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Abstract: The goal of this study is to introduce the modified jackknifed ridge 
prediction method in the linear mixed models. Then, the matrix mean square error 
(MMSE) comparisons are done. Finally, a real data analysis is given to observe the 
behavior of the modified jackknifed ridge predictors. 

  
  

Lineer Karma Modellerde Modified Jackknifed Ridge Ön Tahmin Edicilerin Hata 
Kareler Ortalaması Performansı 

 
 

Anahtar Kelimeler 
Jackknifed ridge ön tahmin 
ediciler, 
Lineer karma modeller, 
Modified jackknifed ridge ön 
tahmin ediciler, 
Çoklu iç ilişki. 
 

Özet: Bu çalışmanın amacı, lineer karma modellerde modified jackknifed ridge ön 
tahmin metodunu tanımlamaktır. Daha sonra, matris hata kare ortalamasına 
(MMSE) göre karşılaştırmalar yapmaktır. Son olarak, modified jackknifed ridge ön 
tahmin edicilerin davranışlarını gözlemlemek amacıyla gerçek bir veri analizi 
çalışması verilmiştir. 
 

  
*İlgili Yazar, email: ozge.kuran@dicle.edu.tr 

 
1. Introduction
 
Linear mixed models (see [1]; [2]) have been broadly employed for longitudinal-repeated measurements data, 
clustered data and multilevel data. (see [3]; [4]; [5]; [6]). 
 
Linear mixed models are the following form 
 
𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜀                                                                                                                                                                                   (1) 
 
where 𝑦 is an 𝑛 × 1 vector of responses, 𝑋 is an 𝑛 × 𝑝 known design matrix for the fixed effects, 𝛽 is a 𝑝 × 1 
parameter vector of fixed effects, 𝑍 is an 𝑛 × 𝑞 known design matrix for the random effects, 𝑢 is a 𝑞 × 1 vector of 
random effects and 𝜀 is an 𝑛 × 1 vector of random errors. It is where 𝐺, 𝑊 are known positive definite (pd) 
matrices. Then, 𝑣𝑎𝑟(𝑦) = 𝜎2𝐻 where 𝐻 = 𝑍𝐺𝑍′ +𝑊. 
 
The estimator of 𝛽 and the predictor of 𝑢 are derived from [7] and [8] as 
 
�̂� = (𝑋′𝐻−1𝑋)−1𝑋′𝐻−1𝑦                                                                                                                                                                     (2) 
 
�̂� = 𝐺𝑍′𝐻−1(𝑦 − 𝑋�̂�)                                                            
 
where �̂� is named as the best linear unbiased estimator (BLUE) and �̂� is named as the best linear unbiased 
predictor (BLUP). 
 
Multicollinearity is a widely occurring and potentially serious problem that can be defined as near-linear 
dependence among the variable of the design matrix of the fixed effects. On account of multicollinearity, some 
serious problems can be arised. For example, interpretation, in validation, and analysis of the model, like 
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unreasonable sign, unstable estimates, high-standard errors, and so on. To overcome from these problems, some 
procedures were advanced. 
 
The ridge estimator which is suggested by [9] in linear regression model is the most popular one. But, since ridge 
estimator may handle substantial amount of bias, [10] recommended the jackknifed estimator that had both 
smaller bias and mean square error than the ridge estimator under some conditions. Jackknifed styles of ridge 
estimator and some other distincts are investigated in the linear regression models; see [11], [12], [13], [14], 
[15], [16], [17], [18], [19], [20], [21], [22] and [23]. 
 
[24] and [25] were suggested the ridge estimator and predictor as  
 

�̂�(𝑘) = (𝑋′𝐻−1𝑋 + 𝑘𝐼𝑝)
−1
𝑋′𝐻−1𝑦                                                                                                                                                   (3) 

 
�̂�(𝑘) = 𝐺𝑍′𝐻−1(𝑦 − 𝑋�̂�(𝑘))                                          
 
where 𝑘 > 0 is known as the biasing parameter. 
 
