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ON GENERATED GROUPS

S.DEMIRALP AND G. HACAT

Abstract. In this paper we define a binary operation
α∗ on Y , called as gen-

erated operation. We have shown the basic features of this binary operation.
The aim of this study is to define and investigate the properties of generated

new semi groups and generated groups.

1. Introduction and Preliminaries

Let G be a set and α : G × G → G a binary operation that maps each ordered
pair (x, y) of G to an element α(x, y) of G. The pair (G,α) is called a groupoid.
The mapping α is called a product of (G,α). The element xy(= α(x, y)) is the
product of x and y in G. We also use other notations for the product, when this is
natural or otherwise convenient. In particular, the following symbols may be used:
·,+, ?, ◦,⊕,⊗. If we do not explicitly mention the (notation for the) product, we
choose the dot: x ·y. A groupoid G is a semi group, if the operation α is associative:
for all x, y, z ∈ G, x · (y · z) = (x · y) · z. That is, α(x, α(y, z)) = α(α(x, y), z) using
the unfriendly notation. This means that the order in which the operation α is
carried out is irrelevant, and therefore we may write

x1x2...xn = x1 · (x2 · (· · ·xn))...).

Of course, the order of the operands x1x2...xn (where we can have repeated ele-
ments, xi = xj), is important.

Generalized groups as an algebraic structure were deduced from a geometrical
problem in 1998[3].We recall that a group is a non-empty set G admitting an op-
eration called multiplication, which satisfies the set of conditions given below:

i) (xy)z = x(yz) for all x, y, z ∈ G,
ii) for each x ∈ G there exists a unique z ∈ G such that xz = zx = x (we

denote z by e(x)),
iii) for each x ∈ G there exists y ∈ G such that xy = yx = e(x).

Theorem 1.1.

i) For each x ∈ G there exists a unique x−1 ∈ G.
ii) Let G be a group and ab = ba for all a, b in G. Then G is a group.

In this paper we define a binary operation on Y , called as generated operation.
We have shown the basic features of this binary operation. The aim of this study is
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to define and investigate the properties of generated new semigroups and generated
groups.

2. The construction

Definition 2.1. Let ∅ 6= X be set with a binary operation ∗ and α : X → Y be a

bijective map. Then we can define a binary operation
α∗ on Y, called as generated

operation by ∗, such that, for all y1, y2 ∈ Y, y1
α∗ y2 = α

[
α−1(y1) ∗ α−1(y2)

]
.

Example 2.2. Let X be an increasing sequence of different finite sets and let
s (An) is number of elements of set An. Let define a map α from (X,∪) onto a
subset Nα of N such that α (An) = s (An). Let s (An) = n, s (Am) = m and n < m.
Then for all n,m ∈ Nα,

n
α
∪m = α

(
α−1 (n) ∪ α−1 (m)

)
= α (An ∪Am)

= α (Am)

= s (Am) = m.

Theorem 2.3. If (X, ∗) is a semigroup then (Y,
α∗) is semigroup.

Proof. It is clear that
(
y1

α∗ y2
)
∈ Y, for all y1, y2 ∈ Y. Now let prove associativity.

For all y1, y2, y3 ∈ Y,

y1
α∗
(
y2

α∗ y3
)

= α
[
α−1 (y1) ∗ α−1

(
y2

α∗ y3
)]

= α
[
α−1 (y1) ∗ α−1

(
α
(
α−1 (y2) ∗ α−1 (y3)

))]
= α

[
α−1 (y1) ∗

(
α−1 (y2) ∗ α−1 (y3)

)]
= α

[(
α−1 (y1) ∗ α−1 (y2)

)
∗ α−1 (y3)

]
= α

[
α−1

(
y1

α∗ y2
)
∗ α−1 (y3)

]
=

(
y1

α∗ y2
)
α∗ y3.

�

(Y,
α∗) is called as generated semigroup by X.

Theorem 2.4. If (X, ∗) is a commutative semigroup, then (Y,
α∗) is commutative.

Proof. It is trivial. �

Theorem 2.5. Let (X, ∗) be a semigroup. Then e is the identity element of (X, ∗)
if and only if α (e) is identity for (Y,

α∗).

Proof. Let e be the identity element and α (e) = e′.Then for all y ∈ Y,

y
α∗ e′ = α

(
α−1 (y) ∗ α−1 (e′)

)
= α

(
α−1 (y) ∗ e

)
= α

(
α−1 (y)

)
= y.

