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ON SOME NEW FK SPACES OBTAINED FROM SUMMABILITY
MATRIX

MAHMUT KARAKUS AND TUNAY BILGIN

ABSTRACT. In this study, we give some new F K-spaces by means of an in-
finite matrix as an operator and define some new (- and 7-type duality of
sequence spaces [4, 6]. We also introduce some new sections and investigate
some properties like AB-, FAK-, SAK- and AK- in an FK-space. By this
way, we obtain some new distinguished subspaces of an FK-space [7]. Among
other results, we prove that the sum of finite numbers of F K-spaces and the
intersection of a sequence of F'K-spaces which have these new properties with
corresponding paranorms have also these new properties. The reader can refer
to [2] and [19] for the main results and related topics in F K-space theory.

1. PRELIMINARIES AND NOTATION

The space of all scalar valued sequences is given by w and a K space is a locally
convex sequence space (lcss) A containing ¢ and a subspace of w on which coordinate
functionals 7 (x) = x, are continuous for every k € N. Here ¢ is the space of finitely
non-zero sequences spanned by {(6%) : k € N} which is the space of sequences whose
kth position is 1 and all the others are 0. A complete linear metric (or complete
normed linear) K space is called an FK (or BK) space.

The multipliers from A into p are given by A* = {y € wlzy € u,Va € )\} for
A, it C w, where zy is the coordinatewise product, i.e., xy = {xkyk}keN. We notates
(A = A = { y € wlzy € v,Vx € /\“} for A\, u,v C w. A sequence space A is
called p—perfect if \ = \**. Classical a—, f— and y— duals of ) are given by A\¢, A
and A", respectively, where ¢ = {(z}) € w : [|z]|1 = X, |ax| < 00}, es = {(wk) €
w Y ) is convergent } and bs = {(z)) € w : ||z]|os = sup,, | >p_; zk| < 00}
These are Banach spaces with their natural norms and also cs is Banach spaces
with ||.|[ps. We know, ¢ C A* € M C X\7. If A\ C p then p¢ C XS and for
every A we have ¢ = S¢S, X\ C AS¢, where ( is one of the a—, f— or y— du-
als. Let us note, Fleming and Magee showed that, whenever A D ¢ is a sequence
space (not required be a BK) and u D ¢ is a BK space then A\ is a BK space
iff there exist a norm ||.|]| on A such that for every y € A" the diagonal map
T, : X = p, Ty(x) = zy is continuous with respect to this norm [9]. We denote
f-dual of a BK space A D ¢ with M = {(f(6%))ren|3f € N'}. Here A is also a
BK space with [|f][x = ||(f(6*))ren||rs- A K space A\ D ¢ is called a sum space
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if \> = M. For example, /, cs and bs are BK sum spaces. If A D ¢ is a K space
then S € )\ is called a sum on \ if S(6%) = 1,Vk € N or equivalently S is a sum on

Nif S(z) = Y x,Va € ¢, where S € X. A K space ) is called AD space if A\ = @,

where ¢ is closure of ¢ in A. Via Hahn-Banach theorem, \/ = 5.

Let A = (Ag) be a strictly increasing sequence of positive real numbers tending
to infinity, that is,
(1.1) 0< A <X<-- and lim M\, =00

k—o0

Then the sequence z = (z1) € w is said to be A-convergent to the number a € C, if
(Az), — a, as n — oo; where

1 n
7 Z A)\ k:fL'k
k=1
for all n € N. Throughout the text we shall assume that (A)X), = A\ — Ag—1 for all
k € Nand Ay = 0. The set ¢* of all A convergent sequences is a BK space with the
norm ||$||Zé\0 = ||Az]|sc = sup,en |(Az)n|, where Az = {(Az),}; [15]. The matrix
A = (\nk) is also defined by
No—Ajo
o { B (sks

n

0 , (k>n)

for all k,n € N. In the special case A\, = n for all n € N, the A-matrix is reduced to
the Cesaro matrix C of order one. We also note that A-summability is the special
case of the Ng-summability; [15], (see also [2]).

