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1. Introduction
Let C, C∗, Cm×n, and Cn denote the sets of complex numbers, nonzero complex num-

bers, all m × n complex matrices, and all n × n complex matrices, respectively. 0, 0n, and
In stand for a zero matrix of appropriate size, the zero matrix of order n, and the identity
matrix of order n, respectively. The symbol ⊕ will denote the direct sum of matrices. Let
α, β ∈ C, a matrix A ∈ Cn is called an idempotent, an involutive, and an {α, β}–quadratic
matrix if A2 = A, A2 = In, and (A − αIn) (A − βIn) = 0, respectively. It is noteworthy
that a {0, 1}–quadratic matrix is idempotent and a {−1, 1}–quadratic matrix is involutive.
Moreover, a matrix A ∈ Cn is called a generalized {α, β}–quadratic matrix with respect
to an idempotent matrix P ∈ Cn if (A − αP) (A − βP) = 0 and AP = PA = A hold for
α, β ∈ C.

In [1,2,4,7,13], it has been characterized the involutiveness of the form aA + bB when
a, b ∈ C and A, B are special types of matrices. Moreover, there are a lot of studies
related to the linear combinations including involutive matrices [4,7,9,14] and quadratic,
generalized quadratic matrices [2, 3, 5, 6, 8, 10, 11]. These special types of matrices have
applications to digital image encryption (for example, [12]).

Consider a linear combination of the form
K = aA + bB, A, B ∈ Cn, a, b ∈ C∗. (1.1)

Liu et al. characterized the involutiveness of the linear combinations of the form (1.1)
when A is a quadratic or a tripotent matrix and B is an arbitrary matrix [2]. Sarduvan
and Kalaycı established necessary and sufficient conditions for the idempotency of linear
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combinations of the form (1.1) when A is a quadratic matrix and B is an arbitrary matrix
[8].

This paper aims to give necessary and sufficient conditions in which a linear combination
of the form (1.1) is an involutive matrix when A is a quadratic matrix and B is an arbitrary
matrix with some certain conditions.

Now we can give the main results.

2. Main results
In this section, we will investigate the involutiveness of the linear combinations of the

form (1.1), under some certain conditions.

Theorem 2.1. Let a, b, α ∈ C∗, β ∈ C, and α ̸= β. Moreover, let A and B ∈ Cn\ {0} be
an {α, β}–quadratic matrix and an arbitrary matrix, respectively. Furthermore, let K be
their linear combination of the form K = aA + bB. Then K is an involutive matrix and
A2BA = A2B if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(

αIp 0
0 βIn−p

)
V−1

and B satisfies one of the following cases.
(a) α = 1 and β = 0.

B = V


1−a

b Iq 0 0 0
0 −1−a

b Ip−q 0 0
0 Z2

1
b Ir 0

Z3 0 0 −1
b In−p−r

 V−1,

being Z2 ∈ Cr×(p−q) and Z3 ∈ C(n−p−r)×q arbitrary.
(b) α = 1, aβ = 1, and a ̸= 1.

B = V


β−1
βb Iq 0 0
0 −β−1

βb Ip−q 0
0 Z2 0n−p

 V−1,

being Z2 ∈ C(n−p)×(p−q) arbitrary.
(c) α = 1, aβ = −1, and a ̸= −1.

B = V


β+1
βb Iq 0 0
0 −β+1

βb Ip−q 0
Z1 0 0n−p

 V−1,

being Z1 ∈ C(n−p)×q arbitrary.
(d) β = 0, aα = 1, and a ̸= 1.

B = V

 0p 0 0
0 1

b Ir 0
Z2 0 −1

b In−p−r

 V−1,

being Z2 ∈ C(n−p−r)×p arbitrary.
(e) β = 0, aα = −1, and a ̸= −1.

B = V

 0p 0 0
Z1

1
b Ir 0

0 0 −1
b In−p−r

 V−1,

being Z1 ∈ Cr×p arbitrary.
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(f) β = 1, aα = 1, and a ̸= 1.

B = V

 0p 0 Y2
0 α−1

αb Ir 0
0 0 −α−1

αb In−p−r

 V−1,

being Y2 ∈ Cp×(n−p−r) arbitrary.
(g) β = 1, aα = −1, and a ̸= −1.

B = V

 0p Y1 0
0 α+1

αb Ir 0
0 0 −α+1

αb In−p−r

 V−1,

being Y1 ∈ Cp×r arbitrary.

