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ON SOME NEW FK SPACES OBTAINED FROM SUMMABILITY

MATRIX

MAHMUT KARAKU� AND TUNAY B�LG�N

Abstract. In this study, we give some new FK-spaces by means of an in-
�nite matrix as an operator and de�ne some new β- and γ-type duality of
sequence spaces [4, 6]. We also introduce some new sections and investigate
some properties like AB-, FAK-, SAK- and AK- in an FK-space. By this
way, we obtain some new distinguished subspaces of an FK-space [7]. Among
other results, we prove that the sum of �nite numbers of FK-spaces and the
intersection of a sequence of FK-spaces which have these new properties with
corresponding paranorms have also these new properties. The reader can refer
to [2] and [19] for the main results and related topics in FK-space theory.

1. Preliminaries and Notation

The space of all scalar valued sequences is given by ω and a K space is a locally
convex sequence space (lcss) λ containing φ and a subspace of ω on which coordinate
functionals πk(x) = xk are continuous for every k ∈ N. Here φ is the space of �nitely
non-zero sequences spanned by {(δk) : k ∈ N} which is the space of sequences whose
kth position is 1 and all the others are 0. A complete linear metric (or complete
normed linear) K space is called an FK (or BK) space.

The multipliers from λ into µ are given by λµ =
{
y ∈ ω|xy ∈ µ,∀x ∈ λ

}
for

λ, µ ⊂ ω, where xy is the coordinatewise product, i.e., xy =
{
xkyk

}
k∈N. We notates

(λµ)ν = λµν =
{
y ∈ ω|xy ∈ ν, ∀x ∈ λµ

}
for λ, µ, ν ⊂ ω. A sequence space λ is

called µ−perfect if λ = λµµ. Classical α−, β− and γ− duals of λ are given by λ`, λcs

and λbs, respectively, where ` =
{

(xk) ∈ ω : ||x||1 =
∑
k |xk| < ∞

}
, cs =

{
(xk) ∈

ω :
∑
k xk is convergent

}
and bs =

{
(xk) ∈ ω : ||x||bs = supn |

∑n
k=1 xk| < ∞

}
.

These are Banach spaces with their natural norms and also cs is Banach spaces
with ||.||bs. We know, φ ⊂ λα ⊂ λβ ⊂ λγ . If λ ⊂ µ then µζ ⊂ λζ and for
every λ we have λζ = λζζζ , λ ⊂ λζζ , where ζ is one of the α−, β− or γ− du-
als. Let us note, Fleming and Magee showed that, whenever λ ⊃ φ is a sequence
space (not required be a BK) and µ ⊃ φ is a BK space then λµ is a BK space
i� there exist a norm ||.|| on λ such that for every y ∈ λµ the diagonal map
Ty : λ → µ, Ty(x) = xy is continuous with respect to this norm [9]. We denote
f -dual of a BK space λ ⊃ φ with λf =

{
(f(δk))k∈N|∃f ∈ λ′

}
. Here λf is also a

BK space with ||f ||λ′ = ||(f(δk))k∈N||λf . A K space λ ⊃ φ is called a sum space
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if λλ = λf . For example, `, cs and bs are BK sum spaces. If λ ⊃ φ is a K space
then S ∈ λ′ is called a sum on λ if S(δk) = 1,∀k ∈ N or equivalently S is a sum on
λ if S(x) =

∑
x,∀x ∈ φ, where S ∈ λ′. A K space λ is called AD space if λ = φ,

where φ is closure of φ in λ. Via Hahn-Banach theorem, λf = φ
f
.

Let λ = (λk) be a strictly increasing sequence of positive real numbers tending
to in�nity, that is,

0 < λ1 < λ2 < · · · and lim
k→∞

λk =∞.(1.1)

Then the sequence x = (xk) ∈ ω is said to be λ-convergent to the number a ∈ C, if
(Λx)n → a, as n→∞; where

(Λx)n =
1

λn

n∑
k=1

(∆λ)kxk

for all n ∈ N. Throughout the text we shall assume that (∆λ)k = λk − λk−1 for all
k ∈ N and λ0 = 0. The set cλ of all λ convergent sequences is a BK space with the
norm ‖x‖`λ∞ = ‖Λx‖∞ = supn∈N |(Λx)n|, where Λx = {(Λx)n}; [15]. The matrix

Λ = (λnk) is also de�ned by

λnk :=

{ λk−λk−1

λn
, (1 ≤ k ≤ n),

0 , (k > n)

for all k, n ∈ N. In the special case λn = n for all n ∈ N, the Λ-matrix is reduced to
the Cesàro matrix C of order one. We also note that Λ-summability is the special
case of the Nq-summability; [15], (see also [2]).

