JOURNAL OF UNIVERSAL MATHEMATICS Vol.3 No.1 pp.66-76 (2020) ISSN-2618-5660

ON SOME NEW FK SPACES OBTAINED FROM SUMMABILITY MATRIX

MAHMUT KARAKUŞ AND TUNAY BİLGİN

ABSTRACT. In this study, we give some new FK-spaces by means of an infinite matrix as an operator and define some new β - and γ -type duality of sequence spaces [4, 6]. We also introduce some new sections and investigate some properties like AB-, FAK-, SAK- and AK- in an FK-space. By this way, we obtain some new distinguished subspaces of an FK-spaces [7]. Among other results, we prove that the sum of finite numbers of FK-spaces and the intersection of a sequence of FK-spaces which have these new properties with corresponding paranorms have also these new properties. The reader can refer to [2] and [19] for the main results and related topics in FK-space theory.

1. PRELIMINARIES AND NOTATION

The space of all scalar valued sequences is given by ω and a K space is a locally convex sequence space (lcss) λ containing ϕ and a subspace of ω on which coordinate functionals $\pi_k(x) = x_k$ are continuous for every $k \in \mathbb{N}$. Here ϕ is the space of finitely non-zero sequences spanned by $\{(\delta^k) : k \in \mathbb{N}\}$ which is the space of sequences whose kth position is 1 and all the others are 0. A complete linear metric (or complete normed linear) K space is called an FK (or BK) space.

The multipliers from λ into μ are given by $\lambda^{\mu} = \{y \in \omega | xy \in \mu, \forall x \in \lambda\}$ for $\lambda, \mu \subset \omega$, where xy is the coordinatewise product, i.e., $xy = \{x_k y_k\}_{k \in \mathbb{N}}$. We notates $(\lambda^{\mu})^{\nu} = \lambda^{\mu\nu} = \{y \in \omega | xy \in \nu, \forall x \in \lambda^{\mu}\}$ for $\lambda, \mu, \nu \subset \omega$. A sequence space λ is called μ -perfect if $\lambda = \lambda^{\mu\mu}$. Classical $\alpha -, \beta -$ and $\gamma -$ duals of λ are given by $\lambda^{\ell}, \lambda^{cs}$ and λ^{bs} , respectively, where $\ell = \{(x_k) \in \omega : ||x||_1 = \sum_k |x_k| < \infty\}$, $cs = \{(x_k) \in \omega : \sum_k x_k \text{ is convergent }\}$ and $bs = \{(x_k) \in \omega : ||x||_{bs} = \sup_n |\sum_{k=1}^n x_k| < \infty\}$. These are Banach spaces with their natural norms and also cs is Banach spaces with $||.||_{bs}$. We know, $\phi \subset \lambda^{\alpha} \subset \lambda^{\beta} \subset \lambda^{\gamma}$. If $\lambda \subset \mu$ then $\mu^{\zeta} \subset \lambda^{\zeta}$ and for every λ we have $\lambda^{\zeta} = \lambda^{\zeta\zeta\zeta}, \lambda \subset \lambda^{\zeta\zeta}$, where ζ is one of the $\alpha -, \beta -$ or $\gamma -$ duals. Let us note, Fleming and Magee showed that, whenever $\lambda \supset \phi$ is a sequence space (not required be a BK) and $\mu \supset \phi$ is a BK space then λ^{μ} is a BK space then $\mu^{\Gamma}(y) = xy$ is continuous with respect to this norm [9]. We denote f-dual of a BK space $\lambda \supset \phi$ with $\lambda^f = \{(f(\delta^k))_{k \in \mathbb{N}} | \exists f \in \lambda'\}$. Here λ^f is also a BK space with $||f||_{\lambda'} = ||(f(\delta^k))_{k \in \mathbb{N}}||_{\lambda f}$. A K space $\lambda \supset \phi$ is called a sum space

²⁰⁰⁰ Mathematics Subject Classification. 40H05; 46A45; 40G99; 40C05.

Key words and phrases. FK spaces, Matrix methods, β -, γ -, f- duality.

if $\lambda^{\lambda} = \lambda^{f}$. For example, ℓ , cs and bs are BK sum spaces. If $\lambda \supset \phi$ is a K space then $S \in \lambda'$ is called a sum on λ if $S(\delta^{k}) = 1, \forall k \in \mathbb{N}$ or equivalently S is a sum on λ if $S(x) = \sum x, \forall x \in \phi$, where $S \in \lambda'$. A K space λ is called AD space if $\lambda = \overline{\phi}$, where $\overline{\phi}$ is closure of ϕ in λ . Via Hahn-Banach theorem, $\lambda^{f} = \overline{\phi}^{f}$.

