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Özet— Video oyunu araştırması, karmaşık yöntemlerin ve algoritmaların geliştirildiği, sürekli değişmekte olan, dinamik 

bir alandır. Prosedürel içerik üretimi, kullanıcı tarafından oluşturulan parçaları video oyunu içeriğini otomatikleştirmek 

ve geliştirmek için algoritmalarla birleştirmeyi amaçlamakta ve bu yöntemlerin temelini oluşturmaktadır. Bununla 

birlikte, sonuçlar oyun mekaniğine ve oyunun oynanış biçimine değil, çoğunlukla oyun estetiğine yansımaktadır. Bu 

çalışmada, “tuval olarak oyun sahnesi” konsepti ile kullanıma hazır çarpıştırıcılar ve oyun estetiğini geliştiren, sanatsal 

açıdan farklı stiller kullanarak iki boyutlu oyun seviyesindeki bir görüntüyü basit bir prototip oyun geliştirme ortamına 

dönüştürebilen yöntem ve süreç sunulmaktadır. Bu amaçla, giriş oyun seviyesi görüntüsünün kenar ve renk bazlı 

özellikleri Canny kenar belirleme, basit doğrusal yinelemeli kümeleme ve Felzenszwalb segmentasyonu kullanılarak 

çıkarılmaktadır. Daha sonra, Unity oyun motoru, mekansal kontrol ile oyun seviyesinin stilinin aktarıldığı kenar ve renk 

özelliklerine göre çarpıştırıcılar oluşturmak için kullanılmaktadır. Farklı sinir stil transfer algoritmalarının sonuçları, 

Super Mario, Lode Runner ve Kid Icarus gibi oyunlar üzerinde karşılaştırılmakta ve tartışılmaktadır. Sonuçlar, bu 

çalışmanın oyun mekaniği ve oyun estetiğine odaklanarak iki boyutlu video oyunu geliştirmeyi kolaylaştırma 

potansiyeline sahip bir araç olduğunu göstermektedir. 

 

Anahtar Kelimeler— sinir stili aktarımı, görüntü işleme, oyun mekaniği, video oyunu. 

 

 

Automated Game Mechanics and Aesthetics Generation 

Using Neural Style Transfer in 2D Video Games 
 

Abstract— Video game research is an ever-changing and dynamic area where sophisticated methods and algorithms are 

being developed. Procedural content generation (PCG), which aims to merge user-generated assets with algorithms to 

automate and improve video game content, has been the core of this sophistication. However, the outcomes are primarily 

reflected in game aesthetics, not in the game mechanics and gameplay. In this study, we introduce the “game scene as a 

canvas” concept where simple prototype game development pipelines, that can convert a 2D game-level image into a 

game development environment with ready-to-use colliders and artistically different styles that enhance the game 

aesthetics, are introduced. To do so, edge-based and color-based features of the input game level image are extracted 

using the Canny edge detector, Simple Linear Iterative Clustering, and Felzenszwalb segmentation. The Unity game 

engine is then used to generate colliders based on the provided edge and color features where the game level is style 

transferred with spatial control. Results of different neural style transfer algorithms are presented on benchmark games 

such as Super Mario and Kid Icarus. Results show that this study can become a promising tool to simplify 2D video game 

development, focusing on game mechanics and aesthetics. 

 

Keywords— neural style transfer, image processing, game mechanics, video games. 

 

1. INTRODUCTION 

Recent developments in video game research are providing 

new experiences and challenges to game players. With the 

advancements of visualization, optimization, and 

automation algorithms, and with the help of the increase in 

computational power, the functionalities and the aesthetics 

of video games are getting more sophisticated and more 
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advanced [1-2]. The main objective of the games is to 

enable their players to enter the “flow” state where the 

skills of the player and the challenges provided by the game 

mostly match, causing a state where the player loses track 

of time [3]. To do so, the games should change, adapt, and 

create diverse, challenging, and entertaining experiences. 

Playing the same games over and over could become a 

repetitive experience in time if the game does not provide 

new levels, challenges, appearances, or user-centric 

adaptation. 