Lemma 1.1. c0 ⊂ cλ0 , c ⊂ cλ and `∞ ⊂ `λ∞ strictly hold if and only if

lim inf
n

λn+1

λn
= 1

[15].

Lemma 1.2. c0 = cλ0 , c = cλ and `∞ = `λ∞ hold if and only if

lim inf
n

λn+1

λn
> 1(1.2)

[15].

2. Some New Sections and Distinguished Subspaces of an FK-spaces

Let x = (xk) ∈ ω be a sequence, then by using Λ = (λnk), we have Λ nth section
of x as;

x
[n]
λ = Λ(x[k]) =

1

λn

n∑
k=1

(∆λk)x[k].

Here, x[k] =
∑k
j=1 xjδ

j and ∆λk = λk − λk−1,(k ∈ N and λ0 = 0).

A sequence x in any K space X ⊃ φ has λAK property if x
[n]
λ → x, (n→∞) in

X and we say X is an λAK- space if all elements of λ have this property. Similarly
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we can de�ne the properties, SλAK, FλAK and λAB. So, we de�ne the following
sets as:

ΛSX =

{
x ∈ X

∣∣x = lim
n
x
[n]
λ

}
,

ΛWX =

{
x ∈ X

∣∣x[n]λ ⇀ x in λ

}
("⇀" means weakly)

=

{
x ∈ X

∣∣f(x) = lim
n
f(x

[n]
λ ), ∀f ∈ X ′

}
,

ΛF+
X =

{
x ∈ ω

∣∣(x[n]λ )n∈N weakly Cauchy in X

}
=

{
x ∈ ω

∣∣(f(x
[n]
λ )
)
n∈N ∈ c, ∀f ∈ λ

′
}
,

ΛB+
X =

{
x ∈ ω

∣∣(x[n]λ )n∈N is bounded in X

}
=

{
x ∈ ω

∣∣(f(x
[n]
λ )
)
n∈N ∈ `∞, ∀f ∈ X

′
}
.

One should keep in mind that ΛBX = ΛB+
X ∩X and ΛFX = ΛF+

X ∩ λ. These
are the spaces of the sequences which have λAB and FλAK, respectively. Now
for example, if the normed sequence space X is an λAB space (or λAK space),
then supn ‖ x[n]λ ‖X< ∞ (or limn ‖ x[n]λ − x ‖X= 0). Further, since the bound-
edness and weak boundedness are equal in normed spaces, one can easily see that
supn |f(x[n]λ)| <∞ holds, for every f ∈ X ′, x ∈ ΛBX .

For all x ∈ ω, since {x[n]|n ∈ N} ⊃ {x[n]λ |n ∈ N}, we have

ΛPX ⊃ PX
for the properties P = B, F, W, S and ΛP = ΛB, ΛF, ΛW, ΛS.

In the other hand, let us de�ne the operator Λ = (λnk) associated with the sum
operator

snk =

{
1 , (1 ≤ k ≤ n)
0 , (k > n)

,

then we obtain the spaces

λ(B) =

{
x = (xj) ∈ ω :

k∑
j=1

xj ∈ `λ∞
}

=

{
x = (xj) ∈ ω : sup

n

1

λn

∣∣∣∣ n∑
k=1

(λk − λk−1)

k∑
j=1

xj

∣∣∣∣ <∞}
and

λ(S) =

{
x = (xj) ∈ ω :

k∑
j=1

xj ∈ cλ
}

=

{
x = (xj) ∈ ω : lim

n

1

λn

( n∑
k=1

(λk − λk−1)

k∑
j=1

xj

)
exists

}
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with the norm

‖x‖λ(B) = ‖x‖λ(S) = sup
n

1

λn

∣∣∣∣ n∑
k=1

(λk − λk−1)