Similarly e′
α∗ y = y. Therefore e′ is the identity element of (Y,

α∗).
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Let α (e) be identity element for (Y,
α∗). Then y

α∗ e′ = y. Therefore for all y ∈ Y ,

α
(
α−1 (y) ∗ α−1 (e′)

)
= y ⇒ α

(
x ∗ α−1 (e′)

)
= y.

Similarly α−1 (e′) ∗ x = x. So α (e) is identity element for (X, ∗). �

Theorem 2.6. If e′ is the identity element of (Y,
α∗), then e′ is uniq.

Proof. Consider e
′

1 and e
′

2 are two diffirent identity element for
α∗. Then for all

y ∈ Y, y α∗ e′1 = y
α∗ e′2. Therefore,

α
(
α−1 (y) ∗ α−1

(
e
′

1

))
= α

(
α−1 (y) ∗ α−1

(
e
′

2

))
⇒ α

(
α−1 (y) ∗ α−1

(
e
′

1

))
= α

(
α−1 (y) ∗ α−1

(
e
′

2

))
= y

⇒ α−1 (y) ∗ α−1
(
e
′

1

)
= α−1 (y) ∗ α−1

(
e
′

2

)
= x

⇒ x ∗ α−1
(
e
′

1

)
= x ∗ α−1

(
e
′

2

)
= x.

But this is a contradiction since the unit element of (X, ∗) is unit. �

Let for a binary operation ⊕, (⊕)
n

(y) = y ⊕ y ⊕ ...⊕ y︸ ︷︷ ︸
n-times

.

Theorem 2.7. Let (X, ∗) be a semigroup. Then for all y, y1,y2 ∈ Y,

(1)
(
α∗
)n

(y) = α
(
(∗)n

(
α−1 (y)

))
(2)

(
α∗
)m ((α∗)n (y)

)
=
(
α∗
)nm

(y)

(3)
(
α∗
)n

(y)
α∗
(
α∗
)m

(y) =
(
α∗
)m

(y)
α∗
(
α∗
)m

(y) =
(
α∗
)n+m

(y)

(4) If (X, ∗) is commutative, then
(
α∗
)n (

y1
α∗ y2

)
=
(
α∗
)n

(y1)
α∗
(
α∗
)n

(y2) .

Proof. (1)(
α∗
)n

(y) = y
α∗ y α∗ ... α∗ y︸ ︷︷ ︸
n-times

= α
(
α−1 (y) ∗ α−1 (y)

) α∗ α (α−1 (y) ∗ α−1 (y)
) α∗ ... α∗ α (α−1 (y) ∗ α−1 (y)

)︸ ︷︷ ︸
n
2 -times

= α
(

(∗)2
(
α−1 (y)

)) α∗ α((∗)2
(
α−1 (y)

)) α∗ ... α∗ α((∗)2
(
α−1 (y)

))
=

(
α
(
α−1

(
α
(

(∗)2
(
α−1 (y)

))))
∗ α−1

(
α
(

(∗)2
(
α−1 (y)

)))) α∗ ...
....

α∗
(
α
(
α−1

(
α
(

(∗)2
(
α−1 (y)

))))
∗ α−1

(
α
(

(∗)2
(
α−1 (y)

))))
.︸ ︷︷ ︸

n
4 -times

= α
(

(∗)4
(
α−1 (y)

)) α∗ α((∗)4
(
α−1 (y)

)) α∗ ... α∗ α((∗)4
(
α−1 (y)

))
.

.

.

= α
(
(∗)n

(
α−1 (y)

))
.
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(2) (
α∗
)m ((α∗)n (y)

)
= α

(
(∗)m

(
α−1

((
α∗
)n

(y)
)))

= α
(
(∗)m

(
α−1 (α (∗)n (y))

))
= α ((∗)m ((∗)n (y)))

= α ((∗)nm (y)) .

(3)(
α∗
)n

(y)
α∗
(
α∗
)m

(y) = α
(
(∗)n

(
α−1 (y)

)) α∗ α ((∗)m (α−1 (y)
))

= α
[
α−1

(
α
(
(∗)n

(
α−1 (y)

)))
∗ α−1

(
α
(
(∗)m

(
α−1 (y)

)))]
= α

[
(∗)n

(
α−1 (y)

)
∗ (∗)m

(
α−1 (y)

)]
= α (∗)n+m

(
α−1 (y)

)
.