Additionally, [26] defined the jackknifed ridge estimator and predictor as 
 

�̃�(𝑘)
= [𝐼𝑝

− 𝑘2(𝑋′𝐻−1𝑋 + 𝑘𝐼𝑝)
−2
]�̂�                                                                                                                                                               (4) 

 
�̃�(𝑘) = 𝐺𝑍′𝐻−1(𝑦 − 𝑋�̃�(𝑘))                                         
 

where �̂� is the BLUE given by Eq. (2). 
 
In this article, modified jackknifed ridge estimator and predictor are introduced in linear mixed models. And 
then, our study can explain as follows. After new estimator and predictor are suggested, the matrix mean square 
error (MMSE) comparisons are made in Section 2. In Section 3, the estimation of the biasing parameters are 
investigated. Greenhouse gases data analysis is constructed in Section 4 and conclusions are given in Section 5. 
 
2. Some Comparisons 
 
In this section, before comparisons are done, the modified jackknifed ridge predictors in the linear mixed models 
are introduced by using [26]. The proposed predictors are designated as the modified jackknifed ridge estimator 
and the modified jackknifed ridge predictor, respectively, as 
 

�̃�𝑚(𝑘) = [𝐼𝑝 − 𝑘
2(𝑋′𝐻−1𝑋 + 𝑘𝐼𝑝)

−2
] �̂�(𝑘)            

 
�̃�𝑚(𝑘) = 𝐺𝑍

′𝐻−1(𝑦 − 𝑋�̃�𝑚(𝑘))                                
 
where �̂�(𝑘) is the ridge estimator given by Eq. (3). 
 
Prediction of linear combinations of 𝛽 and 𝑢 can be infered as 𝜇 = 𝐿′𝛽 +𝑀′𝑢 for specific matrices 𝐿 ∈ ℝ𝑝×ṩ and 
𝑀 ∈ ℝ𝑞×ṩ (see [27]; [28]; [29] for ṩ = 1). Following [30], MMSE of any predictor 𝜇 = 𝐿′�̃� + 𝑀′�̃� is given as 
 
𝑀𝑀𝑆𝐸(𝜇) = 𝐸((𝜇 − 𝜇)(𝜇 − 𝜇)′) = 𝑉𝑎𝑟(𝜇) + 𝑉𝑎𝑟(𝜇) + 𝐵𝑖𝑎𝑠(𝜇)𝐵𝑖𝑎𝑠(𝜇)′ − 𝐶𝑜𝑣(𝜇, 𝜇) − 𝐶𝑜𝑣(𝜇, 𝜇)                        (5) 

 
where 𝐵𝑖𝑎𝑠(𝜇) = 𝐸(𝜇 − 𝜇). 
 
[26] is obtained the predictor of μ under the BLUPs and the jackknifed ridge predictors, respectively, as 
 

�̂� = 𝐿′�̂� + 𝑀′�̂� = ℚ�̂� + 𝑀′𝐺𝑍′𝐻−1𝑦 
 

𝜇𝑘 = 𝐿
′�̃�(𝑘) +𝑀′�̃�(𝑘) = ℚ�̃�(𝑘) + 𝑀′𝐺𝑍′𝐻−1𝑦 

 
and [26] also found by using Eq. (5) 
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𝑀𝑀𝑆𝐸(�̂�) = ℚ𝑀𝑀𝑆𝐸(�̂�)ℚ′
+ 𝜎2𝑀′(𝐺 − 𝐺𝑍′𝐻−1𝑍𝐺)𝑀 

 
𝑀𝑀𝑆𝐸(𝜇𝑘) = ℚ𝑀𝑀𝑆𝐸(�̃�(𝑘))ℚ

′
+ 𝜎2𝑀′(𝐺 − 𝐺𝑍′𝐻−1𝑍𝐺)𝑀  

 
where  
 
𝑀𝑀𝑆𝐸(�̂�) = 𝜎2𝑄𝛬−1𝑄′                              

 

