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Keywords Abstract: The goal of this study is to introduce the modified jackknifed ridge
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Linear mixed models, (MMSE) comparisons are done. Finally, a real data analysis is given to observe the

MOdiﬁed je,‘Ckknifed behavior of the modified jackknifed ridge predictors.
ridge predictors,

Multicollinearity.

Lineer Karma Modellerde Modified Jackknifed Ridge On Tahmin Edicilerin Hata
Kareler Ortalamasi Performansi

Anahtar Kelimeler Ozet: Bu calismanin amacy, lineer karma modellerde modified jackknifed ridge 6n
Jackknifed ridge 6n tahmin tahmin metodunu tanimlamaktir. Daha sonra, matris hata kare ortalamasina
ediciler,

(MMSE) gore karsilastirmalar yapmaktir. Son olarak, modified jackknifed ridge 6n
tahmin edicilerin davranislarini gézlemlemek amaciyla gercek bir veri analizi
calismasi verilmistir.
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1. Introduction

Linear mixed models (see [1]; [2]) have been broadly employed for longitudinal-repeated measurements data,
clustered data and multilevel data. (see [3]; [4]; [5]; [6])-

Linear mixed models are the following form

y=Xf+Zu+e¢ €Y
where y is an n X 1 vector of responses, X is an n X p known design matrix for the fixed effects, f isa p X 1
parameter vector of fixed effects, Z is an n X g known design matrix for the random effects, u is a ¢ X 1 vector of
random effects and € is an n X 1 vector of random errors. It is where G, W are known positive definite (pd)

matrices. Then, var(y) = 6?H where H = ZGZ' + W.

The estimator of 5 and the predictor of u are derived from [7] and [8] as

f=XH1X)1X'H 1y 2)

0 =GZ'H ' (y —XpB)

where £ is named as the best linear unbiased estimator (BLUE) and @ is named as the best linear unbiased
predictor (BLUP).

Multicollinearity is a widely occurring and potentially serious problem that can be defined as near-linear

dependence among the variable of the design matrix of the fixed effects. On account of multicollinearity, some
serious problems can be arised. For example, interpretation, in validation, and analysis of the model, like
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unreasonable sign, unstable estimates, high-standard errors, and so on. To overcome from these problems, some
procedures were advanced.

The ridge estimator which is suggested by [9] in linear regression model is the most popular one. But, since ridge
estimator may handle substantial amount of bias, [10] recommended the jackknifed estimator that had both
smaller bias and mean square error than the ridge estimator under some conditions. Jackknifed styles of ridge
estimator and some other distincts are investigated in the linear regression models; see [11], [12], [13], [14],
[15],[16], [17],]18], [19], [20], [21], [22] and [23].

[24] and [25] were suggested the ridge estimator and predictor as

Bl = (X'HIX + kI,)” X'H 1y 3)
a(k) = GZ'H(y — XB (k)

where k > 0 is known as the biasing parameter.

Additionally, [26] defined the jackknifed ridge estimator and predictor as

B(k)
=1,

A 2.4
—k2(X'H'X + kI,) 1B 4)
(k) = GZ'H " (y — XB (k)
where f is the BLUE given by Eq. (2).

In this article, modified jackknifed ridge estimator and predictor are introduced in linear mixed models. And
then, our study can explain as follows. After new estimator and predictor are suggested, the matrix mean square
error (MMSE) comparisons are made in Section 2. In Section 3, the estimation of the biasing parameters are
investigated. Greenhouse gases data analysis is constructed in Section 4 and conclusions are given in Section 5.
2.Some Comparisons

In this section, before comparisons are done, the modified jackknifed ridge predictors in the linear mixed models

are introduced by using [26]. The proposed predictors are designated as the modified jackknifed ridge estimator
and the modified jackknifed ridge predictor, respectively, as

Bnl) = [1, — k2(X'HT'X + k1,) | Bk
Uy (k) = GZ'H' (v — X (1))
where (k) is the ridge estimator given by Eq. (3).

Prediction of linear combinations of 8 and u can be infered as u = L' + M'u for specific matrices L € RP*® and
M € RS (see [27]; [28]; [29] for $ = 1). Following [30], MMSE of any predictor i = L' + M'ii is given as

MMSE(@) = E((7 — w) (i — 1)') = Var(i)) + Var(u) + Bias(@)Bias(i)' — Cov(fi, p) — Cov(u, ) 6)
where Bias(ji) = E(ii — p).