Proof. From Theorem 2.1 in [5], we can write a quadratic matrix A as

A = U (αIp ⊕ βIn−p) U−1,

where p ∈ {0, . . . , n} and U ∈ Cn is a nonsingular matrix. We can represent B as

B = U
(

X Y
Z T

)
U−1, where X ∈ Cp. In view of the hypotheses A2BA = A2B and

α ̸= 0 we can write
αX = X, βY = Y, αβ2Z = β2Z, β3T = β2T. (2.1)

Now let us assume that K is an involutive matrix then we can write
(aαIp + bX)2 + b2YZ = Ip, ab (α + β) Y + b2 (XY + YT) = 0,

ab (α + β) Z + b2 (ZX + TZ) = 0, b2ZY + (aβIn−p + bT)2 = In−p.
(2.2)

Depending on the scalar β, we have the following cases.
(i) Let β ̸= 1. From (2.1), it is seen that Y = 0. We can split this case into four cases
depending on the values of α and β.

(i-1) Let α = 1 and β = 0. Reorganizing the equations of (2.2), it can be written

(aIp + bX)2 = Ip, (bT)2 = In−p, abZ + b2 (ZX + TZ) = 0. (2.3)
It is clear that aIp + bX and bT are involutive matrices from the first and second equations
in (2.3), respectively. Since an involutive matrix is a {−1, 1}–quadratic matrix, there exist
q ∈ {0, . . . , p}, r ∈ {0, . . . , n − p} and nonsingular matrices S1 ∈ Cp, S2 ∈ C(n−p) such
that

X = S1

(1 − a

b
Iq ⊕ −1 − a

b
Ip−q

)
S1

−1, T = S2

(1
b

Ir ⊕ −1
b

In−p−r

)
S2

−1. (2.4)

Let us write Z as
Z = S2

(
Z1 Z2
Z3 Z4

)
S1

−1, (2.5)

where Z1 ∈ Cr×q. Substituting (2.4) and (2.5) into the third equation in (2.3) it is obtained
that 2 (Z1 ⊕ −Z4) = 0. Then Z reduces to

Z = S2

(
0 Z2

Z3 0

)
S1

−1, (2.6)

where Z2 ∈ Cr×(p−q) and Z3 ∈ C(n−p−r)×q are arbitrary matrices.
Let us define V := U (S1 ⊕ S2). Then we get A as

A = U (Ip ⊕ 0n−p) U−1 = V
(
S1

−1 ⊕ S2
−1

)
(Ip ⊕ 0n−p) (S1 ⊕ S2) V−1

= V (Ip ⊕ 0n−p) V−1.



On involutiveness of linear combinations ... 1015

In view of (2.4) and (2.6), B is obtained that

B = V


1−a

b Iq 0 0 0
0 −1−a

b Ip−q 0 0
0 Z2

1
b Ir 0

Z3 0 0 −1
b In−p−r

 V−1,

which establishes part (a).
(i-2) Let α = 1 and β ̸= 0. From (2.1), it is seen that T = 0. Reorganizing the equations
of (2.2), it can be written

(aIp + bX)2 = Ip, (aβIn−p)2 = In−p, ab (1 + β) Z + b2ZX = 0. (2.7)

It is clear that aIp + bX is an involutive matrix from the first equation in (2.7), so there
exist q ∈ {0, . . . , p} and a nonsingular matrix S3 ∈ Cp such that

X = S3

(1 − a

b
Iq ⊕ −1 − a

b
Ip−q

)
S3

−1. (2.8)

Let us write Z as
Z =

(
Z1 Z2

)
S3

−1, (2.9)
where Z1 ∈ C(n−p)×q. Substituting (2.8) and (2.9) into the third equation in (2.7) it is
obtained that

(
(aβ + 1) Z1 (aβ − 1) Z2

)
=

(
0 0

)
. Moreover, it is clear that aβ ∈

{−1, 1} from the second equation in (2.7). Then Z reduces to

Z =
(

0 Z2
)

S3
−1 (2.10)

when aβ = 1 or
Z =

(
Z1 0

)
S3

−1 (2.11)
when aβ = −1.

Let us define V := U (S3 ⊕ In−p). Then we get A as

A = U (Ip ⊕ βIn−p) U−1 = V
(
S3

−1 ⊕ In−p

)
(Ip ⊕ βIn−p) (S3 ⊕ In−p) V−1

= V (Ip ⊕ βIn−p) V−1.

In view of (2.8), (2.10) and (2.8), (2.11) we obtain, respectively, that

B = V


β−1
βb Iq 0 0
0 −β−1

βb Ip−q 0
0 Z2 0n−p

 V−1

and

B = V


β+1
βb Iq 0 0
0 −β+1

βb Ip−q 0
Z1 0 0n−p

 V−1,

which establish parts (b) and (c).
(i-3) Let α ̸= 1 and β = 0. From (2.1), it is seen that X = 0. Reorganizing the equations
of (2.2), it can be written

(aαIp)2 = Ip, (bT)2 = In−p, abαZ + b2TZ = 0. (2.12)

It is clear that bT is an involutive matrix from the second equation in (2.12), so there
exist r ∈ {0, . . . , n − p} and a nonsingular matrix S4 ∈ C(n−p) such that

