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Highlights 

• This research focuses on simultaneous effect of cavity and suction on flow separation control.  

• Present flow control method indicates a significant impact on enhancing aerodynamic performance. 

• Stall angle has increased from 14° to 22° and the flow separation has been delayed. 
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Abstract 

In the present research, a Computational Fluid Dynamics (CFD) investigation is carried out for 

analyzing the simultaneous effect of suction and cavity for controlling flow separation on NACA 

0012 airfoil. Hence, a perpendicular suction jet (jet = -90°) is employed with Rjet equal to 0.15 at 

Ljet = 0.1c. Simultaneously, a cavity is used at 90% of chord length (0.9c) with 20 mm width and 

10 mm depth. The fluid flow is assumed to be 2D turbulent, and incompressible. The results 

demonstrate that lift coefficient has raised by 30% and drag coefficient has decreased by 40% at 

α = 14° by using simultaneous suction and cavity. The flow control method improves lift to drag 

ratio and stall angle has increased from 14° to 22°. Consequently, the flow separation has been 

delayed, the recirculation zone has gone downstream and completely eliminated by utilizing 

simultaneous suction and cavity as an effective flow control method. 
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1. INTRODUCTION 

 

Recently, many studies on aerodynamic analysis of airfoil have been performed numerically and 

experimentally. Computational Fluid Dynamics (CFD) has now found its place among experimental and 

analytical methods for analyzing fluid flow, heat transfer and diverse problems [1-5], and the use of this 

method for engineering analysis has become more common. The boundary layer causes many problems for 

design in most areas of fluid mechanics. The methods developed for managing boundary layer, or to 

increase lift force and decrease drag force, are known as boundary layer control or flow control. The purpose 

of flow control is to achieve more lift force and less drag force in airfoil, and finally to increase the 

aerodynamic performance with the increment of lift to drag ratio. Airfoil is one of the geometries used in 

various industries. Analyzing the flow around airfoils is of great importance in helicopter rotors, aircraft 

maneuvers, ships, the automotive industry, tower design, and turbomachines. Flow separation on a wing 

during flight causes to decrease lift and increases the drag force which can threaten the efficiency and 

stability of the aircraft [6]. Also, in aerospace and aviation investigations, the flow separation results in 

generating noise. Hence, flow control systems are required for overcoming such difficulties. The flow 

separation control techniques have been considered as a significant field of fluid mechanics [7-10]. The 

flow separation control can be achieved employing active methods for example; blowing and suction jets 

[11-14], and synthetic jet actuators [15-17], or passive methods such as flap, slat, vortex generator, and 

Gurney flap [18-21]. Flow simulation around the airfoil up to pre-stall and stall range continues to be a 

challenging problem and requires experimental results to determine the actual behavior of the flow. Since 
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experimental tests, especially in the case of complex geometries and high Reynolds number flow, are very 

expensive and have limitations, researchers are focusing on efficient numerical methods to achieve 

acceptable results at a lower cost and closer to experimental results. Many notable researches were reported 

to analyze flow separation and control it by utilizing active and passive systems [22-24].  Besides, several 

efforts have been done on the aerodynamic characteristic of the airfoil with cavity [25-28]. De Gregori and 

Fraioli [29] experimentally studied the airfoil having a cavity on the airfoil. Vuddagiri et al. [30] 

numerically studied the fluid flow of an airfoil having circular cavities at three different locations of the 

airfoil. The elliptical cavity indicated more appropriate results than the others. Ma et al. [31] analyzed the 

impacts of suction on airfoil aerodynamic performance. They found that the suction has a better control 

effect as the suction holes are located near the separation point. Genc et al. [32] implemented the active 

flow control techniques over the airfoil in a transient condition numerically. They found that the suction 

flow control gave the best results. Yousefi et al. [33] numerically investigated jet width impact of suction 

and blowing systems on an airfoil. They concluded that lift to drag ratio enhanced by increasing jet width 

of suction. Zhang et al. [34] numerically studied the applying of a suction method to postpone the flow 

separation on the airfoil. The changes in consuming energy were computationally analyzed during this 

process. Lei et al. [35] implemented the suction method in the laminar flow over the airfoil. They stated 

that their flow control system could prevent generating flow separation.  Zhou et al. [36] examined the 

Mach number impact of an airfoil for controlling the flow separation utilizing a small plate. They stated 

that an appropriate aerodynamic performance was obtained.  

 

Until now, there is no numerical study that investigates the effect of simultaneous suction and cavity on 

controlling and delaying the flow separation on the NACA 0012 airfoil. Furthermore, a special attempt is 

done to numerically analyze the aerodynamic performance of airfoil through CFD technique using 

simultaneous suction and cavity. The flow over the airfoil is computationally analyzed by URANS solver 

for unsteady flow condition and a detailed flow consideration have been reported. The present CFD results 

provide a practical reference for designing the flow control systems. 