[26] is obtained the predictor of p under the BLUPs and the jackknifed ridge predictors, respectively, as
A=LB+Mu=QB+MGZH 'y

i = L'B(k) + M'ti(k) = QB(k) + M'GZ'H™ 'y

and [26] also found by using Eq. (5)
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MMSE(j) = QMMSE(3)Q' + 0?M'(G — GZ'H™'ZG)M
MMSE (fi,,) = QMMSE(B(k))Q' + 02M'(G — GZ'H™'ZG)M
where
MMSE(B) = 02QA~1Q’
MMSE (f(k)) = 0*Q(A + k1,) " (A + 2KkL,) A(A + 2kL,) (A + kI,) Q' + k*(A+ kI,) " Q'BE'Q(A+kI,) ™

where  there arises a pXp orthogonal matrix @ such that Q'Q=0QQ =1, and
Q'X'H™'XQ = A = diag(Ay,*+,A,) where A;,i = 1, -+, p, are the eigenvalues of X"H™'X.

By following [26], we derive i, x as fmx = L' B (k) + M'tiy, (k) = QB (k) + M'GZ'H'y and so, we introduce
MMSE (i, ;) by using Eq. (5)

MMSE (i) = QUMSE (B, ())Q' + 02M' (G — GZ'H*ZG)M
where

MMSE (B, (k) = 02Q(L, — k*(A + kI,) )1, — k(A + k1))
X A7Vl — k(A + kL) (U, — K2(A + kl,) Q" + K2(L, + k(A + kL)
—k2(A+ k1) YA+ kL) QBB QA+ kL) (I, + k(A + kL) —k2(A+kI,) )

and then, with the help of [26], it can be seen that the superiority of MMSE(fl,, ) over MMSE(ji) and MMSE (i)
is equipollent to the superiority of MMSE ([fm (k)) over MMSE(f) and MMSE ([f(k)).

2.1. The MMSE comparisons

Theorem 2.1. 3, (k) overhelms f in the sense of the MMSE sense iff

B (o H+k2(A+ kL) BR(A+kL,) HEH I <1

is satisfied with £ = k(L, + k(A + kL) —k2(A+kI,) " )(A+kl,) " and H = Var(8) — Var (B, (k).
Theorem 2.2. §,, (k) overhelms (k) in the sense of the MMSE sense iff

B (102 T + k*(A+ kL) BB (A+kL,) HEH B <1

is satisfied with T = Var (ﬁ(k)) —Var(B,, (k).

To see the proof of Theorems 2.1 and 2.2, [17] can be investigated under linear mixed models.

3. Estimators of Biasing Parameters

Three methods of the selection of k that are used in ridge regression to the modified jackknifed ridge predictors
are generalized in this part.

Firstly, [9] recommended estimator of k. Then, [25] extended to the linear mixed models estimator of k as
- 52 . A ~
ky = % where 62 = (y — XB)’'H *(y — XB)/(n — p) and we use k;, as the first estimator of k.

p&?

a?
r{@f/[1+ [1+GH)

Secondly, by following [16], the second estimator of k is taken as k" = where A;'s are the

eigenvalues of X' H1X.
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=2

po
el

Concisely, with the help of [31], the third estimator of k is used as k;,;, =

4. A Real Data Analysis

Gases that trap radiation and make the planet softer in the atmosphere are called greenhouse gases. (see the
offical United States Environmental Protection Agency (EPA) website [32]).

The transportation segment is the greatest component of greenhouse gas emissions and transportation gas
emissions are produced from burning fossil fuel for cars, light/heavy trucks-buses, motorcycles and railways
(see EPA website [32]).

We describe the response (y) as 297 fuel combustion in transport (in million tonnes) that is randomly taken
from 27 zones throughout 2006-2016 inclusive years. Then, the explanatory variables are taken as fuel
combustions in cars (x,), light duty trucks (x,), heavy duty trucks-buses (x3), motorcycles (x,) and railways (xs)
that are declared as fixed effects and because the 27 zones are randomly taken from the zones, the zones factor
effect on the response is declared as random effect. Hence, the random intercept and slope model (RISM) is
expressed as

yij = ﬁlxijl +Bzxij2 +B3xij3 +B4xi]-4 +,85x,-]-5 +u1 + uztij + gij'i = 1, "',27 ] = 1,,11

where y;; indicates the ith observation of the jth zone of the response, x;;; indicates the ith observation of the
jth zone of the explanatory variable x,, s = 1,---,5 and t;; demonstrates time corresponding to y;; (see [26]).

