretical Computer Science,

127: 77–87, (2005).

[12] Yan X., Han J., “CloseGraph: Mining closed frequent graph
patterns”. In: ACM SIGKDD 2003 International Conference

on Knowledge Discovery and Data Mining, 286–295, (2003).

[13] Lakshmi K., Meyyappan D.T., “A comparative study of frequent
subgraph mining algorithms”. IJITCS 2012, 2: 2, (2012).

[14] Borgelt C., Berthold M. R., “Mining molecular fragments:

Finding relevant substructures of molecules”. In: IEEE 2003

International Conference on Data Mining, 51–58, (2003).

[15] Guan B., Zan X. Z., Xiao B.Y., Ma R. N., Zhang F.Y., and Liu

W. B., "Detecting dense subgraphs in complex networks based
on edge density coefficient", Chinese Journal of Electronics,

22: 517–520, (2013).

[16] Kuramochi M., Karypis G., “Frequent subgraph discovery”. In:

IEEE 2001 International Conference on Data Mining, 313–

320, (2001).

[17] Vanetik N., Gudes E., Shimony S. E., “Computing frequent
graph patterns from semistructured data”. In: IEEE 2002

International Conference on Data Mining, 458–465, (2002).

[18] Rehman S. U., Asghar S., and Fong S. J., “Optimized and
Frequent Subgraphs: How Are They Related?”. IEEE Access, 6:

37237-37249, (2018).

[19] Yang S., Guo R., Liu R., Liao X., Zou Q., Shi B. and Peng S.,

“cmFSM: a scalable CPU-MIC coordinated drug-finding tool by

frequent subgraph mining”. BMC bioinformatics, 19: 98,
(2018).

[20] Horton I., “Working with fundamental data types”. In: Anglin S,

lead editor. Beginning C++. New York, NY, USA: Apress
Press, 55–77, (2014).

[21] Bader D. A., Meyerhenke H., Sanders P., Wagner D.

“Benchmarking for graph clustering and partitioning”.
Encyclopedia of Social Network Analysis and Mining, 73–84,

(2012).

[22] Bryant R. E., David Richard O. H., “Computer systems: a
programmer's perspective.” Upper Saddle River: Prentice Hall;

(2003).

[23] https:/docs.microsoft.com/en-us/previous-versions/ms253935

[24] "Valgrind and Massif Visualizer tools",

http://valgrind.org/info/tools.html, (2017).

[25] Wale N., Ian A. W., and Karypis G., "Comparison of descriptor
spaces for chemical compound retrieval and classification."

Knowledge and Information Systems, 347-375, (2008).

[26] Dobson P. D., Doig A. J., “Distinguishing enzyme structures
from non-enzymes without alignments”. Journal of Molecular

Biology, 330: 771–783, (2003).

[27] Wajdi D., Sabeur A., Mephu N. E., “MR-SimLab: Scalable
subgraph selection with label similarity for big data”.

Information Systems, 69: 155-163, (2017).

[28] Thoma M., Cheng H., Gretton A., Han J., Kriegel H. P., Smola
A., Song L., Yu P. S., Yan X., Borgwardt K. M., “Discriminative

frequent subgraph mining with optimality guarantees”.

Statistical Analysis and Data Mining. The ASA Data Science
Journal; 3: 302–318, (2010).

[29] http://liacs.leidenuniv.nl/~nijssensgr/gaston/index.html

[30] Wörlein M., Meinl T., Fischer I., and Philippsen, M., “A
quantitative comparison of the subgraph miners MoFa, gSpan,

FFSM, and Gaston.”, In: European Conference on Principles

of Data Mining and Knowledge Discovery, 392-403, (2005).