k∑
j=1

xj

∣∣∣∣.
We de�ne the λ(B) and λ(S) duals of a sequence space X as

Xλ(B) =

{
x = (xj) ∈ ω : sup

n

1

λn

∣∣∣∣ n∑
k=1

(∆λk)

k∑
j=1

xjyj

∣∣∣∣ <∞, ∀y = (yj) ∈ X
}

=
{
x = (xj) ∈ w : xy ∈ λ(B), ∀y = (yj) ∈ X

}
and

Xλ(S) =

{
x = (xj) ∈ ω : lim

n

1

λn

( n∑
k=1

(∆λk)

k∑
j=1

xjyj

)
exists , ∀y = (yj) ∈ X

}
=

{
x = (xj) ∈ ω : xy ∈ λ(S), ∀y = (yj) ∈ X

}
,

respectively. We have Xλ(S) ⊂ Xλ(B) and if ς = λ(S), λ(B), then the inclusion
X ⊂ Y yields Y ς ⊂ Xς . We also have Xς = Xςςς and X ⊂ Xςς . If X = Xςς ,
then X is said to be a ς− space. In the sake of shortness, we use the notation

Xλ(S)λ(S) = Xλ2(S) and Xλ(B)λ(B) = Xλ2(B). It can be easily seen that, if λk = k,
one can obtain the spaces σs and σb from the spaces λ(S) and λ(B), respectively
[4].

Proposition 2.1. The inclusions cs ⊂ λ(S) and bs ⊂ λ(B) hold. λ(B) ⊂ σb and
λ(S) ⊂ σs if and only if the condition (1.2) holds.

Proof. It is clear. �

Theorem 2.2. If X is an AK-space, then it is an λAK-space.

Proof. It is clear with Stolz-Cesàro theorem. �

Let X ⊃ φ be a BK-space. If the following conditions hold then it is said to be
X has a monotone norm [19]:
i. For n < m ||x[n]|| ≤ ||x[m]||,
ii. ||x|| = supm ||x[m]||.

Theorem 2.3. cλ has monoton norm.

Proof. Since Λ is a triangle cλ is a BK-space. Let x be �xed and Λ(m,n) =∣∣ 1
λn

∑m
k=1(∆λk)xk

∣∣. So, from ||x||λ∞ = supn
∣∣ 1
λn

∑n
k=1(∆λk)xk

∣∣, we have ||x||λ∞ =

λ(n, n). Since, for x[m] = {x1, ..., xm, 0, 0, ...}∣∣Λ(x[m])n
∣∣ =

{
Λ(n, n) , n ≤ m
Λ(m,n) , n ≥ m ,

we also have Λ(m,n) is decreasing for n. Therefore, the �rst condition holds. In
the other hand, from ||x[m]||λ∞ = supn{Λ(n, n) : n ≤ m}, one can easily see that,
the second condition also holds. �

Theorem 2.4. Let X ⊃ φ be an FK-space. Then, the inclusions

φ ⊂ ΛSX ⊆ ΛWX ⊂ ΛFX ⊂ ΛBX ⊂ X
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and

φ ⊂ ΛSX ⊆ ΛWX ⊂ φ
hold.

Proof. From the de�nitions of the spaces φ, ΛSX , ΛWX , ΛFX , ΛBX , we have

x
[n]
λ → x, ( by the norm of X)⇒ f(x

[n]
λ )→ f(x)⇒ (f(x

[n]
λ )) ∈ c⇒ (f(x

[n]
λ )) ∈ `∞,

for every f ∈ X ′.
Now, we shall prove that ΛWX ⊂ φ. Let us suppose that x ∈ ΛWX . So,

f(x) = lim
n

1

λn

n∑
k=1

∆λkf(x[k]),

holds for every f ∈ X ′. Therefore, we have the result from Hahn - Banach
theorem[19]. �

Theorem 2.5. Distinguished subspaces of an FK- space are monotone. That is,

X ⊂ Y ⇒ ΩX ⊂ ΩY

holds for every Ω = ΛS, ΛW, ΛF, ΛB.