𝑀𝑀𝑆𝐸 (𝛽(𝑘)) = 𝜎2𝑄(𝛬 + 𝑘𝐼𝑝)
−2
(𝛬 + 2𝑘𝐼𝑝) 𝛬(𝛬 + 2𝑘𝐼𝑝)(𝛬 + 𝑘𝐼𝑝)

−2
𝑄′ + 𝑘4(𝛬 + 𝑘𝐼𝑝)

−2
𝑄′𝛽𝛽′𝑄(𝛬 + 𝑘𝐼𝑝)

−2
 

                     
where there arises a 𝑝 × 𝑝 orthogonal matrix 𝑄 such that 𝑄′𝑄 = 𝑄𝑄′ = 𝐼𝑝 and 

𝑄′𝑋′𝐻−1𝑋𝑄 = 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1,⋯ , 𝜆𝑝) where 𝜆𝑖 , 𝑖 = 1,⋯ , 𝑝, are the eigenvalues of 𝑋′𝐻−1𝑋. 

 
By following [26], we derive 𝜇𝑚,𝑘  as 𝜇𝑚,𝑘 = 𝐿

′�̃�𝑚(𝑘) +𝑀
′�̃�𝑚(𝑘) = ℚ�̃�𝑚(𝑘) +𝑀

′𝐺𝑍′𝐻−1𝑦 and so, we introduce 
𝑀𝑀𝑆𝐸(𝜇𝑚,𝑘) by using Eq. (5) 

 
𝑀𝑀𝑆𝐸(𝜇𝑚,𝑘) = ℚ𝑀𝑀𝑆𝐸(�̃�𝑚(𝑘))ℚ

′
+ 𝜎2𝑀′(𝐺 − 𝐺𝑍′𝐻−1𝑍𝐺)𝑀 

 
where 
 

𝑀𝑀𝑆𝐸 (𝛽𝑚(𝑘)) = 𝜎
2𝑄(𝐼𝑝 − 𝑘

2(𝛬 + 𝑘𝐼𝑝)
−2
)(𝐼𝑝 − 𝑘(𝛬 + 𝑘𝐼𝑝)

−1
)

× 𝛬−1(𝐼𝑝 − 𝑘(𝛬 + 𝑘𝐼𝑝)
−1
)(𝐼𝑝 − 𝑘

2(𝛬 + 𝑘𝐼𝑝)
−2
)𝑄′ + 𝑘2(𝐼𝑝 + 𝑘(𝛬 + 𝑘𝐼𝑝)

−1
   

   −𝑘2(𝛬 + 𝑘𝐼𝑝)
−2
)(𝛬 + 𝑘𝐼𝑝)

−1
𝑄′𝛽𝛽′𝑄(𝛬 + 𝑘𝐼𝑝)

−1
(𝐼𝑝 + 𝑘(𝛬 + 𝑘𝐼𝑝)

−1
− 𝑘2(𝛬 + 𝑘𝐼𝑝)

−2
) 

 
and then, with the help of [26], it can be seen that the superiority of 𝑀𝑀𝑆𝐸(𝜇𝑚,𝑘) over 𝑀𝑀𝑆𝐸(�̂�) and 𝑀𝑀𝑆𝐸(𝜇𝑘) 

is equipollent to the superiority of 𝑀𝑀𝑆𝐸 (�̃�𝑚(𝑘)) over 𝑀𝑀𝑆𝐸(�̂�) and 𝑀𝑀𝑆𝐸 (�̃�(𝑘)). 