Procedural content generation (PCG) is the systematic 

automation of producing content merging user-generated 

sprites, audio, and visuals using algorithmic approaches in 

order to create enhanced, diverse and automatic content in 

a fast and transitive way [4]. Neural style transfer is one of 

the PCG approaches that create diverse artistic styles [5-

11] and get remarkable results, mainly in the image 

processing domain. Neural style transfer has become a 

highly researched topic in recent years due to deep learning 

practices [5,11]. So far, the neural style transfer 

experiments have been done to enhance the images’ 

aesthetic values, and there have been other approaches 

rather than only deep learning algorithms. 

Earlier works on non-parametric texture synthesis, such as 

[9], tried to address filling and scaling the images with 

different texture properties. The same approach was also 

used in [10], in which two images were merged to obtain a 

new styled image by overlapping and combining related 

and small patches of the images. Despite these attempts, 

deep learning has become the state-of-the-art approach in 

image generation, as most of the time, the deep models can 

learn the linear and non-linear relationships between their 

inputs and outputs automatically, which mainly eliminates 

the image pre-processing step. For instance, in [5], a 

convolutional neural network (CNN) was trained to extract 

content and style representations out of corresponding 

images, and these assets were used to create a new image, 

and the outcomes were successful. However, using CNNs 

may cause unnecessary and unrealistic distortions for 

accurate photo style transfer. One solution to this problem 

is to associate semantic labeling of the input and style 

images with maximizing the subregion mapping, as 

proposed in [6]. In [7], a different approach in which the 

foreground segmentation was combined with the neural 

style transfer was used. The main idea was to style only the 

user-specified object, which was done by first styling the 

whole image and then separately segmenting out the object 

to overlap the segmented and styled image further. 

Although deep neural network approaches seemed to 

perform relatively well, they are mostly trained with 

artistic style images, which may cause them to overfit to 

these kinds of styling operations inherently. When it comes 

to using the neural style transfer approach in video games, 

these models may struggle to perform as intended. Thus, a 

more generic neural style transfer model can be more 

useful for the video game domain. The model proposed in 

[8] can style any arbitrary content image with any style 

image by using an auto-encoder network architecture, 

followed by correlating the content and style images to 

produce a new image. This model also has the ability to 

style hand-crafted parts of the image individually with 

different style images. 

While PCG and neural style transfer can be used to create 

diverse content on image processing, audio signal 

processing, and text generation domains, generating game 

content by using machine learning models [12], which is 

called Procedural Content Generation via Machine 

Learning (PCGML), addresses mainly the video game 

research and introduces new types of experiences to 

gamers. PCGML uses the content within the game to 

change the effects of them, such as levels, characters, and 

maps, to name a few. PCGML [12] introduces 

groundbreaking developments such as generating game 

artifacts, auto-completion of missing game content, repair 

unplayable areas, recognize, analyze, and evaluate the 

game content. Snodgrass and Santiago Ontanon [13] used 

Markov Chains to map the game levels between different 

games while extracting a mapping on game tiles. They 

evaluated their outcomes with Super Mario Bros., Kid 

Kool, and Kid Icarus games. Guzdial and Riedl [14] 

applied the probabilistic models learned from the video 

gameplay and merged those models to create new game 

levels. They evaluated the outcome of their model with 

human participants. Gow and Corneli [15] also blended 

two games using Conceptual Blending on Video Game 

Description Language (VGDL) [16]. 

Although these attempts have begun to be used in video 

game research, to the best of the authors’ knowledge, 

neural style transfer has not been merged and adapted with 

game mechanics transfer yet. Summerville et al. [12] 

summarized this phenomenon as: “These approaches 

transfer and blend level styles, but do not attempt to 

address the game mechanics explicitly; both approaches 

ensure playable levels, but do not attempt transfer or 

blending between different mechanics.” Thus, transferring 

the style of well-known background images of the game 

levels and adding extra functionalities to the game objects 

could enhance the complexity and content of a game. 

In this study, we present forward and backward game 

development pipelines using neural style transfer and game 

mechanics transfer and showcase the outcomes of our 

proposed method on five benchmark video games. The 

following sections describe the steps of our methodology 

in detail, followed by the visual and quantitative results of 

our game mechanics and game aesthetics transfer. 