Let $\lambda = (\lambda_k)$ be a strictly increasing sequence of positive real numbers tending to infinity, that is,

(1.1)
$$0 < \lambda_1 < \lambda_2 < \cdots$$
 and $\lim_{k \to \infty} \lambda_k = \infty$.

Then the sequence $x = (x_k) \in \omega$ is said to be λ -convergent to the number $a \in \mathbb{C}$, if $(\Lambda x)_n \to a$, as $n \to \infty$; where

$$(\Lambda x)_n = \frac{1}{\lambda_n} \sum_{k=1}^n (\Delta \lambda)_k x_k$$

for all $n \in \mathbb{N}$. Throughout the text we shall assume that $(\Delta \lambda)_k = \lambda_k - \lambda_{k-1}$ for all $k \in \mathbb{N}$ and $\lambda_0 = 0$. The set c^{λ} of all λ convergent sequences is a BK space with the norm $\|x\|_{\ell_{\lambda}} = \|\Lambda x\|_{\infty} = \sup_{n \in \mathbb{N}} |(\Lambda x)_n|$, where $\Lambda x = \{(\Lambda x)_n\}$; [15]. The matrix $\Lambda = (\lambda_{nk})$ is also defined by

$$\lambda_{nk} := \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n} &, & (1 \le k \le n), \\ 0 &, & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$. In the special case $\lambda_n = n$ for all $n \in \mathbb{N}$, the Λ -matrix is reduced to the Cesàro matrix C of order one. We also note that Λ -summability is the special case of the $\overline{N}q$ -summability; [15], (see also [2]).

Lemma 1.1. $c_0 \subset c_0^{\lambda}, c \subset c^{\lambda}$ and $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ strictly hold if and only if

$$\liminf_{n} \frac{\lambda_{n+1}}{\lambda_n} = 1$$

[15].

Lemma 1.2. $c_0 = c_0^{\lambda}, c = c^{\lambda}$ and $\ell_{\infty} = \ell_{\infty}^{\lambda}$ hold if and only if

(1.2)
$$\liminf_{n} \frac{\lambda_{n+1}}{\lambda_n} > 1$$

[15].

2. Some New Sections and Distinguished Subspaces of an FK-spaces

Let $x = (x_k) \in \omega$ be a sequence, then by using $\Lambda = (\lambda_{nk})$, we have Λn^{th} section of x as;

$$x_{\lambda}^{[n]} = \Lambda(x^{[k]}) = \frac{1}{\lambda_n} \sum_{k=1}^n (\Delta \lambda_k) x^{[k]}.$$

Here, $x^{[k]} = \sum_{j=1}^{k} x_j \delta^j$ and $\Delta \lambda_k = \lambda_k - \lambda_{k-1}, (k \in \mathbf{N} \text{ and } \lambda_0 = 0).$

A sequence x in any K space $X \supset \phi$ has λAK property if $x_{\lambda}^{[n]} \to x$, $(n \to \infty)$ in X and we say X is an λAK - space if all elements of λ have this property. Similarly

we can define the properties, $S\lambda AK$, $F\lambda AK$ and λAB . So, we define the following sets as:

$$\begin{split} \Lambda S_X &= \left\{ x \in X | x = \lim_n x_{\lambda}^{[n]} \right\}, \\ \Lambda W_X &= \left\{ x \in X | x_{\lambda}^{[n]} \rightharpoonup x \text{ in } \lambda \right\} (" \rightharpoonup " \text{ means weakly}) \\ &= \left\{ x \in X | f(x) = \lim_n f(x_{\lambda}^{[n]}), \ \forall f \in X' \right\}, \\ \Lambda F_X^+ &= \left\{ x \in \omega | (x_{\lambda}^{[n]})_{n \in \mathbb{N}} \text{ weakly Cauchy in } X \right\} \\ &= \left\{ x \in \omega | (f(x_{\lambda}^{[n]}))_{n \in \mathbb{N}} \in c, \ \forall f \in \lambda' \right\}, \\ \Lambda B_X^+ &= \left\{ x \in \omega | (x_{\lambda}^{[n]})_{n \in \mathbb{N}} \text{ is bounded in } X \right\} \\ &= \left\{ x \in \omega | (f(x_{\lambda}^{[n]}))_{n \in \mathbb{N}} \in \ell_{\infty}, \ \forall f \in X' \right\}. \end{split}$$