T = S4

(1
b

Ir ⊕ −1
b

In−p−r

)
S4

−1. (2.13)
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Let us write Z as
Z = S4

(
Z1
Z2

)
, (2.14)

where Z1 ∈ Cr×p. Substituting (2.13) and (2.14) into the third equation in (2.12) it is

obtained that
(

(aα + 1) Z1
(aα − 1) Z2

)
=

(
0
0

)
. Moreover, it is clear that aα ∈ {−1, 1} from the

first equation in (2.12). Then Z turns to

Z = S4

(
0

Z2

)
(2.15)

when aα = 1 or
Z = S4

(
Z1
0

)
(2.16)

when aα = −1.
Let us define V := U (Ip ⊕ S4). Then we get A as

A = U (αIp ⊕ 0n−p) U−1 = V
(
Ip ⊕ S4

−1
)

(αIp ⊕ 0n−p) (Ip ⊕ S4) V−1

= V (αIp ⊕ 0n−p) V−1.

In view of (2.13), (2.15) and (2.13), (2.16) we obtain, respectively, that

B = V

 0p 0 0
0 1

b Ir 0
Z2 0 −1

b In−p−r

 V−1

and

B = V

 0p 0 0
Z1

1
b Ir 0

0 0 −1
b In−p−r

 V−1,

which establish parts (d) and (e).
(i-4) Let α ̸= 1 and β ̸= 0. From (2.1), it is seen that B = 0 which contradicts the
hypothesis B ̸= 0. So, in this case there is no matrix form of B.

(ii) Let β = 1. From the first and third equations in (2.1), we obtain X = 0 and Z = 0,
respectively. Reorganizing the equations of (2.2), it is obtained that

(aα)2Ip = Ip, (aIn−p + bT)2 = In−p, ab (α + 1) Y + b2YT = 0. (2.17)
It is obvious that aα ∈ {1, −1} and aIn−p + bT is an involutive matrix from the first

and second equations in (2.17), respectively. Hence, there exist r ∈ {0, . . . , n − p} and a
nonsingular matrix S ∈ C(n−p) such that

T = S
(1 − a

b
Ir ⊕ −1 − a

b
In−p−r

)
S−1. (2.18)

Let us write Y as
Y =

(
Y1 Y2

)
S−1, (2.19)

where Y1 ∈ Cp×r. Substituting (2.18) and (2.19) into the third equation in (2.17) yields(
b (aα + 1) Y1 b (aα − 1) Y2

)
=

(
0 0

)
. Using aα ∈ {1, −1}, Y obtain that

Y =
(

0 Y2
)

S−1 (2.20)
when aα = 1 or

Y =
(

Y1 0
)

S−1 (2.21)
when aα = −1.

Hence, we can easily write

A = U (αIp ⊕ In−p) U−1 = U (Ip ⊕ S) (αIp ⊕ In−p)
(
Ip ⊕ S−1

)
U−1.
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In view of (2.18), (2.20) and (2.18), (2.21) we obtain, respectively, that

B = U (Ip ⊕ S)

 0p 0 Y2
0 α−1

αb Ir 0
0 0 −α−1

αb In−p−r

 (
Ip ⊕ S−1

)
U−1

and

B = U (Ip ⊕ S)

 0p Y1 0
0 α+1

αb Ir 0
0 0 −α+1

αb In−p−r

 (
Ip ⊕ S−1

)
U−1,

which establish parts of (f) and (g) by defining V as V := U (Ip ⊕ S). So, the necessity
part of the proof is completed and the sufficiency is obvious. �

Theorem 2.2. Let a, b, α ∈ C∗, β ∈ C, and α ̸= β. Moreover, let A and B ∈ Cn\ {0} be
an {α, β}–quadratic matrix and an arbitrary matrix, respectively. Furthermore, let K be
their linear combination of the form K = aA + bB. Then K is an involutive matrix and
A2B2 = (AB)2 if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(

αIp 0
0 βIn−p

)
V−1 (2.22)

and B satisfies one of the following cases.
(a) β = 0,

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q 0 0
0 Z2

1
b Ir 0

Z3 0 0 −1
b In−p−r

 V−1. (2.23)

(b) β ̸= 0, aα = 1, and aβ = −1,

B = V


0q 0 0 Y2
0 −2

b Ip−q 0 0
0 0 2

b Ir 0
Z3 0 0 0n−p−r

 V−1. (2.24)

(c) β ̸= 0, aα ̸= 1, and aβ = −1,

B = V


1−aα

b Iq 0 0 Y2
0 −1−aα

b Ip−q 0 0
0 0 2

b Ir 0
0 0 0 0n−p−r

 V−1. (2.25)

(d) β ̸= 0, aα = −1, and aβ = 1,

B = V


2
b Iq 0 0 0
0 0p−q Y3 0
0 Z2 0r 0
0 0 0 −2

b In−p−r

 V−1. (2.26)