Proof. Since the others are similar, we only give the proof for λAK property. By
bearing in mind that the inclusion map is continuous, let us suppose that X ⊂ Y
and x ∈ ΛSX . Therefore, the convergence 1

λn

∑n
k=1(∆λk)x[k] → x, in X yields

that the convergence 1
λn

∑n
k=1(∆λk)x[k] → x, in Y . This completes the proof. �

Theorem 2.6. Let each Xi ⊃ φ, (i = 1, 2, ...,m) be FK spaces with paranorms

p(i), (i = 1, 2, ...,m) and X =
∑m
i=1Xi. If Ω = ΛS,ΛW,ΛF,ΛB, then

∑m
i=1 ΩXi ⊆ ΩX

holds.

Proof. Since the others are similar, we only give proof for λAK property. Let us
suppose that x(i) ∈ ΛSXi (i = 1, 2, ...,m). Then,

p(1)[(x(1))
[n]
λ − x

(1)]→ 0, ..., p(m)[(x(m))
[n]
λ − x

(m)]→ 0,

that is, by taking
{
p(i)[(x(i))

[n]
λ − x(i)]→ 0

}m
i=1

, we have

q

[
(

m∑
i=1

x(i))
[n]
λ −

( m∑
i=1

x(i)
)]

= q

[ m∑
i=1

(
(x(i))

[n]
λ − x

(i)
)]

= q

{ m∑
i=1

( 1

λn

n∑
k=1

(∆λk)(x(i))[k]
)
− (x(i))

}

≤ p(1)
{( 1

λn

n∑
k=1

(∆λk)(x(1))[k]
)
− (x(1))

}
+

+ ...+

+ p(m)

{( 1

λn

n∑
k=1

(∆λk)(x(m))[k]
)
− (x(m))

}
= p(1)[(x(1))

[n]
λ − x

(1)] + ...+ p(m)[(x(m))
[n]
λ − x

(m)]

→ 0, as n→∞.
Therefore, we have

∑m
i=1 x

(i) ∈ ΛSX . This completes the proof (see also [8]). �
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Theorem 2.7. Let {Xn}∞n=1 be a sequence of FK-spaces and X =
⋂
nXn. Then

we have, ΩX =
⋂
n ΩXn for Ω = ΛS,ΛW,ΛF,ΛB.

Proof. By monotonicity, ΩX ⊆ ΩXn , and so for Ω = ΛS,ΛW,ΛF,ΛB we have
ΩX ⊆

⋂
n ΩXn , for all n ∈ N. Since the others are similar, we shall only prove that⋂

n ΩXn ⊆ ΩX holds for Ω = ΛS. Let us suppose that x ∈
⋂
n ΛSXn . Then for

all n, k ∈ N, qnk(x
[n]
λ − x) → 0 and also x

[n]
λ → x in X, we have x ∈ ΛSX . This

completes the proof (see also [8]). �

3. Duals

In the following, we give some relationship between the distinguished subspaces
and f−, λ(S) ve λ(B) duals for an FK-space X ⊃ φ.

Theorem 3.1. Let X ⊃ φ be an FK-space. Then we have

ΛB+
X = Xfλ(B) and ΛF+

X = Xfλ(S).

Proof. We know that z ∈ ΛB+
X if and only if

(
znf(δn)

)
n∈N ∈ λ(B), for all f ∈ X ′.

Let us take (f(δn))n∈N ∈ Xf , for some f ∈ X ′, then from the de�nition of λ(B),
we have z ∈ Xfλ(B). The other one is similar. �

Corollary 3.2. Let X ⊃ φ be an FK-space. Then, the spaces ΛB+
X and ΛF+

X are
λ(B) and λ(S) spaces, respectively.

Theorem 3.3. Let X ⊃ φ be an FK-space and φ is the closure of φ in X. If
φ ⊂ Y ⊂ X , then

ΛB+
X = ΛB+

Y and ΛF+
X = ΛF+

Y .

Proof. Since φ ⊂ Y ⊂ X holds, we have ΛB+

φ
⊂ ΛB+

Y ⊂ ΛB+
X . Therefore, for an

arbitrary FK-space X ⊃ φ, we have (φ)f = Xf , and so φ
f ⊂ Y f ⊂ Xf = φ

f
.

Anymore, we get desired result by taking λ(B) dual in both sides. Similarly, we
can prove that ΛF+

X = ΛF+
Y . �

Theorem 3.4. Let X ⊃ φ be an FK-space. Then,

X is an ΛB space ⇔ Xf ⊂ Xλ(B)

and

X is an ΛF space ⇔ Xf ⊂ Xλ(S).