2. MATERIALS AND METHODS 

Our game mechanics and game aesthetics transfer 

architecture can be divided into three main sections: feature 

mask generation, neural style transfer, and game 

mechanics generation. This study applies these steps to two 

different game development pipelines —forward and 

backward pipelines, as can be seen in Figure 1 and Figure 

2— and provides a thorough analysis of five benchmark 

video games in terms of visual and quantitative outcomes. 
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2.1. Neural Style Transfer Pipelines 

2.1.1 Forward Pipelines 

In the forward pipeline, the game mechanics generation is 

done using the properties of the original level image. This 

generation includes three stages that are executed in the 

following order: mask generation, neural style transfer 

with region control, and game mechanics generation. The 

mask generation step is a series of operations that produces 

a binary bitmap —i.e., a mask— and the procedures are 

explained in Section 2.2. The style transfer uses this mask, 

the original level image, and two style images to produce a 

styled background image for the newly created game. The 

game mechanics generation part uses several features of 

the Unity game engine, which can produce colliders using 

the binary mask generated earlier and the styled 

background image. The details of this procedure are 

explained in the game mechanics generation section. The 

pipeline terminates by producing a new Unity project/game 

that contains a 2D game environment with new colliders 

and a styled background layer. 

2.1.2 Backward Pipelines 

The backward pipeline is different from the forward 

pipeline such that it first styles the input game level image, 

followed by the mask generation step. Thus, in this 

pipeline, the neural style transfer is not region controlled, 

so at the instance of styling the background, there is not 

any mask to indicate the regions to be styled using a 

different style image. The mask generation step uses the 

same algorithms that are used in the forward pipeline, but 

the input is styled as the background image. Furthermore, 

the mask and the styled image are put in the same 

operations in the Unity game engine and are used to create 

a new game environment with new colliders. 

2.2. Mask Generation 

2.2.1 Edge Based Mask Generation 

The mask generation [17] operation consists of using 

different image processing techniques, which extract a 

binary mask from an input game level image and process 

its edge features. The process starts with converting the 

input RGB image into grayscale, which is in a single 

channel form. Then, the image goes through a 

morphological dilation operation with a disk kernel. This 

operation highlights the boundaries of the color changes, 

and it helps the edge detection step. In the absence of this 

operation, it becomes difficult to detect the edges of the 

image. 

The Canny edge detection algorithm is a commonly used 

edge detection algorithm, and the mask generation pipeline 

also uses this algorithm to find the edges of the features 

[18]. Since the dilation operation creates sharp changes of 

grayscale colors, it equivalently adds sharper changes 

across the image, and Canny edge detection searches for 

higher changes between the pixel values. This algorithm 

creates a binary image with the detected edges indicated by 

the value one. This binary image is then used for contour 

detection to find the groups of 1-valued pixels. The contour 

detection algorithm used is described in [18], and it also 

finds the bundles that can be completed even though a 

bundle does not exactly describe a shape. To complete 

these contours, each line of these contours is thickened to 

form near-perfect shapes. Then, block-based connected 

component labeling with 8-neighbors is applied. The 

contour size is calculated based on the average number of 

pixels of a contour. The contours that have a smaller 

number of pixels than the average are eliminated. The 

output of this step is the generated mask, which will be 

used in the following steps of the pipeline. 

2.2.2 Color-Based Mask Generation 

The pipelines also generate mask images out of the color 

images based on the floating-point RGB values. Colors 

provide defined spatial properties of the image, which 

makes it a reliable index to determine the locations to pick 

the color values. Superpixels are groups of pixels that can 

be considered as one large chunk of space. This operation 

can be classified as a clustering operation that can be used 

in unsupervised segmentation practices. The two effective 

and easy-to-use segmentation algorithms —Simple Linear 

Iterative Clustering (SLIC) and Felzenszwalb— are used 

to detect the groups of pixels that have the same 

characteristics. 

2.3. Segmentation 

2.3.1 SLIC Segmentation 

In this study, in order to segment the parts of the color-

based pipelines, the SLIC algorithm [19,20] was chosen. 