One should keep in mind that $\Lambda B_X = \Lambda B_X^+ \cap X$ and $\Lambda F_X = \Lambda F_X^+ \cap \lambda$. These are the spaces of the sequences which have λAB and $F\lambda AK$, respectively. Now for example, if the normed sequence space X is an λAB space (or λAK space), then $\sup_n || x^{[n]_\lambda} ||_X < \infty$ (or $\lim_n || x^{[n]_\lambda} - x ||_X = 0$). Further, since the bound-edness and weak boundedness are equal in normed spaces, one can easily see that $\sup_n |f(x^{[n]_\lambda})| < \infty$ holds, for every $f \in X', x \in \Lambda B_X$. For all $x \in \omega$, since $\{x^{[n]} | n \in \mathbf{N}\} \supset \{x^{[n]}_\lambda | n \in \mathbf{N}\}$, we have

$$\Lambda \mathcal{P}_X \supset \mathcal{P}_X$$

for the properties $\mathcal{P} = B$, F, W, S and $\Lambda \mathcal{P} = \Lambda B$, ΛF , ΛW , ΛS .

In the other hand, let us define the operator $\Lambda = (\lambda_{nk})$ associated with the sum operator

$$s_{nk} = \begin{cases} 1 & , & (1 \le k \le n) \\ 0 & , & (k > n) \end{cases},$$

then we obtain the spaces

$$\lambda(B) = \left\{ x = (x_j) \in \omega : \sum_{j=1}^k x_j \in \ell_\infty^\lambda \right\}$$
$$= \left\{ x = (x_j) \in \omega : \sup_n \frac{1}{\lambda_n} \left| \sum_{k=1}^n (\lambda_k - \lambda_{k-1}) \sum_{j=1}^k x_j \right| < \infty \right\}$$

and

$$\lambda(S) = \left\{ x = (x_j) \in \omega : \sum_{j=1}^k x_j \in c^\lambda \right\}$$
$$= \left\{ x = (x_j) \in \omega : \lim_n \frac{1}{\lambda_n} \left(\sum_{k=1}^n (\lambda_k - \lambda_{k-1}) \sum_{j=1}^k x_j \right) \text{ exists } \right\}$$

with the norm

$$\|x\|_{\lambda(B)} = \|x\|_{\lambda(S)} = \sup_{n} \frac{1}{\lambda_{n}} \left| \sum_{k=1}^{n} (\lambda_{k} - \lambda_{k-1}) \sum_{j=1}^{k} x_{j} \right|.$$

We define the $\lambda(B)$ and $\lambda(S)$ duals of a sequence space X as

$$X^{\lambda(B)} = \left\{ x = (x_j) \in \omega : \sup_n \frac{1}{\lambda_n} \left| \sum_{k=1}^n (\Delta \lambda_k) \sum_{j=1}^k x_j y_j \right| < \infty, \ \forall y = (y_j) \in X \right\}$$
$$= \left\{ x = (x_j) \in w : xy \in \lambda(B), \ \forall y = (y_j) \in X \right\}$$

and

$$\begin{aligned} X^{\lambda(S)} &= \left\{ x = (x_j) \in \omega : \lim_n \frac{1}{\lambda_n} \left(\sum_{k=1}^n (\Delta \lambda_k) \sum_{j=1}^k x_j y_j \right) \text{ exists }, \ \forall y = (y_j) \in X \right\} \\ &= \left\{ x = (x_j) \in \omega : xy \in \lambda(S), \ \forall y = (y_j) \in X \right\}, \end{aligned}$$

respectively. We have $X^{\lambda(S)} \subset X^{\lambda(B)}$ and if $\varsigma = \lambda(S), \lambda(B)$, then the inclusion $X \subset Y$ yields $Y^{\varsigma} \subset X^{\varsigma}$. We also have $X^{\varsigma} = X^{\varsigma\varsigma\varsigma}$ and $X \subset X^{\varsigma\varsigma}$. If $X = X^{\varsigma\varsigma}$, then X is said to be a ς - space. In the sake of shortness, we use the notation $X^{\lambda(S)\lambda(S)} = X^{\lambda^2(S)}$ and $X^{\lambda(B)\lambda(B)} = X^{\lambda^2(B)}$. It can be easily seen that, if $\lambda_k = k$, one can obtain the spaces σs and σb from the spaces $\lambda(S)$ and $\lambda(B)$, respectively [4].

Proposition 2.1. The inclusions $cs \subset \lambda(S)$ and $bs \subset \lambda(B)$ hold. $\lambda(B) \subset \sigma b$ and $\lambda(S) \subset \sigma s$ if and only if the condition (1.2) holds.

Proof. It is clear.

Theorem 2.2. If X is an AK-space, then it is an λAK -space.

Proof. It is clear with Stolz-Cesàro theorem.