Lemma 1.1. ¢y C ¢),c C ¢ and lo, C 02, strictly hold if and only if

.. )\nJrl

1 f =1

im in N,
[15].
Lemma 1.2. ¢y = c),c = c* and l, = £, hold if and only if
(1.2) lim inf 27 5 1

n n

[15].

2. SOME NEW SECTIONS AND DISTINGUISHED SUBSPACES OF AN F'K-SPACES

Let x = (z1) € w be a sequence, then by using A = (\,1), we have A n'" section
of = as;

n

] ARy = 1 3 [#],
Ty A(z™) = Iy Z (AXg)a
k=1
Here, z¥ = 2% 2,67 and AX\y = Ay — Ag—1,(k € N and Ao = 0).
A sequence x in any K space X D ¢ has AAK property if :z:[)\"] —xz, (n = 00) in

X and we say X is an AAK- space if all elements of A\ have this property. Similarly
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we can define the properties, SAAK, FAAK and AAB. So, we define the following
sets as:

ASx

x e X|x:11m:v£\"]},

AWx T € X|xE\"] —zin /\}(”A” means weakly)

z e X|f(x) = lirrlnf(a:g\”]), Vf e X’},

x € w|(f(x£\]))n€N €c, Vf € )\’}7

AFY = {x € w| (mg\”])neN weakly Cauchy in X }

AB; = T € w| (x[)\n])neN is bounded in X }

= {xew’( (@), en € oo WeX’}.

One should keep in mind that ABxy = AB} NX and AFx = AF;(' N AX. These
are the spaces of the sequences which have AAB and FAAK, respectively. Now
for example, if the normed sequence space X is an AAB space (or AAK space),
then sup,, || 2" ||x< oo (or lim, || ™ — || x= 0). Further, since the bound-
edness and weak boundedness are equal in normed spaces, one can easily see that
sup,, | f(z[")| < oo holds, for every f € X', € ABy.

For all z € w, since {z["|n € N} D {:v[\n]\n € N}, we have
APx D Px
for the properties P = B, F, W, S and AP = AB, AF, AW, AS.

In the other hand, let us define the operator A = () associated with the sum
operator

_f1 ., (1<k<n)
EEY 0, (k>n)

then we obtain the spaces

ANB) = {x:(xj)ew:éxjeééo}
_ {x—( Dew: s%p; éxk—xklgag }
and
AS) = {x_(zj)Ew:Xk:mjecA}

j=1

n k
{x: (x;) Ew:li}ln)\ln(kz:l (M — Ak—1) Zx]) exists}

Jj=1
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with the norm

n

Z()\k — )\kfl) Zl‘j

k=1 j=1
We define the A(B) and A(S) duals of a sequence space X as

1
zllxcz) = llzllacs) = sup -~
n An

n k
1
xXAMB) = {a: = (zj) Ew: SUp Z(A/\k) ijyj < oo, Vy=(y;) € X}
Ay Jj=1
= {z=(z;) cw:ay e AB), Vy=(y;) € X}
and
IR :

XA = {x = (25) €w: liTILnAn(I;(A)\k);xjyj) exists , Yy = (y;) € X}

— {x:(mj)ew:xyE/\(S,Vy:(yj)EX}’

respectively. We have X*(%) ¢ X*B) and if ¢ = A(S), A(B), then the inclusion
X C Y yields Y° C X°. We also have X* = X**¢ and X C X*°. If X = X°°,
then X is said to be a ¢— space. In the sake of shortness, we use the notation
XAOMS) = xA*(S) and XMBIAB) = XN (B)_ Tt can be easily seen that, if \p, =k,
one can obtain the spaces os and ob from the spaces A\(S) and A\(B), respectively

[4].