(e) β ̸= 0, aα ̸= −1, and aβ = 1,

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q Y3 0
0 0 0r 0
0 0 0 −2

b In−p−r

 V−1. (2.27)
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(f) β ̸= 0, aα = −1, and aβ ̸= 1,

B = V


2
b Iq 0 0 0
0 0p−q 0 0
0 Z2

1−aβ
b Ir 0

0 0 0 −1−aβ
b In−p−r

 V−1. (2.28)

(g) β ̸= 0, aα = 1, and aβ ̸= −1,

B = V


0q 0 0 0
0 −2

b Ip−q 0 0
0 0 1−aβ

b Ir 0
Z3 0 0 −1−aβ

b In−p−r

 V−1. (2.29)

(h) β ̸= 0, aα ̸= ±1, and aβ ̸= ±1,

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q 0 0
0 0 1−aβ

b Ir 0
0 0 0 −1−aβ

b In−p−r

 V−1. (2.30)

Here Y2 ∈ Cq×(n−p−r), Y3 ∈ C(p−q)×r, Z2 ∈ Cr×(p−q), Z3 ∈ C(n−p−r)×q arbitrary matrices
and Z3Y2 = 0, Y2Z3 = 0, Z2Y3 = 0, Y3Z2 = 0.

Proof. We can write a quadratic matrix A as
A = U (αIp ⊕ βIn−p) U−1,

where p ∈ {0, . . . , n} and U ∈ Cn is a nonsingular matrix. We can represent B as B =

U
(

X Y
Z T

)
U−1, where X ∈ Cp. Observe that under the hypotheses A2B2 = (AB)2,

α ̸= 0, and α ̸= β, one has
YZ = 0, YT = 0, βZX = 0, βZY = 0. (2.31)

Let us assume that K is an involutive matrix then
(aαIp + bX)2 + b2YZ = Ip, ab (α + β) Y + b2 (XY + YT) = 0,

ab (α + β) Z + b2 (ZX + TZ) = 0, (aβIn−p + bT)2 + b2ZY = In−p.
(2.32)

Now, let us separate the proof according to α and β. Firstly, we use the values of β.
(i) Let β = 0. Considering (2.31) and (2.32), we get

(aαIp + bX)2 = Ip, abαY + b2XY = 0,

(bT)2 + b2ZY = In−p, abαZ + b2 (ZX + TZ) = 0.
(2.33)

It is clear that aαIp + bX is an involutive matrix from the first equation in (2.33). So,
there exist q ∈ {0, . . . , p} and a nonsingular matrix S1 ∈ Cp such that

X = S1

(1 − aα

b
Iq ⊕ −1 − aα

b
Ip−q

)
S1

−1. (2.34)

Let Y be written as
Y = S1

(
Y1 Y2
Y3 Y4

)
, (2.35)

where Y1 ∈ Cq×r. Substituting (2.34) and (2.35) into the second equation in (2.33) it
is obtained that Y = 0. Considering the last result, the third equation of (2.33) turns
to (bT)2 = In−p. Thus, it is clear that bT is an involutive matrix. So, there exist
r ∈ {0, . . . , n − p} and a nonsingular matrix S2 ∈ C(n−p) such that

T = S2

(1
b

Ir ⊕ −1
b

In−p−r

)
S2

−1. (2.36)
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Let Z be written as
Z = S2

(
Z1 Z2
Z3 Z4

)
S1

−1, (2.37)

where Z1 ∈ Cr×q. Substituting (2.34), (2.36), and (2.37) into the fourth equation in (2.33)
it is obtained that 2 (Z1 ⊕ −Z4) = 0 in other words

Z = S2

(
0 Z2

Z3 0

)
S1

−1. (2.38)

Hence, defining V := U (S1 ⊕ S2), we can write A as

A = U (αIp ⊕ βIn−p) U−1 = V
(
S1

−1 ⊕ S2
−1

)
(αIp ⊕ βIn−p) (S1 ⊕ S2) V−1

= V (αIp ⊕ βIn−p) V−1.

In view of (2.34), (2.36), and (2.38), B is obtained that

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q 0 0
0 Z2

1
b Ir 0

Z3 0 0 −1
b In−p−r

 V−1,

which establishes part of (a).
(ii) Now, let β ̸= 0. From the third and fourth equations in (2.31), we can write ZX = 0
and ZY = 0. Then, reorganizing the equations in (2.32), we get

(aαIp + bX)2 = Ip, (aβIn−p + bT)2 = In−p,
ab (α + β) Y + b2XY = 0, ab (α + β) Z + b2TZ = 0.

(2.39)

It is clear that aαIp + bX and aβIn−p + bT are involutive matrices from the first and
second equations in (2.39), respectively. So, there exist q ∈ {0, . . . , p}, r ∈ {0, . . . , n − p}
and nonsingular matrices S3 ∈ Cp, S4 ∈ C(n−p) such that

X = S3

(1 − aα

b
Iq ⊕ −1 − aα

b
Ip−q

)
S3

−1, T = S4

(1 − aβ

b
Ir ⊕ −1 − aβ

b
In−p−r

)
S4

−1.