(4) (
α∗
)n (

y1
α∗ y2

)
= α

(
(∗)n

(
α−1

(
y1

α∗ y2
)))

= α
(
(∗)n

(
α−1

(
α
(
α−1(y1) ∗ α−1 (y2)

))))
= α

(
(∗)n

(
α−1(y1) ∗ α−1 (y2)

))
and(

α∗
)n

(y1)
α∗
(
α∗
)n

(y2) = α
(
(∗)n

(
α−1 (y1)

)) α∗ α ((∗)n (α−1 (y2)
))

= α
(
(∗)n

(
α−1 (y1)

)
∗ (∗)n

(
α−1 (y2)

))
= α

(
(∗)n

(
α−1 (y1)

)
∗ α−1 (y2)

)
.

�

Theorem 2.8. Let
(
Y,

α∗
)

be a generated semigroup by X. Then X × Y is a

semigroup.

Proof. Let define • : X × Y ×X × Y −→ X × Y as • =
(
∗ × α∗

)
◦ (1X × T × 1Y ) ,

where T (x, y) = (y, x). Then

• (x, • (y, z)) =
(
∗ × α∗

)
◦ (1S × T × 1T )

(
x,
((
∗ × α∗

)
◦ (1S × T × 1T )

)
((y1, y2) , (z1, z2))

)
=

(
∗ × α∗

)
◦ (1S × T × 1T )

(
x,
((
∗ × α∗

)
((y1, z1) , (y2, z2))

))
=

(
∗ × α∗

)
◦ (1S × T × 1T )

(
(x1, x2) , ((y1 ∗ z1) ,

(
y2

α∗ z2
))

=
(
∗ × α∗

)(
(x1, (y1 ∗ z1)) ,

(
x2,
(
y2

α∗ z2
)))

=
(
∗ × α∗

) (
(x1, (y1 ∗ z1)) ,

(
x2, α

(
α−1 (y2) ∗ α−1 (z2)

)))
=

(
(x1 ∗ (y1 ∗ z1)) ,

α∗
(
x2, α

(
α−1 (y2) ∗ α−1 (z2)

)))
=

(
(x1 ∗ (y1 ∗ z1)) , α

(
α−1 (x2) , α−1

(
α
(
α−1 (y2) ∗ α−1 (z2)

))))
=

(
(x1 ∗ (y1 ∗ z1)) , α

(
α−1 (x2) ,

(
α−1 (y2) ∗ α−1 (z2)

)))
.
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• (• (x, y) , z) =
(
∗ × α∗

)
◦ (1S × T × 1T )

(((
∗ × α∗

)
◦ (1S × T × 1T )

)
((x1, x2) , (y1, y2)) , (z1, z2)

)
=

(
∗ × α∗

)
◦ (1S × T × 1T )

((
∗ × α∗

)
((x1, y1) , (x2, y2)) , (z1, z2)

)
=

(
∗ × α∗

)
◦ (1S × T × 1T )

((
(x1 ∗ y1) , α

(
α−1 (x2) ∗ α−1 (y2)

))
, (z1, z2)

)
=

(
∗ × α∗

) (
((x1 ∗ y1) , z1) ,

(
α
(
α−1 (x2) ∗ α−1 (y2)

)
, z2
))

=
(
((x1 ∗ y1) ∗ z1) , α

(
α−1

(
α
(
α−1 (x2) ∗ α−1 (y2)

)))
, α−1 (z2)

)
=

(
((x1 ∗ y1) ∗ z1) , α

(
α−1 (x2) ,

(
α−1 (y2) ∗ α−1 (z2)

)))
.

Therefore • is associative. �

Remark 2.9. If e is the identity element of (X, ∗) , then (
α∗)n(α(e)) = α (e).

Remark 2.10. If (X, ∗) a monoid, then (Y,
α∗) is monoid.

Theorem 2.11. Let (X, ∗) has a zero element z. Then α (z) is zero element for

(Y,
α∗).

Proof. Let z be a zero element of (X, ∗) Then for all x ∈ X, x ∗ z = z ∗ x = z. Let
α (x) = y. Then

y
α∗ α (z) = α

(
α−1 (y) ∗ z

)
= α (x ∗ z) = α (z)

α (z)
α∗ y = α

(
z ∗ α−1 (y)

)
= α (z ∗ x) = α (z) .