Let $X \supset \phi$ be a *BK*-space. If the following conditions hold then it is said to be X has a monotone norm [19]:

- i. For $n < m ||x^{[n]}|| \le ||x^{[m]}||$, **ii.** $||x|| = \sup_m ||x^{[m]}||.$

Theorem 2.3. c^{λ} has monoton norm.

Proof. Since Λ is a triangle c^{λ} is a BK-space. Let x be fixed and $\Lambda(m,n)$ = $\left|\frac{1}{\lambda_n}\sum_{k=1}^m (\Delta\lambda_k)x_k\right|$. So, from $||x||_{\lambda^{\infty}} = \sup_n \left|\frac{1}{\lambda_n}\sum_{k=1}^n (\Delta\lambda_k)x_k\right|$, we have $||x||_{\lambda^{\infty}} =$ $\lambda(n, n)$. Since, for $x^{[m]} = \{x_1, ..., x_m, 0, 0, ...\}$

$$\left|\Lambda(x^{[m]})_n\right| = \left\{ \begin{array}{cc} \Lambda(n,n) &, & n \le m \\ \Lambda(m,n) &, & n \ge m \end{array} \right.$$

we also have $\Lambda(m,n)$ is decreasing for n. Therefore, the first condition holds. In the other hand, from $||x^{[m]}||_{\lambda^{\infty}} = \sup_{n} \{\Lambda(n,n) : n \leq m\}$, one can easily see that, the second condition also holds.

Theorem 2.4. Let $X \supset \phi$ be an FK-space. Then, the inclusions

$$\phi \subset \Lambda S_X \subseteq \Lambda W_X \subset \Lambda F_X \subset \Lambda B_X \subset X$$
⁶⁹

$$\phi \subset \Lambda S_X \subseteq \Lambda W_X \subset \overline{\phi}$$

hold.

and

Proof. From the definitions of the spaces ϕ , ΛS_X , ΛW_X , ΛF_X , ΛB_X , we have $x_{\lambda}^{[n]} \to x$, (by the norm of X) $\Rightarrow f(x_{\lambda}^{[n]}) \to f(x) \Rightarrow (f(x_{\lambda}^{[n]})) \in c \Rightarrow (f(x_{\lambda}^{[n]})) \in \ell_{\infty}$, for every $f \in X'$.

Now, we shall prove that $\Lambda W_X \subset \overline{\phi}$. Let us suppose that $x \in \Lambda W_X$. So,

$$f(x) = \lim_{n} \frac{1}{\lambda_n} \sum_{k=1}^n \Delta \lambda_k f(x^{[k]})$$

holds for every $f \in X'$. Therefore, we have the result from Hahn - Banach theorem[19].

Theorem 2.5. Distinguished subspaces of an FK- space are monotone. That is,

$$X \subset Y \Rightarrow \ \Omega_X \subset \ \Omega_Y$$

holds for every $\Omega = \Lambda S$, ΛW , ΛF , ΛB .

Proof. Since the others are similar, we only give the proof for λAK property. By bearing in mind that the inclusion map is continuous, let us suppose that $X \subset Y$ and $x \in \Lambda S_X$. Therefore, the convergence $\frac{1}{\lambda_n} \sum_{k=1}^n (\Delta \lambda_k) x^{[k]} \to x$, in X yields that the convergence $\frac{1}{\lambda_n} \sum_{k=1}^n (\Delta \lambda_k) x^{[k]} \to x$, in Y. This completes the proof. \Box

Theorem 2.6. Let each $X_i \supset \phi$, (i = 1, 2, ..., m) be FK spaces with paranorms $p^{(i)}$, (i = 1, 2, ..., m) and $X = \sum_{i=1}^{m} X_i$. If $\Omega = \Lambda S, \Lambda W, \Lambda F, \Lambda B$, then $\sum_{i=1}^{m} \Omega_{X_i} \subseteq \Omega_X$ holds.

Proof. Since the others are similar, we only give proof for λAK property. Let us suppose that $x^{(i)} \in \Lambda S_{X_i}$ (i = 1, 2, ..., m). Then,

$$p^{(1)}[(x^{(1)})^{[n]}_{\lambda} - x^{(1)}] \to 0, \dots, p^{(m)}[(x^{(m)})^{[n]}_{\lambda} - x^{(m)}] \to 0,$$

that is, by taking $\left\{p^{(i)}[(x^{(i)})^{[n]}_{\lambda} - x^{(i)}] \rightarrow 0\right\}_{i=1}^{m}$, we have