(2.40)
Defining V := U (S3 ⊕ S4), we can write A as

A = U (αIp ⊕ βIn−p) U−1 = V
(
S3

−1 ⊕ S4
−1

)
(αIp ⊕ βIn−p) (S3 ⊕ S4) V−1

= V (αIp ⊕ βIn−p) V−1.

Now, let Y and Z be written as

Y = S3

(
Y1 Y2
Y3 Y4

)
S4

−1 and Z = S4

(
Z1 Z2
Z3 Z4

)
S3

−1, (2.41)

where Y1 ∈ Cq×r and Z1 ∈ Cr×q. Substituting (2.40) and (2.41) into the third and fourth
equations in (2.39), it is obtained that(

(aβ + 1) Y1 (aβ + 1) Y2
(aβ − 1) Y3 (aβ − 1) Y4

)
= 0,

(
(aα + 1) Z1 (aα + 1) Z2
(aα − 1) Z3 (aα − 1) Z4

)
= 0. (2.42)

Depending on the values of aα and aβ, we have the following cases.
(ii–1) Let aα = 1 and aβ = −1. It is clear that Y3, Y4 and Z1, Z2 are zero matrices from
the equations in (2.42). Considering all of (2.31), (2.40), (2.41) and these facts, we obtain

Y = S3

(
0 Y2
0 0

)
S4

−1 and Z = S4

(
0 0

Z3 0

)
S3

−1,
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where Y2 ∈ Cq×(n−p−r) and Z3 ∈ C(n−p−r)×q are arbitrary matrices that satisfy the
equalities Y2Z3 = 0 and Z3Y2 = 0. Therefore, we get B as

B = V


0q 0 0 Y2
0 −2

b Ip−q 0 0
0 0 2

b Ir 0
Z3 0 0 0n−p−r

 V−1,

which establishes part (b).
(ii–2) Let aα ̸= 1 and aβ = −1. From the equations in (2.42), it is clear that Y3, Y4, and

Z are zero matrices. Thus, as in (ii–1), Y reduces to Y = S3

(
0 Y2
0 0

)
S4

−1 and then

B = V


1−aα

b Iq 0 0 Y2
0 −1−aα

b Ip−q 0 0
0 0 2

b Ir 0
0 0 0 0n−p−r

 V−1.

So, it is completed part (c).
(ii–3) Let aα = −1 and aβ = 1. It is clear that Y1, Y2 and Z3, Z4 are zero matrices from
the equations in (2.42). Considering all of (2.31), (2.40), (2.41) and these facts, we obtain

Y = S3

(
0 0

Y3 0

)
S4

−1 and Z = S4

(
0 Z2
0 0

)
S3

−1,

where Y3 ∈ C(p−q)×r and Z2 ∈ Cr×(p−q) are arbitrary matrices that satisfy the equalities
Y3Z2 = 0 and Z2Y3 = 0. Therefore, we get the matrix B as

B = V


2
b Iq 0 0 0
0 0p−q Y3 0
0 Z2 0r 0
0 0 0 −2

b In−p−r

 V−1,

which establishes part (d).
(ii–4) Let aα ̸= −1 and aβ = 1. From the equations in (2.42), it is clear that Y1, Y2, and

Z are zero matrices. Thus, as in (ii–3), Y reduces to Y = S3

(
0 0

Y3 0

)
S4

−1 and then

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q Y3 0
0 0 0r 0
0 0 0 −2

b In−p−r

 V−1.

So, it is completed part (e).
(ii–5) Let aα = −1 and aβ ̸= 1. It is obvious that Z3, Z4, and Y are zero matrices from

the equations in (2.42). Thus, as in (ii–3), Z reduces to Z = S4

(
0 Z2
0 0

)
S3

−1 and then

B = V


2
b Iq 0 0 0
0 0p−q 0 0
0 Z2

1−aβ
b Ir 0

0 0 0 −1−aβ
b In−p−r

 V−1,

where Z2 ∈ Cr×(p−q) is an arbitrary matrix and which completes part (f).
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(ii–6) Let aα = 1 and aβ ̸= −1. It is obvious that Z1, Z2, and Y are zero matrices from

the equations in (2.42). Thus, as in (ii–1), Z reduces to Z = S4

(
0 0

Z3 0

)
S3

−1 and then

B = V


0q 0 0 0
0 −2

b Ip−q 0 0
0 0 1−aβ

b Ir 0
Z3 0 0 −1−aβ

b In−p−r

 V−1,

where Z3 ∈ C(n−p−r)×q is an arbitrary matrix. So, the part (g) of the proof is completed.
(ii–7) Let aβ ̸= ±1 and aα ̸= ±1. From the equations in (2.42), it is clear that Y = 0 and
Z = 0. Hence,

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q 0 0
0 0 1−aβ

b Ir 0
0 0 0 −1−aβ

b In−p−r

 V−1,

which completes the part (h) of the proof. Therefore, the part of the necessity of the proof
is completed.