Proof. {⇒}: By hypothesis and previous result, for λ(B) and λ(S) duals of an
FK-space, we have X ⊂ ΛB+

X = Xfλ(B) and X ⊂ ΛF+
X = Xfλ(S). From taking

λ(B) and λ(S) duals,

Xfλ2(B) ⊂ Xλ(B)

and

Xfλ2(S) ⊂ Xλ(S)

hold. Now, we have also Xf ⊂ Xfλ2(B) and Xf ⊂ Xfλ2(S), then

Xf ⊂ Xλ(B)

and

Xf ⊂ Xλ(S)

hold.
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{⇐}: In hypothesis, by using the inclusions X ⊃ φ Xf ⊂ Xλ(B) and Xf ⊂
Xλ(S), let us take λ(B) and λ(S) duals. From the properties of λ(B) and λ(S)
duals, we have

X ⊂ Xλ2(S) ⊂ Xfλ(B) = ΛB+
X

and

X ⊂ Xλ2(S) ⊂ Xfλ(S) = ΛF+
X ,

respectively. This means that, X is a λAB and FλAK space, respectively. �

As a result of this theorem, we have following since Xλ(S) is a closed subspace
of Xλ(B) space (see also [19]).

Corollary 3.5. Let X ⊃ φ be a BK − λAB-space, then Xλ(S) is closed in λf .

Theorem 3.6. The following assertions for an FK-space X ⊃ φ are true:

(i) If X is an FλAK-space, then Xf = Xλ(S),

(ii) If X is an AD-space, then Xλ(S) = Xλ(B),

(iii) The inclusions Xβ ⊂ Xλ(S) ⊂ Xλ(B) ⊂ Xf are hold.

Proof. (i) Let us suppose that y ∈ Xλ(S) and

f(x) = lim
n

1

λn

n∑
k=1

∆λk

k∑
j=1

xjyj

holds, for every x ∈ X. By Banach-Steinhaus theorem, we havef ∈ X ′. Since we
have

f(x) = lim
n

1

λn

n∑
k=1

∆λk

k∑
j=1

xjyj

= lim
n

1

λn

(
λn

n∑
k=1

xkyk −
n∑
k=1

λk−1xkyk

)

= lim
n

( n∑
k=1

xkyk −
1

λn

n∑
k=1

λk−1xkyk

)
,

by taking x = δm, we have

f(δm) = lim
n

(
ym −

λm−1
λn

ym

)
= lim

n

(
ym
(
1− λm−1

λn

))
= ym, m < n.

and then y = (ym) ∈ Xf . This means that, Xλ(S) ⊆ Xf .
In the other hand, let us take y ∈ Xf . Since X is an FλAK-space,

lim
n

1

λn

n∑
k=1

∆λkf(x[k])
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exists, and so y = (yj) = (f(δj)) ∈ Xλ(S), for all x ∈ X. Therefore, Xf ⊆ Xλ(S).

(ii) It is enough to show that, if X is an AD-space, then Xλ(B) ⊂ Xλ(S) holds.

Let us suppose that y ∈ Xλ(B) and de�ne {fn} as,

fn(x) = lim
n

1

λn

n∑
k=1

∆λk

k∑
j=1

xjyj ,

for all x ∈ X. Then {fn} is point-wise bounded and so is equicontinuous [19].
For all m ≤ n,

lim
n
fn(δm) = ym

and so is φ ⊂ {x : limn fn(x) mevcut}. By convergence lemma [19], {x : limn fn(x) mevcut }
is a closed subspace of X. Since X is an AD-space, we have

φ ⊂ {x : lim
n
fn(x) exists } = φ = X.

That is, y ∈ Xλ(S). Hence, Xλ(S) = Xλ(B).
(iii) It is enough that, the inclusion Xλ(B) ⊂ λf holds. For φ ⊂ X,

Xλ(B) ⊂ (φ)λ(B)

= (φ)λ(S)

⊂ (φ)f

= Xf ,

since φ is an AD-space. �

We have the following corollary by using previous theorems.