$$q\left[\left(\sum_{i=1}^{m} x^{(i)}\right)_{\lambda}^{[n]} - \left(\sum_{i=1}^{m} x^{(i)}\right)\right] = q\left[\sum_{i=1}^{m} \left(\left(x^{(i)}\right)_{\lambda}^{[n]} - x^{(i)}\right)\right]\right]$$
$$= q\left\{\sum_{i=1}^{m} \left(\frac{1}{\lambda_{n}}\sum_{k=1}^{n} (\Delta\lambda_{k})(x^{(i)})^{[k]}\right) - (x^{(i)})\right\}$$
$$\leq p^{(1)}\left\{\left(\frac{1}{\lambda_{n}}\sum_{k=1}^{n} (\Delta\lambda_{k})(x^{(1)})^{[k]}\right) - (x^{(1)})\right\} +$$
$$+ \dots +$$
$$+ p^{(m)}\left\{\left(\frac{1}{\lambda_{n}}\sum_{k=1}^{n} (\Delta\lambda_{k})(x^{(m)})^{[k]}\right) - (x^{(m)})\right\}$$
$$= p^{(1)}[(x^{(1)})_{\lambda}^{[n]} - x^{(1)}] + \dots + p^{(m)}[(x^{(m)})_{\lambda}^{[n]} - x^{(m)}]$$
$$\to 0, \text{ as } n \to \infty.$$

Therefore, we have $\sum_{i=1}^{m} x^{(i)} \in \Lambda S_X$. This completes the proof (see also [8]). \Box

Theorem 2.7. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of FK-spaces and $X = \bigcap_n X_n$. Then we have, $\Omega_X = \bigcap_n \Omega_{X_n}$ for $\Omega = \Lambda S, \Lambda W, \Lambda F, \Lambda B$.

Proof. By monotonicity, $\Omega_X \subseteq \Omega_{X_n}$, and so for $\Omega = \Lambda S, \Lambda W, \Lambda F, \Lambda B$ we have $\Omega_X \subseteq \bigcap_n \Omega_{X_n}$, for all $n \in \mathbb{N}$. Since the others are similar, we shall only prove that $\bigcap_n \Omega_{X_n} \subseteq \Omega_X$ holds for $\Omega = \Lambda S$. Let us suppose that $x \in \bigcap_n \Lambda S_{X_n}$. Then for all $n, k \in \mathbb{N}$, $q_{nk}(x_{\lambda}^{[n]} - x) \to 0$ and also $x_{\lambda}^{[n]} \to x$ in X, we have $x \in \Lambda S_X$. This completes the proof (see also [8]).

3. DUALS

In the following, we give some relationship between the distinguished subspaces and f_{-} , $\lambda(S)$ ve $\lambda(B)$ duals for an FK-space $X \supset \phi$.

Theorem 3.1. Let $X \supset \phi$ be an FK-space. Then we have

$$\Lambda B_X^+ = X^{f\lambda(B)}$$
 and $\Lambda F_X^+ = X^{f\lambda(S)}$.

Proof. We know that $z \in \Lambda B_X^+$ if and only if $(z_n f(\delta^n))_{n \in \mathbb{N}} \in \lambda(B)$, for all $f \in X'$. Let us take $(f(\delta^n))_{n \in \mathbb{N}} \in X^f$, for some $f \in X'$, then from the definition of $\lambda(B)$, we have $z \in X^{f\lambda(B)}$. The other one is similar.

Corollary 3.2. Let $X \supset \phi$ be an FK-space. Then, the spaces ΛB_X^+ and ΛF_X^+ are $\lambda(B)$ and $\lambda(S)$ spaces, respectively.

Theorem 3.3. Let $X \supset \phi$ be an FK-space and $\overline{\phi}$ is the closure of ϕ in X. If $\overline{\phi} \subset Y \subset X$, then

$$\Lambda B_X^+ = \Lambda B_Y^+$$
 and $\Lambda F_X^+ = \Lambda F_Y^+$

Proof. Since $\overline{\phi} \subset Y \subset X$ holds, we have $\Lambda B^+_{\overline{\phi}} \subset \Lambda B^+_Y \subset \Lambda B^+_X$. Therefore, for an arbitrary FK-space $X \supset \phi$, we have $(\overline{\phi})^f = X^f$, and so $\overline{\phi}^f \subset Y^f \subset X^f = \overline{\phi}^f$. Anymore, we get desired result by taking $\lambda(B)$ dual in both sides. Similarly, we can prove that $\Lambda F^+_X = \Lambda F^+_Y$.

Theorem 3.4. Let $X \supset \phi$ be an FK-space. Then,

X is an
$$\Lambda B$$
 space $\Leftrightarrow X^f \subset X^{\lambda(B)}$

and

X is an
$$\Lambda F$$
 space $\Leftrightarrow X^f \subset X^{\lambda(S)}$.