On the other hand, it is evident that if A and B are represented as in (2.22) and
(2.23)–(2.30) and if the scalars α, β satisfy the corresponding conditions, then K2 = I. �

Theorem 2.3. Let a, b, α ∈ C∗, β ∈ C, and α ̸= β. Moreover, let A and B ∈ Cn\ {0} be
an {α, β}–quadratic matrix and an arbitrary matrix, respectively. Furthermore, let K be
their linear combination of the form K = aA + bB. Then K is an involutive matrix and
BAB = AB2 if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(

αIp 0
0 βIn−p

)
V−1

and B satisfies one of the following cases.
(a) aα = 1 and aβ = −1,

B = V


0q 0 0 Y2
0 −2

b Ip−q 0 0
0 0 2

b Ir 0
Z3 0 0 0n−p−r

 V−1.

(b) aα ̸= 1 and aβ = −1,

B = V


1−aα

b Iq 0 0 Y2
0 −1−aα

b Ip−q 0 0
0 0 2

b Ir 0
0 0 0 0n−p−r

 V−1.

(c) aα = −1 and aβ = 1,

B = V


2
b Iq 0 0 0
0 0p−q Y3 0
0 Z2 0r 0
0 0 0 −2

b In−p−r

 V−1.

(d) aα ̸= −1 and aβ = 1,

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q Y3 0
0 0 0r 0
0 0 0 −2

b In−p−r

 V−1.
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(e) aα = −1 and aβ ̸= 1,

B = V


2
b Iq 0 0 0
0 0p−q 0 0
0 Z2

1−aβ
b Ir 0

0 0 0 −1−aβ
b In−p−r

 V−1.

(f) aα = 1 and aβ ̸= −1,

B = V


0q 0 0 0
0 −2

b Ip−q 0 0
0 0 1−aβ

b Ir 0
Z3 0 0 −1−aβ

b In−p−r

 V−1.

(g) aα ̸= ±1 and aβ ̸= ±1,

B = V


1−aα

b Iq 0 0 0
0 −1−aα

b Ip−q 0 0
0 0 1−aβ

b Ir 0
0 0 0 −1−aβ

b In−p−r

 V−1.

Here Y2 ∈ Cq×(n−p−r), Y3 ∈ C(p−q)×r, Z2 ∈ Cr×(p−q), Z3 ∈ C(n−p−r)×q are arbitrary
matrices and Z3Y2 = 0, Y2Z3 = 0, Z2Y3 = 0, Y3Z2 = 0.

Proof. This theorem is given under the condition BAB = AB2. Premultiplying this
condition by A leads to A2B2 = (AB)2. Therefore, we get the proof if we apply Theorem
2.2. �

Lastly, let us give the following theorem.

Theorem 2.4. Let a, b, α ∈ C∗, β ∈ C, α ̸= β, and (α, β) /∈ {(−1, 1) , (1, −1)}. Moreover,
let A and B ∈ Cn\ {0} be an {α, β}–quadratic matrix and an arbitrary matrix, respectively.
Furthermore, let K be their linear combination of the form K = aA + bB. Then K is
an involutive matrix and A2BA = BA if and only if there exists a nonsingular matrix
V ∈ Cn such that

A = V
(

αIp 0
0 βIn−p

)
V−1 (2.43)

and B satisfies one of the following cases.
(a) β2 ̸= 1, α2 = 1, and β = 0.

B = V


1−aα

b Iq 0 0 Y2
0 −1−aα

b Ip−q Y3 0
0 0 1

b Ir 0
0 0 0 −1

b In−p−r

 V−1, (2.44)

being Y2 ∈ Cq×(n−p−r) and Y3 ∈ C(p−q)×r arbitrary.
(b) β2 ̸= 1, α2 = 1, β ̸= 0, and aβ = 1.

B = V

 1−aα
b Iq 0 0
0 −1−aα

b Ip−q Y2
0 0 0n−p

 V−1, (2.45)

being Y2 ∈ C(p−q)×(n−p) arbitrary.
(c) β2 ̸= 1, α2 = 1, β ̸= 0, and aβ = −1.

B = V

 1−aα
b Iq 0 Y1
0 −1−aα

b Ip−q 0
0 0 0n−p

 V−1, (2.46)

being Y1 ∈ Cq×(n−p) arbitrary.
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(d) β2 ̸= 1, α2 ̸= 1, β = 0, and aα = 1.