Corollary 3.7. Let X ⊃ φ be an FK-space. Then,

X is a λAB space ⇔ Xf = Xλ(B)

and

X is a FλAK space ⇔ Xf = Xλ(S).

Theorem 3.8. Let X ⊃ φ be an FK − λAB-space. Then, φ is a λAK-space and
the equality

ΛSX = ΛWX = φ

holds.

Proof. Since we get the proof by the similar way used in the proof of given theorem
in [7], we omit the details. �

Theorem 3.9. Let X ⊃ φ be an FK-space such that φ is a λAK-space. Then,

ΛF+
X = φ λ2(S).

Proof. We know that ΛF+
X = Xfλ(S) and Xf = (φ)f for an FK-space X ⊃ φ.

Now, by taking λ(S) dual in both sides, we have Xfλ(S) = (φ)fλ(S). �

In this theorem, we can replace φ' s λAK property with the weaker property
FλAK. Because, if X ⊃ φ is an FλAK-space, then Xf = Xλ(S).
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Corollary 3.10. Let X ⊃ φ be an FK-space. Then,

X is an FλAK space ⇔ φ is a λAK space and X ⊂ φλ
2(S)

.

Theorem 3.11. Let X ⊃ φ be an FK-space. Then the following are equivalent:

(i) X is an FλAK space ,

(ii) X ⊂ ΛF
λ2(S)
X ,

(iii) X ⊂ ΛW
λ2(S)
X ,

(iv) X ⊂ ΛS
λ2(S)
X ,

(v) Xλ(S) = ΛF
λ(S)
X = ΛW

λ(S)
X = ΛS

λ(S)
X .

Proof. (iv)⇒ (iii)⇒ (ii) are clear from the de�nitions of these spaces.

(ii)⇒ (i): Let us suppose that X ⊂ ΛF
λ2(S)
X . Then,

Xf ⊂ Xfλ2(S) = ΛF
+λ(S)
X ⊂ ΛF

λ(S)
X ⊂ Xλ(S)

hold.
(i)⇒ (iv): It is clear from previous results.
(iv)⇒ (v): We have for an FK-space X ⊃ φ;

ΛSX ⊂ ΛWX ⊂ ΛFX ⊂ X.

By taking λ(S) dual in every side, we have

Xλ(S) ⊂ ΛF
λ(S)
X ⊂ ΛW

λ(S)
X ⊂ ΛS

λ(S)
X .

By bearing in mind the hypothesis with the previous results, we get the proof.
(v)⇒ (iv): It is clear. �

Let X be an FK-space has λAK property. The following theorem tells us that
there is a closed relationship between the spaces Xλ(S) and X ′.

Theorem 3.12. Let X ⊃ φ be an FK-space. Then the following are equivalent:

(i) X is an SλAK,

(ii) X is a λAK,

(iii) Xλ(S)=̂X ′, (f → f(δk)).

Proof. (i) ⇒ (ii): If X is an SλAK space, then it is an AD-space and also is a
λAB-space. Therefore, X is a λAK-space.

(ii) ⇒ (iii): Since X is a λAK-space, then it is AD-space, and so Xf = X ′

holds.
(iii)⇒ (i): Let us suppose that u ∈ Xλ(S). Then, for all f ∈ X ′ and x ∈ X, we

have

f(x) = lim
n

1

λn

n∑
k=1

(∆λk)

k∑
j=1

ujxj .

Therefore, we have x ∈ ΛWX . �
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Theorem 3.13. Let X ⊃ φ be an FK-space. Then, the following assertions are
equivalent:

(i) ΛWX is closed in X,

(ii) φ ⊂ ΛBX ,

(iii) φ ⊂ ΛFX ,

(iv) φ = ΛWX ,

(v) φ = ΛSX ,

(vi) ΛSX is closed in X.

Proof. (v) ⇒ (iv), (iv) ⇒ (iii), (v) ⇒ (ii) and (iii) ⇒ (ii) are clear. Since φ is a
λAK-space, we have φ ⊂ ΛSX , and so (ii)⇒ (v) holds.

In the other hand, from φ ⊂ ΛSX ⊂ ΛWX ⊂ φ, we have (i) ⇒ (iv) and
(vi) ⇒ (v). (iv) ⇒ (i) and (v) ⇒ (vi) are also clear from the previous theorems
and corollaries. �
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