Let z′ be a zero element for (Y, µα) and α−1 (z′) = z.

y
α∗ z′ = α

(
α−1 (y) ∗ α−1 (z′)

)
= z′

⇒
(
α−1 (y) ∗ α−1 (z′)

)
= z

and

z′
α∗ y = α

(
α−1 (z′) ∗ α−1 (y)

)
= z′ ⇒

(
α−1 (z′) ∗ α−1 (y)

)
= z.

So z is zero element for (X, ∗) . �

Theorem 2.12. Let (X, ∗) be a group, then (Y,
α∗) is a group, called as generated

group by X.

Proof. It is clear that (Y,
α∗) is a semi group with the identity α (e) = e′. Let show

that for any y ∈ Y, there exist a y−1 /∈ Y such that y
α∗ y−1 = y−1

α∗ y = e′.
Let α (x) = y and α

(
x−1

)
= y−1.Then

y
α∗ y−1 = α

(
α−1 (y) ∗ α−1

(
y−1

))
= α

(
x ∗ x−1

)
= α (e) = e′.

Similarly y−1
α∗ y = e′. �

If (X, ∗) is a group and α : X → Y is a bijective map, then it is clear that α is
a group homomorphism.

Theorem 2.13. Let (X, ∗) be an abelian group, then (Y,
α∗) is an abelian group.

Proof. For all y1, y2 ∈ Y, y1
α∗ y2 = α

(
α−1 (y1) ∗ α−1 (y2)

)
= y2

α∗ y1. �
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Theorem 2.14. Let
(
Y,

α∗
)
be a generated group by X. Then,

i) y
α∗ y = y ⇒ y = α (e)

ii) y1
α∗ y2 = y1

α∗ y3 ⇒ y2 = y3

iii)
(
y−1

)−1
= y for all y ∈ X.

Proof. i Let y
α∗ y = y. Then,

y−1
α∗
(
y
α∗ y
)

= y−1
α∗ y.

Since y−1
α∗
(
y
α∗ y
)

=
(
y−1

α∗ y
)
α∗ y, e α∗ y = y.Hence y = e.

ii Let y1
α∗ y2 = y1

α∗ y3 for all y1, y2, y3 ∈ X. Then,

y−11

α∗
(
y1

α∗ y2
)

= y−11

α∗
(
y1

α∗ y3
)

(
y−11

α∗ y1
)
α∗ y2 =

(
y−11

α∗ y1
)
α∗ y3

e
α∗ y2 = e

α∗ y3
y2 = y3.

iii If y ∈ X is the inverse of y−1 ,then

y
α∗ y−1 = y−1

α∗ y = e.

Since
(
y−1

)−1
is the inverse of y−1, y−1

α∗
(
y−1

)−1
= e = y−1

α∗ y.
Therefore by iii,

(
y−1

)−1
= y.

�

Theorem 2.15. Let
(
Y,

α∗
)
be a generated group by X. Then(
y1

α∗ y2
)−1

= y−12

α∗ y−11 .

Proof. (
y1

α∗ y2
)
∗
(
y−12

α∗ y−11

)
= y1

α∗
((
y2

α∗ y−12

)
α∗ y−11

)
= y1

α∗
(
e
α∗ y−11

)
= y1

α∗ y−11

= e.

Similarly,(
y−12

α∗ y−11

)
α∗
(
y1

α∗ y2
)

= e(
y1

α∗ y2
)
α∗
(
y−12

α∗ y−11

)
=

(
y−12

α∗ y−11

)
α∗
(
y1

α∗ y2
)

= e(
y1

α∗ y2
)−1

= y−12

α∗ y−11 .

�

Theorem 2.16. Let
(
Y,

α∗
)
be a generated group by X. Then X × Y is a group.
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Proof. By the theorem 2.8 (X × Y, •) is a semigroup. Let show that e′ = (e, α (e))
is the identity element of (X × Y, •) where e is the identity element of (X, ∗).

((x1, x2) • (e, α (e))) = ((x1 ∗ e), (x2, α (e))) = (x1, x2).

Now let show that for any (x, y) ∈ X ×Y,
(
x−1, α

((
α−1 (y)

)−1))
is the inverse

element of (x, y).

(x, y) •
(
x−1, α

((
α−1 (y)

)−1))
=

(
x ∗ x−1, y α∗ α

((
α−1 (y)

)−1))
=

(
e, α

(
α−1(y) ∗ α−1

(
α
((
α−1 (y)

)−1))))
=

(
e, α

(
α−1(y) ∗

(
α−1 (y)

)−1))
= (e, α (e)) .

�
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