 

 

2. COMPUTATIONAL DOMAIN 

 

The computational domain and a C-type structured grid are depicted in Figure 1. The computational domain 

is extended from 10c upstream to 20c downstream. Also, upper boundary and lower boundary are extended 

10c from the profile. Figure 2 illustrates the grid closer view for baseline airfoil and airfoil with suction and 

cavity. In Figure 3, boundary condition of velocity inlet is considered at inlet boundary, upper boundary 

and lower boundary. No-slip wall condition is imposed on the surface of airfoil. Also, the boundary 

condition of pressure outlet is used at the outlet and boundary condition of velocity inlet is set at jet location. 

Three different computational domains with 8c, 10c, and 12c upstream to 16c, 20c, and 24c downstream 

from the airfoil are generated to analyze pressure coefficient (CP) for domain extent independence test 

(Figure 4). This test is carried out at Re = 5 × 105 and α = 14°. From this figure, the domain with 10c 

upstream and 20c downstream is appropriate for simulation. 
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Figure 1. Computational domain 

 

Figure 2. Grids of a) baseline airfoil b) airfoil with suction and cavity 

 

Figure 3. Boundary condition 

a b 
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Figure 4. Domain extent independence test results 

 

3. NUMERICAL PROCEDURE 

 

The fluid flow is considered as unsteady, 2D turbulent, and incompressible. URANS equations are as 

follows [37]: 
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where u denotes the ensemble-averaged velocity. P, µ, and ρ represent the ensemble-averaged pressures, 

viscosity, and density, respectively.  

Furtheremore, URANS equations are solved with SST k-ω turbulence model. As mentioned in previous 

researches [14,22,33] of similar flows, SST k-ω demonstrates the good predictive capability for flow having 

separation which can be written as follows [38]: 
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The simulations are done with commercial software Ansys Fluent v18.2. The flow simulations are 

implemented on NACA 0012 airfoil with 1 meter chord length which has a Reynolds number equal to 

5×105. Also, the SIMPLE coupled algorithm is utilized for pressure-velocity coupling and the second-order 

upwind scheme is applied for the discretization of the governing equation. The time step in the simulation 
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process is equal to 1×10-4 to attain the CFL number <1. Numerical results are converged as the scaled 

residual is gained less than 1×10-6 and also for all the computations, y+ <1. 

In this study, for different angles of attack (α), three parameters including jet location which is located at 

10% of airfoil chord length (Ljet = 0.1c), jet velocity ratio (Rjet = 0.15), and jet angle (θjet = -90°) are used to 

computationally analyzed the impact of perpendicular suction (Figure 5). On upper surface of the airfoil, 

the suction jet with a width of 0.25c is located as demonstrated by Dannenberg and Weiberg [39]. Besides, 

the cavity is located at 0.9c and has a width and depth equal to 20 mm and 10 mm, respectively. Inlet 

velocity is set as a boundary condition to apply suction jet. The jet entrance velocity can be written as [32]:  



=
U

U
R

jet

jet
                                                                                                                                               (5) 

( ) += jetjetUu cos                                                                                                                               (6) 

( ) += jetjetUv sin .                                                                                                                                (7)                                                                                                                                                                                                                                                                  

In these equations, θjet denotes the angle between the local jet surface and jet entrance velocity direction 

[12,32]. U∞ (7.3 m/s) indicates the free stream velocity and β represents the angle between freestream 

velocity direction and the local jet surface. The values of Beta changes with the angles of attack (α), whereas 

it is equal to 7° at α = 14°. 

 

                                                                    

Figure 5. The schematic of airfoil with a) cavity and b) suction 

 

4. GRID AND TIME INDEPENDENCE STUDIES  

 

The details of grid cell and y+ distribution are provided in Table 1 at α = 10° and Re = 5 × 105. In this study, 

a grid independence study is conducted for different cell numbers including 41000, 53000, 65000, and 

77000 by investigating the drag and lift coefficients over the airfoil (Figures 6 and 7). The grid size with a 

grid-independent result has 65000 cells which are demonstrated a reasonable accuracy. 

 

Table 1. Cell numbers and y+ distribution  

Grid Cell numbers Growth 

factor 

First cell (Height)  y+ (Max) y+ (Min) y+ 

(Average) 

1 41000 1.1 1×10-3 7.63 4.04 2.43 

2 53000 1.1 1×10-4 4.46 1.58 2.86 

a b 
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3 65000 1.1 1×10-5 0.88 0.07 0.45 

4 77000 1.1 5×10-6 0.73 0.03 0.29 

 

 

Figure 6. Grid independence study for lift coefficient at α=10° 

 

Figure 7. Grid independence study for drag coefficient α=10° 

 

Moreover, an independence study for time step is performed to show the reliability of solution (Table 2). 

Hence, 4 different time steps are selected for comparing lift coefficient and drag coefficient in the case of 

suction and cavity at α = 14°. Finally, it is concluded that the 1×10−4 (time step) is reasonable for the present 

study. 
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Table 2. An independence study for time step at α=14° 

CL CD Time step (second) 

1.428 0.179 1×10-3 

1.194 0.136 5×10-4 

1.023 0.108 1×10-4 

1.022 0.107 1×10-5 

 

In Figure 8, time histories of lift coefficient and drag coefficient are presented in Figure 8 for without 

suction and cavity case at α = 14°. It is obvious that time history of these coefficients are repeated in a 

periodic way. The average values of lift coefficient and drag coefficient are used for further analysis 

throughout the present numerical study. 