 
2.1. The MMSE comparisons 
 

Theorem 2.1. �̃�𝑚(𝑘) overhelms �̂� in the sense of the MMSE sense iff 
 

𝛽′(Ł−1(𝜎2Ħ+ 𝑘2(𝛬 + 𝑘𝐼𝑝)
−1
𝛽𝛽′(𝛬 + 𝑘𝐼𝑝)

−1
)Ł−1)−1𝛽 ≤ 1 

 

is satisfied with Ł = 𝑘(𝐼𝑝 + 𝑘(𝛬 + 𝑘𝐼𝑝)
−1
− 𝑘2(𝛬 + 𝑘𝐼𝑝)

−2
)(𝛬 + 𝑘𝐼𝑝)

−1
 and Ħ = 𝑉𝑎𝑟(�̂�) − 𝑉𝑎𝑟(�̃�𝑚(𝑘)). 

 

Theorem 2.2. �̃�𝑚(𝑘) overhelms �̃�(𝑘) in the sense of the MMSE sense iff 
 

𝛽′(Ł−1(𝜎2Ŧ+ 𝑘4(𝛬 + 𝑘𝐼𝑝)
−2
𝛽𝛽′(𝛬 + 𝑘𝐼𝑝)

−2
)Ł−1)−1𝛽 ≤ 1 

 

is satisfied with Ŧ = 𝑉𝑎𝑟 (�̃�(𝑘)) − 𝑉𝑎𝑟(�̃�𝑚(𝑘)). 

 
To see the proof of Theorems 2.1 and 2.2, [17] can be investigated under linear mixed models. 
 
3. Estimators of Biasing Parameters 
 
Three methods of the selection of 𝑘 that are used in ridge regression to the modified jackknifed ridge predictors 
are generalized in this part. 
 
Firstly, [9] recommended estimator of 𝑘. Then, [25] extended to the linear mixed models estimator of 𝑘 as 

�̂�ℎ =
𝑝�̂�2

�̂�′�̂�
 where �̂�2 = (𝑦 − 𝑋�̂�)′𝐻−1(𝑦 − 𝑋�̂�)/(𝑛 − 𝑝)  and we use �̂�ℎ  as the first estimator of 𝑘. 

 

Secondly, by following [16], the second estimator of 𝑘 is taken as �̂�ℎ =
𝑝�̂�2

∑{�̂�𝑖
2/[1+√1+𝜆𝑖(

�̂�𝑖
2

�̂�2
)]}

 where 𝜆𝑖's are the 

eigenvalues of 𝑋′𝐻−1𝑋. 
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Concisely, with the help of [31], the third estimator of 𝑘 is used as �̂�𝐿𝑊 =
𝑝�̂�2

∑𝜆𝑖�̂�𝑖
2. 

 
4. A Real Data Analysis 
 
Gases that trap radiation and make the planet softer in the atmosphere are called greenhouse gases. (see the 
offical United States Environmental Protection Agency (EPA) website [32]). 
 
The transportation segment is the greatest component of greenhouse gas emissions and transportation gas 
emissions are produced from burning fossil fuel for cars, light/heavy trucks-buses, motorcycles and railways 
(see EPA website [32]). 
 
We describe the response (𝑦) as 297 fuel combustion in transport (in million tonnes) that is randomly taken 
from 27 zones throughout 2006-2016 inclusive years. Then, the explanatory variables are taken as fuel 
combustions in cars (𝑥1), light duty trucks (𝑥2), heavy duty trucks-buses (𝑥3), motorcycles (𝑥4) and railways (𝑥5) 
that are declared as fixed effects and because the 27 zones are randomly taken from the zones, the zones factor 
effect on the response is declared as random effect. Hence, the random intercept and slope model (RISM) is 
expressed as 
 
𝑦𝑖𝑗 = 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + 𝛽3𝑥𝑖𝑗3 + 𝛽4𝑥𝑖𝑗4 + 𝛽5𝑥𝑖𝑗5 + 𝑢1 + 𝑢2𝑡𝑖𝑗 + 𝜀𝑖𝑗 , 𝑖 = 1,⋯ ,27  𝑗 = 1,⋯ ,11  

                    
where 𝑦𝑖𝑗 indicates the 𝑖th observation of the 𝑗th zone of the response, 𝑥𝑖𝑗𝑠 indicates the 𝑖th observation of the 

𝑗th zone of the explanatory variable 𝑥𝑠, 𝑠 = 1,⋯ ,5 and 𝑡𝑖𝑗 demonstrates time corresponding to 𝑦𝑖𝑗 (see [26]). 