Proposition 2.1. The inclusions cs C A\(S) and bs C A\(B) hold. \(B) C ob and
A(S) C os if and only if the condition (1.2) holds.

Proof. 1t is clear. a
Theorem 2.2. If X is an AK-space, then it is an AAK -space.
Proof. Tt is clear with Stolz-Cesaro theorem. (]

Let X D ¢ be a BK-space. If the following conditions hold then it is said to be
X has a monotone norm [19]:
i. For n < m ||z < [|2I™]]),
ii. ||z[| = sup,, [[«I™]].

Theorem 2.3. ¢* has monoton norm.

Proof. Since A is a triangle ¢ is a BK-space. Let x be fixed and A(m,n) =
|ﬁ Z?=1(AAk)xk‘- So, from [|z||x~ = sup,, |i ZZ=1(A>\k)$k|a we have ||z|[y= =
A(n,n). Since, for z™ = {z1, ..., 2,,,0,0, ...}
[m] _ A(TL, TL) , N <m
|A(3'J )n’ = { A(m,n) . n>m

we also have A(m,n) is decreasing for n. Therefore, the first condition holds. In
the other hand, from ||zl™ ||y~ = sup, {A(n,n) : n < m}, one can easily see that,
the second condition also holds. O

Theorem 2.4. Let X D ¢ be an FK-space. Then, the inclusions

¢ CASx CAWx CAFx CABx C X
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and _
¢ C ASx CAWx C 10}
hold.
Proof. From the definitions of the spaces ¢, ASx, AWx, AFx, ABx, we have
x[;] — 2, ( by the norm of X) = f(x[;]) = f(z) = (f(:c[)\n])) Ec= (f(xg\"])) € loo,

for every f € X'. B
Now, we shall prove that AWyx C ¢. Let us suppose that x € AWx. So,

fla) = liyi};mkﬂx[k]),
holds for every f € X’. Therefore, we have the result from Hahn - Banach
theorem][19]. O
Theorem 2.5. Distinguished subspaces of an F K- space are monotone. That is,
XCcY= Qx C Qy
holds for every Q= AS, AW, AF, AB.

Proof. Since the others are similar, we only give the proof for AAK property. By
bearing in mind that the inclusion map is continuous, let us suppose that X C Y
and € ASx. Therefore, the convergence 5- Sh_(Ax)zF - 2, in X yields

that the convergence % Zzzl(A)\k)x[k] — z, in Y . This completes the proof. [

Theorem 2.6. Let each X; D ¢, (i =1,2,...,m) be FK spaces with paranorms
p@, (i=1,2,...,m) and X = St X If Q=AS,AW,AF,AB, then}." | Qx, C Qx
holds.

Proof. Since the others are similar, we only give proof for AAK property. Let us
suppose that (V) € ASy, (i = 1,2,...,m). Then,

PO — 2] = 0, . pm ()i — 2] 0,

that is, by taking {p(i)[(aj(i))[)\n] — 2] = 0}, we have

[ = (a)] = a3 -]

= o X T - @)
i=1 " k=1

e 0L (LS A (WY FY (0
< P e - ) |+
b+

ml Ly LKLY _ (o (m)
+ ]G e ) - )
= p(l)[(x(l))[)\"] — M4 . +p(m)[(x(m))g\”] — z(m™)]

— 0, asn — oo.

Therefore, we have 37" | 2(¥ € ASy. This completes the proof (see also [8]). O
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Theorem 2.7. Let {X,}72, be a sequence of FK-spaces and X =, X,. Then
we have, Qx =(), Qx, for Q@ =AS,AW,AF,AB.