With the help of Matlab R2014a, unstructured (UN), diagonal (UN(1)), compound symmetry (CS) and variance
components (VC) models are handled. Then, by utilizing the Akaike's Information Criterion (AIC) and Bayesian
Information Criterion (BIC), the selection among models is performed and the estimation of the covariance
matrices are computed by maximum likelihood (ML) or restricted maximum likelihood (REML) methods.

The consequences are attached by Table 1 and by examining Table 1, we favour UN(1) model in BIC and ML
approaches (see for the details [26]; [33]). Then, we estimate UN(1) variance-covariance matrices as

[2.1313

A 0
Gus. = 0.0755]

and Wy,, = 0.254511,4,. Hence, by using H = ZGZ'+ W, H,,, is found.

The eigenvalues of the matrix X'Hy} X are figured outas A, = 1.4326 x 10*7, 1, = 1.5085 x 10*4, A, = 4.7251 x
10%3, 1, = 247.7243 and A5 = 41.5100. Hence, the condition number is computed as iml = 345120 that is
larger 1000, it shows severe multicollinearity.

k, = 0.9324, k" = 15.1795 and k,;,, = 7.2215 x 1077 are derived by following Section 3.

With the help of Table 2, we see respectively, the parameter estimators, predictors, the scalar mean square error
(SMSE) values of fixed effects.

Table 2 indicates that the situation of the estimators based on in accordance with the biasing parameter used.
For kj,, jackknifed ridge estimator, the blue and modified jackknifed ridge estimator; for k", blue, jackknifed
ridge estimator and modified jackknifed estimator; for k,,,, modified jackknifed ridge estimator, jackknifed ridge
estimator and blue have the minimum SMSE values.
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Figures 1 and 2 are produced for other k values. The plots of the SMSE(B(k)), SMSE(B,,(k)) and SMSE ()
versus k intervals (0,20) and (0,1) are presented by Figures 1 and 2, respectively. Under SMSE, Figures 1 and 2
indicate that f,,,(k) has smaller SMSE values than S(k) and f for k values in the interval (0,0.734). We see that
the difference between SMSE(f(k)) and SMSE(f) values increases as k values increase. On the other hand, we
say that (k) overhelms f,,(k) and  when k values are larger than 0.734.

2.5
5 = m m Jackknifed Ridge Estimator
T BLUE
vooonn Madified Jackknifed Ridge Estimator
w 1.5
7]
@
1L
0.5F
0 L
0 2 1 =] 8 10 12 14 16 18 20
k
Figure 1. Flots of .‘:'."U.‘:'l'.f_;[kl]. SMSE( };‘.IL':\ and t-‘:li“-‘!:'[ﬁ'l values versus k (Greenhouse Gases Data).
0.15
0.1495 == == Jackknifed Ridge Estimator
BLUE
o.1as | o0 Modifled Jackknifed Ridge Estimator|
0.1485
W o.148
5 01475
O B——————————————————————————————————————————
0.14685 |
0148 -
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k
Figure 2. Plots of .‘:'."U.‘:'l'.f_;(kl]. SMSE( };‘.IL':_\ and t-‘:li“-‘!:'[ﬁ'l values versus k (Greenhouse Gases Data).

Theorem 2.1 condition is figured out as 14.4426 < 1 for k,, hence £ has smaller MMSE values Em(lzh). Theorem
2.1 condition is figured out as 182.3097 < 1 for k", so f has smaller MMSE values than f,,(k"). For k,y,
Theorem 2.1 condition is calculated as 1.1424 X 1075, since it is smaller than 1, Em(IELW) has smaller MMSE
values than .

Theorem 2.2 condition is calculated as 5.2938 for kj; 1.0530 x 10*3 for k", hence §(k;) and §(k") have smaller
MMSE values than Em(kh) and ﬁm(kh). For k,,,, Theorem 2.2 condition is found as 3.2170 x 10~'2 which is
smaller than 1, so 5, (lAcLW) has a good performance than than E(IELW) under MMSE criterion.

For suitable k values, it is seen that f,,(k) has a good performance (that is, f,,(k) has small MMSE and SMSE
values) than £ and S (k).

4. Conclusions
In this article, the modified jackknifed ridge way is recommended in the linear mixed models. Then, the MMSE
comparisons and several different methods for k are given. Finally, greenhouse gases data analysis is done to

demonstrate theoretical findings.

When the appropriate biasing parameter is used, this study is confirmed that the modified jackknifed ridge way
guarantees smaller MSE than the jackknifed ridge way under multicollinearity.
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