 
With the help of Matlab R2014a, unstructured (UN), diagonal (UN(1)), compound symmetry (CS) and variance 
components (VC) models are handled. Then, by utilizing the Akaike's Information Criterion (AIC) and Bayesian 
Information Criterion (BIC), the selection among models is performed and the estimation of the covariance 
matrices are computed by maximum likelihood (ML) or restricted maximum likelihood (REML) methods. 
 
The consequences are attached by Table 1 and by examining Table 1, we favour UN(1) model in BIC and ML 
approaches (see for the details [26]; [33]). Then, we estimate UN(1) variance-covariance matrices as 
 

𝐺𝑀𝐿 = [
2.1913 0
0 0.0755

]  

 
and �̂�𝑀𝐿 = 0.25451𝐼297. Hence, by using 𝐻 = 𝑍𝐺𝑍′+𝑊, �̂�𝑀𝐿 is found.  
 
The eigenvalues of the matrix 𝑋′�̂�𝑀𝐿

−1𝑋 are figured out as 𝜆1 = 1.4326 × 10
+7, 𝜆2 = 1.5085 × 10

+4, 𝜆3 = 4.7251 ×

10+3, 𝜆4 = 247.7243 and 𝜆5 = 41.5100. Hence, the condition number is computed as 
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
= 345120 that is 

larger 1000, it shows severe multicollinearity. 
 

�̂�ℎ = 0.9324, �̂�ℎ = 15.1795 and �̂�𝐿𝑊 = 7.2215 × 10−7 are derived by following Section 3.  
 
With the help of Table 2, we see respectively, the parameter estimators, predictors, the scalar mean square error 
(SMSE) values of fixed effects.  
 
Table 2 indicates that the situation of the estimators based on in accordance with the biasing parameter used. 

For �̂�ℎ , jackknifed ridge estimator, the blue and modified jackknifed ridge estimator; for �̂�ℎ, blue, jackknifed 

ridge estimator and modified jackknifed estimator; for �̂�𝐿𝑊, modified jackknifed ridge estimator, jackknifed ridge 
estimator and blue have the minimum SMSE values. 
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Figures 1 and 2 are produced for other 𝑘 values. The plots of the 𝑆𝑀𝑆𝐸(�̃�(𝑘)), 𝑆𝑀𝑆𝐸(�̃�𝑚(𝑘)) and 𝑆𝑀𝑆𝐸(�̂�) 
versus 𝑘 intervals (0,20) and (0,1) are presented by Figures 1 and 2, respectively. Under SMSE, Figures 1 and 2 

indicate that �̃�𝑚(𝑘) has smaller SMSE values than �̃�(𝑘) and �̂� for 𝑘 values in the interval (0,0.734). We see that 

the difference between 𝑆𝑀𝑆𝐸(�̃�(𝑘)) and 𝑆𝑀𝑆𝐸(�̂�) values increases as 𝑘 values increase. On the other hand, we 

say that 𝛽(𝑘) overhelms �̃�𝑚(𝑘) and �̂� when 𝑘 values are larger than 0.734. 
 

 
 
Theorem 2.1 condition is figured out as 14.4426 ≮ 1 for �̂�ℎ , hence �̂� has smaller MMSE values �̃�𝑚(�̂�ℎ). Theorem 

2.1 condition is figured out as 182.3097 ≮ 1 for �̂�ℎ, so �̂� has smaller MMSE values than �̃�𝑚(�̂�
ℎ). For �̂�𝐿𝑊 , 

Theorem 2.1 condition is calculated as 1.1424 × 10−5, since it is smaller than 1, �̃�𝑚(�̂�𝐿𝑊) has smaller MMSE 

values than �̂�. 
 