Proof. $\{\Rightarrow\}$: By hypothesis and previous result, for $\lambda(B)$ and $\lambda(S)$ duals of an *FK*-space, we have $X \subset \Lambda B_X^+ = X^{f\lambda(B)}$ and $X \subset \Lambda F_X^+ = X^{f\lambda(S)}$. From taking $\lambda(B)$ and $\lambda(S)$ duals,

$$X^{f\lambda^2(B)} \subset X^{\lambda(B)}$$

 $X^{f\lambda^2(S)} \subset X^{\lambda(S)}$

 and

hold. Now, we have also
$$X^f \subset X^{f\lambda^2(B)}$$
 and $X^f \subset X^{f\lambda^2(S)}$, then $X^f \subset X^{\lambda(B)}$

and

$$X^f \subset X^{\lambda(S)}$$

hold.

{ \Leftarrow }: In hypothesis, by using the inclusions $X \supset \phi X^f \subset X^{\lambda(B)}$ and $X^f \subset X^{\lambda(S)}$, let us take $\lambda(B)$ and $\lambda(S)$ duals. From the properties of $\lambda(B)$ and $\lambda(S)$ duals, we have

$$X \subset X^{\lambda^2(S)} \subset X^{f\lambda(B)} = \Lambda B_X^+$$

and

$$X \subset X^{\lambda^2(S)} \subset X^{f\lambda(S)} = \Lambda F_X^+,$$

respectively. This means that, X is a λAB and $F\lambda AK$ space, respectively.

As a result of this theorem, we have following since $X^{\lambda(S)}$ is a closed subspace of $X^{\lambda(B)}$ space (see also [19]).

Corollary 3.5. Let $X \supset \phi$ be a $BK - \lambda AB$ -space, then $X^{\lambda(S)}$ is closed in λ^f .

Theorem 3.6. The following assertions for an FK-space $X \supset \phi$ are true:

- (i) If X is an $F\lambda AK$ -space, then $X^f = X^{\lambda(S)}$,
- (ii) If X is an AD-space, then $X^{\lambda(S)} = X^{\lambda(B)}$,
- (iii) The inclusions $X^{\beta} \subset X^{\lambda(S)} \subset X^{\lambda(B)} \subset X^{f}$ are hold.

Proof. (i) Let us suppose that $y \in X^{\lambda(S)}$ and

$$f(x) = \lim_{n} \frac{1}{\lambda_n} \sum_{k=1}^n \Delta \lambda_k \sum_{j=1}^k x_j y_j$$

holds, for every $x \in X$. By Banach-Steinhaus theorem, we have $f \in X'$. Since we have

$$f(x) = \lim_{n} \frac{1}{\lambda_{n}} \sum_{k=1}^{n} \Delta \lambda_{k} \sum_{j=1}^{k} x_{j} y_{j}$$
$$= \lim_{n} \frac{1}{\lambda_{n}} \left(\lambda_{n} \sum_{k=1}^{n} x_{k} y_{k} - \sum_{k=1}^{n} \lambda_{k-1} x_{k} y_{k} \right)$$
$$= \lim_{n} \left(\sum_{k=1}^{n} x_{k} y_{k} - \frac{1}{\lambda_{n}} \sum_{k=1}^{n} \lambda_{k-1} x_{k} y_{k} \right),$$

by taking $x = \delta^m$, we have

$$f(\delta^m) = \lim_n \left(y_m - \frac{\lambda_{m-1}}{\lambda_n} y_m \right)$$
$$= \lim_n \left(y_m \left(1 - \frac{\lambda_{m-1}}{\lambda_n} \right) \right)$$
$$= y_m, \ m < n.$$

and then $y = (y_m) \in X^f$. This means that, $X^{\lambda(S)} \subseteq X^f$.

In the other hand, let us take $y \in X^f$. Since X is an $F\lambda AK$ -space,

$$\lim_{n} \frac{1}{\lambda_n} \sum_{\substack{k=1\\72}}^{n} \Delta \lambda_k f(x^{[k]})$$

exists, and so $y = (y_j) = (f(\delta^j)) \in X^{\lambda(S)}$, for all $x \in X$. Therefore, $X^f \subseteq X^{\lambda(S)}$.

(ii) It is enough to show that, if X is an AD-space, then $X^{\lambda(B)} \subset X^{\lambda(S)}$ holds.

Let us suppose that $y \in X^{\lambda(B)}$ and define $\{f_n\}$ as,

$$f_n(x) = \lim_n \frac{1}{\lambda_n} \sum_{k=1}^n \Delta \lambda_k \sum_{j=1}^k x_j y_j,$$

for all $x \in X$. Then $\{f_n\}$ is point-wise bounded and so is equicontinuous [19].