SLIC uses the principle of the k-means clustering 

algorithm, which groups the data according to their 

similarity in content and their positions on the respective 

space. This algorithm requires a parameter to be chosen, 

mostly heuristically, that indicates the number of clusters 

to be formed on the image. However, the output may not 

always give the exact number of the parameterized cluster 

number in practice. As mentioned earlier, these clusters are 

mostly called superpixels as the ensemble of the groups of 

pixels creates a meaningful image. 

In this study, a threshold is applied to the output of SLIC 

first. However, assigning a metric as a threshold and 

choosing a respective threshold value are rather difficult 

tasks as the numerical data of the contents of the 

superpixels are unreliable and unpredictable. On the other 

hand, in this study, after several iterations on the 

segmented images using SLIC, the regions with a higher 

number of color value changes are seen to contain 

important spatial features in the 2D video games. A metric 

that can be used to detect the amount of change inside the 
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clusters is the variance of the RGB values of the member  

pixels. Therefore, the separated variances of the three-color 

channels were averaged and saved. 

Then, a threshold is applied to the mean variances of each 

superpixel. Then, the mean-variance values are then sorted, 

followed by a threshold operation. This process is 

parameterized with the elimination rate, indicating the 

index inside the unique values of the mean variances. The 

value corresponding to this index determines the 

superpixel that will be labeled as one, which indicates the 

presence of a collider on the pixels of this superpixel. This 

selection is made by comparing the mean-variance value of 

the superpixel —if the value is smaller than the threshold 

value, the pixels are labeled as zero and otherwise labeled 

as one. The binary mask is then generated based on the 

labels of the pixels. 

2.3.2 Felzenszwalb Segmentation 

The second segmentation algorithm used is Felzenszwalb 

[21], which is a graph-based approach that uses the color 

properties of the image. The procedure of generating a 

mask out of the segmentation of the input image is 

precisely the same as the SLIC segmentation; however, 

several parameters such as the minimum number of pixels 

that a segment can possess or the size of the Gaussian 

kernel are different. The rest of the pipeline is the same as 

the previous segmentation procedure. 

2.4. Neural Style Transfer 

The neural style transfer step is either done before or after 

the mask generation step. In such cases, the usage of the 

neural style transfer model changes drastically. The neural 

style transfer in this architecture is done via the 

implementation of [8], which is an auto-encoder that can 

transfer the style properties of one image to another to 

finally obtain a visually pleasant image (Figure 3, Table 1). 

The idea of this study is thoroughly based on the transfer 

of an aesthetically pleasing style transfer into the 2D video 

game domain. Therefore, in this case, the input content 

image, which is the commonly used term for the image to 

be styled, is a 2D game level image. Besides, the game 

objects can have distinctive appearances from which the 

player can understand that object’s functionality. The base 

style transfer implementation also can have spatial control 

over the stylization process; in other words, the model can 

style indicated locations of the content image with a new 

style image, different from the original one. The spatial 

                Figure 2. Backward color pipeline 

 

 

Figure 1. Forward edge pipeline 
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control is done via the indication of the locations to be 

styled differently with a bitmap with the same size as the 

content image that has value one on the pixels that are 

preferred to be styled differently. 

 
 

Figure 3. At each iteration, a different (less deep) pair of 

encoder and decoder is used and the procedure is done for 

five iterations (Adapted from Li et al. [8]) 

Table 1. The training procedure’s hyperparameters and 

the total reconstruction loss function and common 

qualities between different layers of encoder and 

decoder networks 
Parameter Value 

Optimizer Adam 

Learning rate 1e-4 
Learning rate decay 5e-5 

Beta1 0.9 

Beta2 0.999 
Maximum iteration 16000 

Convolution kernel size 3x3 

Convolution kernel number Either 64, 128, 256 or 512, 
depending on the encoding and 