Theorem 2.2 condition is calculated as 5.2938 for �̂�ℎ; 1.0530 × 10+3 for �̂�ℎ, hence �̃�(�̂�ℎ) and �̃�(�̂�ℎ) have smaller 

MMSE values than �̃�𝑚(�̂�ℎ) and �̃�𝑚(�̂�
ℎ). For �̂�𝐿𝑊, Theorem 2.2 condition is found as 3.2170 × 10−12 which is 

smaller than 1, so �̃�𝑚(�̂�𝐿𝑊) has a good performance than than �̃�(�̂�𝐿𝑊) under MMSE criterion. 

 

For suitable 𝑘 values, it is seen that �̃�𝑚(𝑘) has a good performance (that is, �̃�𝑚(𝑘) has small MMSE and SMSE 

values) than �̂� and �̃�(𝑘). 
 
4. Conclusions 
 
In this article, the modified jackknifed ridge way is recommended in the linear mixed models. Then, the MMSE 
comparisons and several different methods for k are given. Finally, greenhouse gases data analysis is done to 
demonstrate theoretical findings. 
 
When the appropriate biasing parameter is used, this study is confirmed that the modified jackknifed ridge way 
guarantees smaller MSE than the jackknifed ridge way under multicollinearity. 
 
References 
 
[1] Laird, N. M., Ware, J. H. 1982. Random-Effects Models for Longitudinal Data. Biometrics, 38, 963–974. 

 
[2] Longford, N. T. 1993. Random Coefficient Models. Oxford University Press, New York. 



Mean Square Error Performance of the Modified Jackknifed Ridge Predictors in the Linear Mixed Models  

406 
 

[3] Harville, D. A. 1977. Maximum Likelihood Approaches to Variance Component Estimation and to Related 
Problems. Journal of the American Statistical Association, 72, 320-340. 
 

[4] Lindstrom, M. J., Bates, D. M. 1988. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for 
Repeated-Measures Data. Journal of the American Statistical Association, 83, 1014-1022. 

 

[5] Diggle, P. J., Liang, K-Y., Zeger, S. L. 1994. Analysis of Longitudinal Data. Oxford University Press, New York. 
 

[6] Gumedze, F. N., Dunne, T. T. 2011. Parameter Estimation and Inference in the Linear Mixed Model. Linear 
Algebra and Its Application, 435, 1920-1944. 

 

[7] Henderson, C. R. 1950. Estimation of Genetic Parameters (Abstract). Annals of Mathematical Statistics, 21, 
309–310. 

 

[8] Henderson, C. R., Kempthorne, O., Searle S. R., von Krosig, C. N. 1959. Estimation of Environmental and 
Genetic Trends from Records Subject to Culling. Biometrics, 15, 192-218. 

 

[9] Hoerl, A. E., Kennard, R. W. 1970. Ridge Regression Biased Estimation for Nonorthogonal Problems. 
Technometrics, 12, 55–67. 

 

[10] Singh, B., Chaubey, Y. P., Dwivedi, T. D. 1986. An Almost Unbiased Ridge Estimator. Sankhya, 48, 342–346. 
 

[11] Ohtani, K. 1986. On Small Sample Properties of the Almost Unbiased Generalized Ridge Estimator. 
Communications in Statistics -Theory and Methods, 15, 1571–1578. 

 

[12] Singh, B., Chaubey, Y. P. 1987. On Some Improved Ridge Estimators. Statistical Papers, 28, 53–67. 
 

[13] Nomura, B. 1988. On the Almost Unbiased Ridge Regression Estimator. Communications in Statistics - 
Simulation and Computation, 17, 729–743. 

 

[14] Nyquist, H. 1988. Applications of the Jackknifed Procedure in Ridge Regression. Computational Statistics & 
Data Analysis, 6, 177-183. 