Proof. By monotonicity, x C x,, and so for Q@ = AS,AW,AF,AB we have
Qx €N, Nx,, for all n € N. Since the others are similar, we shall only prove that
N, 2x, € Qx holds for @ = AS. Let us suppose that « € (), ASx,. Then for

all n,k € N, an(x[;] — ) — 0 and also x[;] — z in X, we have v € ASx. This

completes the proof (see also [8]). O

3. DuALs

In the following, we give some relationship between the distinguished subspaces
and f—, A(S) ve A(B) duals for an FK-space X D ¢.
Theorem 3.1. Let X D ¢ be an FK-space. Then we have
ABY = XPMB) and AFT = XA,
Proof. We know that z € ABY, if and only if (znf(dn))neN € A(B), for all f e X'.
Let us take (f(0™))nen € X/, for some f € X', then from the definition of A(B),

we have z € X/MB)_ The other one is similar. O

Corollary 3.2. Let X D ¢ be an FK-space. Then, the spaces AB} and AF;<r are
A(B) and \(S) spaces, respectively.

Theorem 3.3. Let X D ¢ be an FK-space and & is the closure of ¢ in X. If
¢ CY C X, then
ABY = ABf and AF§ = AFy.

Proof. Since ¢ C Y C X holds, we have AB%r C AB;? C AB}. Therefore, for an
arbitrary FK-space X D ¢, we have (¢)7 = X/, and so af cYlc X/ = Ef.

Anymore, we get desired result by taking A(B) dual in both sides. Similarly, we
can prove that AFyY = AFy. O

Theorem 3.4. Let X D ¢ be an FK-space. Then,
X is an AB space < Xf c X B)

and
X is an AF space < X c x5,

Proof. {=}: By hypothesis and previous result, for A(B) and A(S) duals of an
F K-space, we have X C AB} = X/MB) and X C AF; = X723, From taking
A(B) and A(S) duals,
XTA(B) - xAB)
and
XTAS) - xAS)
hold. Now, we have also X/ C XIN(B) and X7 XfAQ(S), then
X/ c x B
and
X1 c x*9)
hold.
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{«<}: In hypothesis, by using the inclusions X > ¢ X/ ¢ X B and X/ C
XS et us take A(B) and A(S) duals. From the properties of A\(B) and A(S)
duals, we have

X c XV ¢ xAB) — ABE
and
X c XM ¢ xS = AF},
respectively. This means that, X is a AAB and FAAK space, respectively. O

As a result of this theorem, we have following since X*(%) is a closed subspace
of X*B) space (see also [19]).

Corollary 3.5. Let X O ¢ be a BK — AAB-space, then X*%) is closed in \.

Theorem 3.6. The following assertions for an FK-space X D ¢ are true:
(i) If X is an FAAK -space, then X/ = X9,
(ii) If X is an AD-space, then X5 = X (B),
(iii) The inclusions X? ¢ X %) ¢ X B) ¢ X7 are hold.
Proof. (i) Let us suppose that y € X*5) and
1 n k
fz) = liTan oW Z AN Z ZiY;
" k=1 j=1

holds, for every x € X. By Banach-Steinhaus theorem, we havef € X’. Since we
have

n k
flz) = nm%kaszyj

k=1 j=1
1 & -
= lién I An TEYr — Z Ak—ﬂkyk)
n k=1 k=1
n 1 n
= hrrln (; TEYk — " ; /\k—lxkyk>7

by taking z = ¢, we have

f(6™) = lm (ym - Am_lzm)
~ lim (ym(l - A';“*))

Ym, M < N.

and then y = (y,,) € X7. This means that, X*(%) C X/,
In the other hand, let us take y € X7. Since X is an FAAK-space,

1
lim o ; AN f (zF]y
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exists, and so y = (y;) = (f(67)) € X @) for all 2 € X. Therefore, X/ C X5,
(i) It is enough to show that, if X is an AD-space, then X*5) ¢ X*(9) holds.

Let us suppose that y € X*B) and define {f,} as,

fu(x) = }ln)\iz Akzxyyav

for all z € X. Then {f,} is point-wise bounded and so is equicontinuous [19].
For all m <n,

lim f,,(6™) = Ym

and sois ¢ C {z : lim, f,(z) mevcut}. By convergence lemma [19], {x : lim,, f,(x) mevcut }
is a closed subspace of X. Since X is an AD-space, we have

¢ C{x: 1i£nfn(x) exists } = ¢ = X.