 

 

 

 
Figure 8. Time histories of lift coefficient and drag coefficient for without suction and cavity case at α = 

14° 
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5. VALIDATION SECTION 

 

The numerical results of drag and lift coefficients in terms of angles of attack for without suction and cavity 

case are compared with the results of Huang et al. [12] and Yousefi et al. [33] and the available experimental 

results of Critzos et al. [40], Jacobs et al. [41] all at a Reynolds number of 5×105. Good agreement is seen 

between computational results and reported studies as shown in Figure 9. The difference between the values 

in higher angle of attacks can be due to turbulence models, artificial viscosities, grid density, and limitation 

of 2D simulation which can produce computational inaccuracy. 

 

 

 

Figure 9. Validation  
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6. RESULTS AND DISCUSSION 

 

The effect of simultaneous cavity and suction on lift and drag coefficients in terms of α is depicted in 

Figures 10 and 11. In suction case, the low energy fluid existed in boundary layer is eliminated through 

suction jet and removes its losses [42]. The suction jet location (Ljet) is placed at 0.1c which is reported in 

previous works [6,12]. Therefore, a perpendicular suction jet is used with jet = -90° and Rjet = 0.15 which 

is located at Ljet = 0.1, and a cavity is simultaneously utilized at (0.9c) with 20 mm width and 10 mm depth. 

It can be concluded that the simultaneous use of suction and cavity has a notable impact on increasing 

aerodynamic performance resulting in an increase in stall angle (14° to 22°). Also, there is a significant 

increase in lift coefficient and drag coefficient by utilizing this flow control method. CL is enhanced by 

approximately 30% and the drag coefficient (CD) is reduced approximately 43% with the simultaneous use 

of suction and cavity at α = 14°. 

 

 

Figure 10. Changes in lift coefficient  
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Figure 11. Changes in drag coefficient  

 

Furthermore, lift to drag ratio (CL/CD) is numerically analyzed to further consideration of the effect of 

simultaneous use of suction and cavity (Figure 12). As it can be seen, the simultaneous use of suction and 

cavity increased CL/CD, and the highest value of increment in CL/CD is obtained at α = 8° which is 1.6 times 

higher than the baseline airfoil. Figure 13 depicts the pressure coefficient (Cp) for baseline airfoil and 

simultaneous suction and cavity case at α = 14°. By considering these cases, it was found that sudden 

changes in pressure coefficient have been observed at the suction slot location, which has a positive impact 

on improving aerodynamic coefficients. 

 

Figure 12. Changes of CL/CD for baseline airfoil and airfoil with suction and cavity cases 
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Figure 13. The pressure coefficient (Cp) for baseline airfoil and airfoil with suction and cavity cases 

 

Figure 14 indicates the velocity field contours of the NACA 0012 airfoil for simultaneous suction and cavity 

case and without suction case at α = 14°. When the boundary layer separates, the drag will increase, and 

also causes to increase in lift and finally stall occurs. The main application of suction is to eliminate low-

energy boundary layer which causes to postpone the flow separation [42]. Naturally, the cavity causes to 

form the vortices which lead to induce the flow reattachment, therefore requiring no additional energy 

expenditure [30]. The vortices trapped in cavity could re-energize boundary layer thus maintained flow 

attachment downstream of the cavity and delay flow separation [30]. Hence, the flow control jet including 

simultaneous suction and cavity shows a considerable effect on postponing and controlling the flow 

separation. Moreover, the recirculation zone has gone downstream and completely eliminated by utilizing 

the mentioned flow control method. Figure 15 illustrates the pressure field (Pa) around the airfoil for 

simultaneous suction and cavity case and without suction case at α = 14°. The pressure is reduced on airfoil 

upper surface and this results in higher velocity and momentum on the upper surface. It eventually delays 

the flow separation by applying the flow control method. 
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Figure 14. The velocity field (m/s) contours for a) baseline airfoil and b) simultaneous suction and cavity 

case 

 

Figure 15. The pressure field (Pa) around NACA 0012 airfoil for a) without suction and cavity case and 

b) simultaneous suction and cavity case 

 

7. CONCLUSION 

 

In this work, a CFD-based analysis is conducted to examine simultaneous effect of suction and cavity on 

controlling flow separation over NACA 0012 airfoil. The numerical simulation is carried out utilizing 

Ansys Fluent v18.2. A perpendicular suction jet (jet = -90°) is applied at Ljet = 0.1 and a cavity is 

simultaneously used at 0.9c. Based on the numerical results, the simultaneous use of suction and cavity has 

a significant effect on the enhancement of aerodynamic performance which leads to improve stall angle 

from 14° to 22°. Besides, lift coefficient has enhanced by 30% and drag coefficient has decreased by 40% 

through simultaneous suction and cavity at α = 14°. The flow control method improves lift to drag ratio and 

the highest value of increment in CL/CD is obtained at α = 8°. Consequently, the simultaneous suction and 

cavity have a great impact on delaying the flow separation. Also, the recirculation zone has gone 

downstream and completely eliminated. 
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