 

[15] Gruber, M. H. J. 1998. Improving Efficiency by Shrinkage: the James–Stein and Ridge Regression Estimators. 
Marcell Dekker, New York. 

 

[16] Özkale, M. R. 2008. A Jackknifed Ridge Estimator in the Linear Regression Model with Heteroscedastic or 
Correlated Errors. Statistical Probability Letters, 78, 3159–3169. 

 

[17] Batah, F. S. M., Ramanathan, T. V., Gore, S. D. 2008. The Efficiency of Modified Jackknife and Ridge Type 
Regression Estimators: a Comparison. Surveys in Mathematics and its Applications, 3, 111–122. 

 

[18] Khurana, M., Chaubey, Y. P., Chandra, S. 2014. Jackknifing the Ridge Regression Estimator: a Revisit. 
Communications in Statistics -Theory and Methods, 43, 5249–5262. 

 

[19] Hu, H., Xia, Y. 2013. Jackknifed Liu Estimator in Linear Regression Models. Wuhan University Journal of 
Natural Sciences, 18, 331-336. 

 

[20] Wu, J. 2016. A Jackknifed Difference-Based Ridge Estimator in the Partial Linear Model with Correlated 
Errors. Statistics, 50, 1463-1375. 

 

[21] Turkan, S., Özel, G. 2016. A New Modified Jackknifed Estimator for the Poisson Regression Model. Journal of 
Applied Statistics, 46, 1892-1905. 

 

[22] Jiang, J., Lahiri, P., Wan, S. M. 2002. A Unified Jackknifed Theory for Empirical Best Prediction with M-
Estimation. Annals of Statistics, 30, 1782-1810. 

 

[23] Özkale, M. R., Arıcan, E. 2018. A First-Order Approximated Jackknifed Ridge Estimator in Binary Logistic 
Regression. Computional Statistics, doi:10.1007/s00180-018-0851-6. 

 

[24] Liu, X. Q., Hu, P. 2013. General Ridge Predictors in a Mixed Linear Model. Journal of Theoretical and Applied 
Statistics, 47, 363–378. 

 

[25] Özkale, M. R., Can, F. 2017. An Evaluation of Ridge Estimator in Linear Mixed Models: An Example from 
Kidney Failure Data. Journal of Applied Statistics, 44, 2251–2269. 

 

[26] Özkale, M. R., Özge, K. 2019. Adaptation of the Jackknifed Ridge Methods to the Linear Mixed Models. Journal 
of Statistical Computation and Simulation, 89, 3413–3452. 

 

[27] Yang, H., Ye, H., Xue, K. 2014. A Further Study of Predictions in Linear Mixed Models. Communications in 
Statistics -Theory and Methods, 43, 4241–4252. 

 



Mean Square Error Performance of the Modified Jackknifed Ridge Predictors in the Linear Mixed Models  

407 
 

[28] Pereira, L. N., Coelho, P. S. 2012. A Small Area Predictor under Area-Level Linear Mixed Models with 
Restrictions. Communications in Statistics -Theory and Methods, 41, 2524-2544. 

 

[29] Robinson, G. K. 1991. That BLUP is a Good Thing: the Estimation of Random Effects (with Discussion). 
Statistical Science, 6, 15-51. 

 

[30] Štulajter, F. 1997. Predictions in nonlinear regression models. Acta Math Univ Comenian, LXVI, 71–81. 
 

[31] Lawless, J. F., Wang, P. A. 1976. A Simulation Study of Ridge and Other Regression Estimators. 
Communications in Statistics -Theory and Methods, 5, 307-323. 

 

[32] Eurostat website, 2018. Greenhouse Gas Emissions by Source Sector (source: EEA, env_air_gge). Available at 
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge&lang=en. 

 

[33] Kass, R. E., Raftery, A. E. 1995. Bayes Factors.  Journal of the American Statistical Association, 90, 773-795. 
 
 