For all $m \leq n$,

$$\lim_{m} f_n(\delta^m) = y_m$$

and so is $\phi \subset \{x : \lim_n f_n(x) \text{ mevcut}\}$. By convergence lemma [19], $\{x : \lim_n f_n(x) \text{ mevcut}\}$ is a closed subspace of X. Since X is an AD-space, we have

$$\phi \subset \{x : \lim_{n \to \infty} f_n(x) \text{ exists }\} = \overline{\phi} = X.$$

That is, $y \in X^{\lambda(S)}$. Hence, $X^{\lambda(S)} = X^{\lambda(B)}$. (*iii*) It is enough that, the inclusion $X^{\lambda(B)} \subset \lambda^f$ holds. For $\overline{\phi} \subset X$,

$$\begin{array}{rcl} X^{\lambda(B)} & \subset & (\overline{\phi})^{\lambda(B)} \\ & = & (\overline{\phi})^{\lambda(S)} \\ & \subset & (\overline{\phi})^f \\ & = & X^f, \end{array}$$

since $\overline{\phi}$ is an *AD*-space.

We have the following corollary by using previous theorems.

Corollary 3.7. Let $X \supset \phi$ be an FK-space. Then,

X is a λAB space $\Leftrightarrow X^f = X^{\lambda(B)}$

and

X is a
$$F\lambda AK$$
 space $\Leftrightarrow X^f = X^{\lambda(S)}$.

Theorem 3.8. Let $X \supset \phi$ be an $FK - \lambda AB$ -space. Then, $\overline{\phi}$ is a λAK -space and the equality

$$\Lambda S_X = \Lambda W_X = \overline{\phi}$$

holds.

Proof. Since we get the proof by the similar way used in the proof of given theorem in [7], we omit the details. \Box

Theorem 3.9. Let $X \supset \phi$ be an FK-space such that $\overline{\phi}$ is a λAK -space. Then,

$$\Lambda F_X^+ = \overline{\phi} \,\,^{\lambda^2(S)}.$$

Proof. We know that $\Lambda F_X^+ = X^{f\lambda(S)}$ and $X^f = (\overline{\phi})^f$ for an *FK*-space $X \supset \phi$. Now, by taking $\lambda(S)$ dual in both sides, we have $X^{f\lambda(S)} = (\overline{\phi})^{f\lambda(S)}$.

In this theorem, we can replace $\overline{\phi}$ ' s λAK property with the weaker property $F\lambda AK$. Because, if $X \supset \phi$ is an $F\lambda AK$ -space, then $X^f = X^{\lambda(S)}$.

Corollary 3.10. Let $X \supset \phi$ be an FK-space. Then,

X is an
$$F\lambda AK$$
 space $\Leftrightarrow \overline{\phi}$ is a λAK space and $X \subset \overline{\phi}^{\lambda^2(S)}$

Theorem 3.11. Let $X \supset \phi$ be an FK-space. Then the following are equivalent:

(i) X is an
$$F\lambda AK$$
 space,
(ii) $X \subset \Lambda F_X^{\lambda^2(S)}$,
(iii) $X \subset \Lambda W_X^{\lambda^2(S)}$,
(iv) $X \subset \Lambda S_X^{\lambda^2(S)}$,
(v) $X^{\lambda(S)} = \Lambda F_X^{\lambda(S)} = \Lambda W_X^{\lambda(S)} = \Lambda S_X^{\lambda(S)}$.

Proof. $(iv) \Rightarrow (iii) \Rightarrow (ii)$ are clear from the definitions of these spaces.

 $(ii) \Rightarrow (i)$: Let us suppose that $X \subset \Lambda F_X^{\lambda^2(S)}$. Then,

$$X^{f} \subset X^{f\lambda^{2}(S)} = \Lambda F_{X}^{+\lambda(S)} \subset \Lambda F_{X}^{\lambda(S)} \subset X^{\lambda(S)}$$

hold.

 $(i) \Rightarrow (iv)$: It is clear from previous results. $(iv) \Rightarrow (v)$: We have for an *FK*-space $X \supset \phi$;

$$\Lambda S_X \subset \Lambda W_X \subset \Lambda F_X \subset X.$$

By taking $\lambda(S)$ dual in every side, we have

$$X^{\lambda(S)} \subset \Lambda F_X^{\lambda(S)} \subset \Lambda W_X^{\lambda(S)} \subset \Lambda S_X^{\lambda(S)}.$$

By bearing in mind the hypothesis with the previous results, we get the proof. $(v) \Rightarrow (iv)$: It is clear.