B = V

 0p 0 Y2
0 1

b Ir 0
0 0 −1

b In−p−r

 V−1, (2.47)

being Y2 ∈ Cp×(n−p−r) arbitrary.
(e) β2 ̸= 1, α2 ̸= 1, β = 0, and aα = −1.

B = V

 0p Y1 0
0 1

b Ir 0
0 0 −1

b In−p−r

 V−1, (2.48)

being Y1 ∈ Cp×r arbitrary.
(f) β2 = 1 and aα = 1.

B = V

 0p 0 0
0 1−aβ

b Ir 0
Z2 0 −1−aβ

b In−p−r

 V−1, (2.49)

being Z2 ∈ C(n−p−r)×p arbitrary.
(g) β2 = 1 and aα = −1.

B = V

 0p 0 0
Z1

1−aβ
b Ir 0

0 0 −1−aβ
b In−p−r

 V−1, (2.50)

being Z1 ∈ Cr×p arbitrary.

Proof. Let us write a quadratic matrix A as
A = U (αIp ⊕ βIn−p) U−1,

where p ∈ {0, . . . , n} and U ∈ Cn is a nonsingular matrix. We can represent B as

B = U
(

X Y
Z T

)
U−1 where X ∈ Cp. In view of the hypotheses A2BA = BA and

α ̸= 0 we can write
α2X = X, α2βY = βY, β2Z = Z, β3T = βT. (2.51)

Let us assume that K is an involutive matrix then it follows that
(aαIp + bX)2 + b2YZ = Ip, ab (α + β) Y + b2 (XY + YT) = 0,

ab (α + β) Z + b2 (ZX + TZ) = 0, (aβIn−p + bT)2 + b2ZY = In−p.
(2.52)

The proof can be split into following cases depending on the scalar β.
(i) Let β2 ̸= 1. From (2.51), it is seen that Z = 0. We can split this case into four cases
depending on the values of α and β.

(i-1) Let α2 = 1 and β = 0. Reorganizing the equations of (2.52), it can be written

(aαIp + bX)2 = Ip, (bT)2 = In−p, abαY + b2 (XY + YT) = 0. (2.53)
It is clear that aαIp + bX and bT are involutive matrices from the first and second equa-
tions in (2.53), respectively. So, there exist q ∈ {0, . . . , p}, r ∈ {0, . . . , n − p} and nonsin-
gular matrices S1 ∈ Cp, S2 ∈ C(n−p) such that

X = S1

(1 − aα

b
Iq ⊕ −1 − aα

b
Ip−q

)
S1

−1 and T = S2

(1
b

Ir ⊕ −1
b

In−p−r

)
S2

−1. (2.54)

Let us write Y as
Y = S1

(
Y1 Y2
Y3 Y4

)
S2

−1, (2.55)
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where Y1 ∈ Cq×r. Substituting (2.54) and (2.55) into the third equation in (2.53) yields
2 (Y1 ⊕ −Y4) = 0. Then Y reduces to

Y = S1

(
0 Y2

Y3 0

)
S2

−1, (2.56)

where Y2 ∈ Cq×(n−p−r) and Y3 ∈ C(p−q)×r are arbitrary matrices.
Let us define V := U (S1 ⊕ S2). Then we can write A as

A = U (αIp ⊕ 0n−p) U−1 = V
(
S1

−1 ⊕ S2
−1

)
(αIp ⊕ 0n−p) (S1 ⊕ S2) V−1

= V (αIp ⊕ 0n−p) V−1.

In view of (2.54) and (2.56) we obtain that

B = V


1−aα

b Iq 0 0 Y2
0 −1−aα

b Ip−q Y3 0
0 0 1

b Ir 0
0 0 0 −1

b In−p−r

 V−1,

which yields part (a).
(i-2) Let α2 = 1 and β ̸= 0. From (2.51), it is seen that T = 0. Reorganizing the equations
of (2.52), it can be written

(aαIp + bX)2 = Ip, (aβIn−p)2 = In−p, ab (α + β) Y + b2XY = 0. (2.57)

It is clear that aαIp + bX is an involutive matrix from the first equation in (2.57), so there
exist q ∈ {0, . . . , p} and a nonsingular matrix S3 ∈ Cp such that

X = S3

(1 − aα

b
Iq ⊕ −1 − aα

b
Ip−q

)
S3

−1. (2.58)

Let us write Y as
Y = S3

(
Y1
Y2

)
, (2.59)

where Y1 ∈ Cq×(n−p). Substituting (2.58) and (2.59) into the third equation in (2.57) it

is obtained that
(

(aβ + 1) Y1
(aβ − 1) Y2

)
=

(
0
0

)
. Moreover, it is clear that aβ ∈ {−1, 1} from

the second equation in (2.57). Then Y reduces to

Y = S3

(
0

Y2

)
(2.60)

when aβ = 1 or

Y = S3

(
Y1
0

)
(2.61)

when aβ = −1.
Let us define V := U (S3 ⊕ In−p). Then we get A as

A = U (αIp ⊕ βIn−p) U−1 = V
(
S3

−1 ⊕ In−p

)
(αIp ⊕ βIn−p) (S3 ⊕ In−p) V−1

= V (αIp ⊕ βIn−p) V−1.