That is, y € X5, Hence, X5 = X B, B
(iii) Tt is enough that, the inclusion X*(®) ¢ A/ holds. For ¢ C X,

X/\(B) c (6))\(3)
O
c (9
= X7,
since ¢ is an AD-space. O

We have the following corollary by using previous theorems.
Corollary 3.7. Let X D ¢ be an FK-space. Then,
X is a MAB space < X/ = xB)
and
X is a FAAK space < X = X 9,

Theorem 3.8. Let X D ¢ be an FK — NAB-space. Then, ¢ is a NAK-space and
the equality

ASx =AWx =¢
holds.

Proof. Since we get the proof by the similar way used in the proof of given theorem
in [7], we omit the details. O

Theorem 3.9. Let X D ¢ be an FK-space such that ¢ is a NAK -space. Then,
AFf =g X0,

Proof. We know that AFY = XIS and X/ = (¢)/ for an FK-space X D ¢.
Now, by taking A(S) dual in both sides, we have X/A(5) = (§)/A(5), O

In this theorem, we can replace ¢’ s AMAK property with the weaker property
FAAK. Because, if X D ¢ is an FAAK-space, then X7 = X 5,
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Corollary 3.10. Let X D ¢ be an FK-space. Then,

_ _h2
X is an FAAK space < ¢ is a AAK space and X C d)A (S).

Theorem 3.11. Let X D ¢ be an FK-space. Then the following are equivalent:

(i) X is an FAAK space ,
y ()
(i) X CAFE Y,
(iii) X cAw)®),
(iv) X cCASY®),
() X = AR = AW — AGYS).
Proof. (iv) = (iii) = (ii) are clear from the definitions of these spaces.
2
(#4) = (i): Let us suppose that X C AF;} (%) Then,
X5 o XIVE) = AR c AR ¢ X2

hold.
(1) = (iv): It is clear from previous results.
(tv) = (v): We have for an FK-space X D ¢;

ASX C AWX C AFX c X.
By taking A(S) dual in every side, we have
A(S A(S A(S
X c AR c AW c Asy).

By bearing in mind the hypothesis with the previous results, we get the proof.
(v) = (iw): It is clear. O

Let X be an FK-space has AMAK property. The following theorem tells us that
there is a closed relationship between the spaces X*(%) and X'.

Theorem 3.12. Let X D ¢ be an F K-space. Then the following are equivalent:

(?) X is an SANAK,
(it) X is a MK,
(i) XMI=X'(f = [(0N),

Proof. (i) = (ii): If X is an SAAK space, then it is an AD-space and also is a
AAB-space. Therefore, X is a AAK-space.

(ii) = (#i4): Since X is a AAK-space, then it is AD-space, and so X/ = X’
holds.

(#ii) = (i): Let us suppose that « € X ). Then, for all f € X’ and z € X, we
have

n k
. 1
flx)= hwxln . Z(A)\k) Zujmj.

" k=1 j=1

Therefore, we have x € AWx. O
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Theorem 3.13. Let X D ¢ be an FK-space. Then, the following assertions are
equivalent:

(i) AWx is closed in X,
(it) ¢ C ABx,
(i) ¢ C AFx,
(iv) ¢ =AWy,

(v) ¢ = ASx,
(vi) ASx is closed in X.

Proof. (v) = (iv), (iv) = (i4i), (v) = (i) and (49i) = (ii) are clear. Since ¢ is a

AAK-space, we have ¢ C ASx, and so (i7) = (v) holds.

In the other hand, from ¢ C ASx C AWx C ¢, we have (i) = (iv) and
(vi) = (v). (iv) = (i) and (v) = (vi) are also clear from the previous theorems
and corollaries. O
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