Let X be an FK-space has λAK property. The following theorem tells us that there is a closed relationship between the spaces $X^{\lambda(S)}$ and X'.

Theorem 3.12. Let $X \supset \phi$ be an FK-space. Then the following are equivalent:

(i) X is an
$$S\lambda AK$$
,
(ii) X is a λAK ,
(iii) $X^{\lambda(S)} \cong X', \ (f \to f(\delta^k))$

Proof. $(i) \Rightarrow (ii)$: If X is an $S\lambda AK$ space, then it is an AD-space and also is a λAB -space. Therefore, X is a λAK -space.

 $(ii) \Rightarrow (iii)$: Since X is a λAK -space, then it is AD -space, and so $X^f = X'$ holds.

 $(iii) \Rightarrow (i):$ Let us suppose that $u \in X^{\lambda(S)}.$ Then, for all $f \in X'$ and $x \in X,$ we have

$$f(x) = \lim_{n} \frac{1}{\lambda_n} \sum_{k=1}^n (\Delta \lambda_k) \sum_{j=1}^k u_j x_j.$$

Therefore, we have $x \in \Lambda W_X$.

Theorem 3.13. Let $X \supset \phi$ be an FK-space. Then, the following assertions are equivalent:

(i) ΛW_X is closed in X, (ii) $\overline{\phi} \subset \Lambda B_X$, (iii) $\overline{\phi} \subset \Lambda F_X$, (iv) $\overline{\phi} = \Lambda W_X$, (v) $\overline{\phi} = \Lambda S_X$, (vi) ΛS_X is closed in X.

Proof. $(v) \Rightarrow (iv), (iv) \Rightarrow (iii), (v) \Rightarrow (ii)$ and $(iii) \Rightarrow (ii)$ are clear. Since $\overline{\phi}$ is a λAK -space, we have $\overline{\phi} \subset \Lambda S_X$, and so $(ii) \Rightarrow (v)$ holds.

In the other hand, from $\phi \subset \Lambda S_X \subset \Lambda W_X \subset \overline{\phi}$, we have $(i) \Rightarrow (iv)$ and $(vi) \Rightarrow (v)$. $(iv) \Rightarrow (i)$ and $(v) \Rightarrow (vi)$ are also clear from the previous theorems and corollaries.

References

- B. Altay and F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007), 632-645.
- [2] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul (2012).
- [3] J. Boos, Classical and Modern Methods in Summability, Oxford University Press. New York, Oxford, 2000.
- [4] M. Buntinas, Convergent and bounded Cesàro sections in FK-spaces, Math. Z., 121 (1971), 191-200.
- [5] M. Buntinas, On sectionally dense summability fields, Math. Zeitschr., 132 (1973), 141-149.
- [6] M. Buntinas, On Toeplitz sections in sequence spaces, Math. Proc. Cambridge Philos. Soc., 78 (1975), 451-460.
- [7] İ. Dağadur, On some subspaces of an FK-space, Math. Commun., Vol.7, (2002), 15-20.
- [8] R. Devos, Combinations of distinguished subsets and conullity, Math. Z., 192 (1986), 447-451.
- [9] D. J. Fleming and J. C. Magee, *FK-multiplier spaces*, Proc. Amer. Math. Soc., 125(1)(1997), 175-181.
- [10] D. J. H. Garling, The β- and γ-duality of sequence spaces, Math. Proc. Cambridge Philos. Soc., 63 (Jan. 1967), 963-981.
- [11] D. J. H. Garling, On topological sequence spaces, Math. Proc. Cambridge Philos. Soc., 63 (1967), 997-1019.
- [12] G. Goes and S. Goes, Sequences of bounded variation and sequences of fourier coefficients. I, Math. Z., 118(1970), 93-102.
- [13] G. Goes, Summen von FK-räumen funktionale abschnittskonvergenz und umkehrsatz, Tohoku. Math. J., 26(1974), 487-504.
- [14] K-G., Grosse-Erdmann, On l¹-Invariant Sequence Spaces, J. Math. Anal. Appl., 262(2001), 112-132.
- [15] M. Mursaleen A. K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math. 8 (2) (2010), 311-329.
- [16] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187–196.
- [17] A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
- [18] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill, New York, 1978.
- [19] A. Wilansky, Summability Through Functional Analysis, North-Holland, Amsterdam, 1984.
- [20] K. Zeller, Allgemeine eigenschaften von limitierungsverfahren, Math. Z., 53 (1951), 463-487.

Van Yüzüncü Yil University, Faculty of Science, Department of Mathematics, 65080, Van, Turkey

Van Yüzüncü Yil University, Faculty of Education, Department of Mathematics Education, 65080, Van, Turkey