In view of (2.58), (2.60) and (2.58), (2.61) we obtain, respectively, that

B = V

 1−aα
b Iq 0 0
0 −1−aα

b Ip−q Y2
0 0 0n−p

 V−1,
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and

B = V

 1−aα
b Iq 0 Y1
0 −1−aα

b Ip−q 0
0 0 0n−p

 V−1,

which establish parts (b) and (c).
(i-3) Let α2 ̸= 1 and β = 0. From (2.51), it is seen that X = 0. Reorganizing the equations
of (2.52), it can be written

(aαIp)2 = Ip, (bT)2 = In−p, abαY + b2YT = 0. (2.62)
It is clear that bT is an involutive matrix from the second equation in (2.62), so there
exist r ∈ {0, . . . , n − p} and a nonsingular matrix S4 ∈ C(n−p) such that

T = S4

(1
b

Ir ⊕ −1
b

In−p−r

)
S4

−1. (2.63)

Let us write Y as
Y =

(
Y1 Y2

)
S4

−1, (2.64)
where Y1 ∈ Cp×r. Substituting (2.63) and (2.64) into the third equation in (2.62) it
is obtained that

(
(aα + 1) Y1 (aα − 1) Y2

)
=

(
0 0

)
. Moreover, it is clear that

aα ∈ {−1, 1} from the first equation in (2.62). Then Y turns to

Y =
(

0 Y2
)

S4
−1 (2.65)

when aα = 1 or
Y =

(
Y1 0

)
S4

−1 (2.66)
when aα = −1.

Let us define V := U (Ip ⊕ S4). Then we get A as

A = U (αIp ⊕ 0n−p) U−1 = V
(
Ip ⊕ S4

−1
)

(αIp ⊕ 0n−p) (Ip ⊕ S4) V−1

= V (αIp ⊕ 0n−p) V−1.

In view of (2.63), (2.65) and (2.63), (2.66) we obtain, respectively, that

B = V

 0p 0 Y2
0 1

b Ir 0
0 0 −1

b In−p−r

 V−1,

and

B = V

 0p Y1 0
0 1

b Ir 0
0 0 −1

b In−p−r

 V−1,

which establish parts (d) and (e).
(i-4) Let α2 ̸= 1 and β ̸= 0. From (2.51), it is seen that B = 0 which contradicts the
hypothesis B ̸= 0. So, in this case there is no matrix form of B.

(ii) Let β2 = 1. From the first and second equations in (2.51) and considering hypotheses
(α, β) /∈ {(−1, 1) , (1, −1)} and α ̸= β, it is obvious that X = 0 and Y = 0. Reorganizing
the equations of (2.52), it can be written

(aα)2Ip = Ip, (aβIn−p + bT)2 = In−p, ab (α + β) Z + b2TZ = 0. (2.67)
It is explicit that aα ∈ {−1, 1} and aβIn−p + bT is an involutive matrix from the first and
second equations in (2.67). So, there exist r ∈ {0, . . . , n − p} and a nonsingular matrix
S ∈ C(n−p) such that

T = S
(1 − aβ

b
Ir ⊕ −1 − aβ

b
In−p−r

)
S−1. (2.68)
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Let us write Z as
Z = S

(
Z1
Z2

)
, (2.69)

where Z1 ∈ Cr×p. Substituting (2.68) and (2.69) into the third equation in (2.67), it is

obtained that
(

(aα + 1) Z1
(aα − 1) Z2

)
=

(
0
0

)
. Using aα ∈ {−1, 1}, Z obtained that

Z = S
(

0
Z2

)
(2.70)

when aα = 1 or
Z = S

(
Z1
0

)
(2.71)

when aα = −1.
Hence, we can easily write

A = U (αIp ⊕ βIn−p) U−1 = U (Ip ⊕ S) (αIp ⊕ βIn−p)
(
Ip ⊕ S−1

)
U−1.

In view of (2.68), (2.70) and (2.68), (2.71) we obtain, respectively, that

B = U (Ip ⊕ S)

 0p 0 0
0 1−aβ

b Ir 0
Z2 0 −1−aβ

b In−p−r

 (
Ip ⊕ S−1

)
U−1

and

B = U (Ip ⊕ S)

 0p 0 0
Z1

1−aβ
b Ir 0

0 0 −1−aβ
b In−p−r

 (
Ip ⊕ S−1

)
U−1.

The necessity part of the proof is completed by defining V as V := U (Ip ⊕ S).
Now, it is evident that if A is represented as in (2.43), B is represented as in (2.44)–

(2.50) and the scalars α, β satisfy the corresponding conditions, then K2 = I. �
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