decoding layer 

Padding Reflection, 1 pixel in each side 
Pooling in encoders Maximum 

Pooling window in encoders 2x2 

Pooling stride in encoders 2x2 

Activation function ReLU 

Upsampling in decoders Nearest with a scaling factor of 

2 

Pixel reconstruction loss weight 1 

Feature loss weight 1 

As mentioned earlier, the styling step can be done on 

different timestamps, depending on the main pipeline. In 

the forward pipeline, the mask generation is done based on 

the content image before the style transfer step. Note that 

the output of the step before the neural style transfer step is 

a bitmap, which contains the information of the desired 

spatial control behavior. Neural style transfer with spatial 

control requires four inputs; the content image, the main 

style image, the mask style image, and the mask —which 

is a bitmap image. The resultant image contains different 

kinds of styles depending on the input mask. However, in 

the backward pipeline, the mask generation is done after 

the neural style transfer. In this pipeline, the neural style 

transfer works without spatial control as the mask is 

generated based on the styled image itself. Ultimately, the 

goal is to compare the results of the output of the pipelines 

when the mask is generated based on the original content 

image or the styled content image. 

 
1 Internet: Texture, Stone Walls - Image Source: 

https://www.sketchuptextureclub.com/textures/architectur

e/stones-walls/claddings-stone/exterior/wall-cladding-

stone-texture-seamless-19009, 24.07.2020. 

The images in Figure 4 (stone texture1 and Marsden 

Hartley’s Abstraction2) were used as the style images since 

they have the aesthetic features and the addition of a third 

dimension in the transfer. 

 

2.5. Collider Generation 

The last part of either of the pipelines is the collider 

generation, where the mask generated from the prior steps 

is put under several simple steps that result in obtaining a 

game sprite having colliders in appropriate locations so that 

the game objects become interactable. For this step, the 

study counts on several features that the Unity game engine 

[22] provides. The Unity game engine has the feature to 

generate several triangular colliders out of binary masks 

and requires a certain amount of tolerance [23] in terms of 

the difference between the collider places indicated in the 

mask and the generated colliders. For this experiment, the 

tolerance was kept as low as possible to obtain a collider 

map that matches the styled background components. 

At this point, even though the colliders are ready to be 

played on, the game requires a background whose visual 

features overlap with the generated collider map [24]. It is 

a rather simple step as the Unity game engine only requires 

the styled background image to be imported and used as a 

sprite and to be located behind the colliders. However, it is 

relatively difficult to place the sprites on the specific 

positions of the game space. A simple solution to this 

problem is to put both the collider map and the background 

style image on the origin of the game scene, but both the 

background image and the collider map must match exactly 

in terms of the pixel placements; otherwise, the game might 

become unplayable. For instance, without any adjustment, 

the player may be placed on a certain location that does not 

have any visual features, such as a box that can be stepped 

on; however, because of the lack of scaling on the collider 

map, there can be a collider that should not be present. For 

this issue, the metric of the scaling is taken as the pixel per 

unit parameter that is defined while the background image 

2 Internet: Marsden Hartley’s Abstraction - Image Source: 

https://commons.wikimedia.org/wiki/File:Marsden_Hartl

ey_-_Abstraction_-_Google_Art_Project.jpg, 24.07.2020. 

Figure 4. From left to right: (a) Mask style image, and (b) 

main style image 

 

 

https://www.sketchuptextureclub.com/textures/architecture/stones-walls/claddings-stone/exterior/wall-cladding-stone-texture-seamless-19009
https://www.sketchuptextureclub.com/textures/architecture/stones-walls/claddings-stone/exterior/wall-cladding-stone-texture-seamless-19009
https://www.sketchuptextureclub.com/textures/architecture/stones-walls/claddings-stone/exterior/wall-cladding-stone-texture-seamless-19009
https://commons.wikimedia.org/wiki/File:Marsden_Hartley_-_Abstraction_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Marsden_Hartley_-_Abstraction_-_Google_Art_Project.jpg
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and the bitmap are imported into the Unity game project. 

When the heights and widths of both assets are inherently 

equal to each other, and if both assets are imported with 

one game unit that corresponds to the same number of 

pixels per unit parameter, their overlap will ultimately 

result in complete overlaps; thus, the desired outcome will 

be achieved. 

3. RESULTS AND DISCUSSION 

In this section, visual and quantitative outputs from the 

previous steps will be given and interpreted individually. 

The benchmark games Super Mario Bros, Super Mario 

Kart, Rainbow Islands, Lode Runner, and Kid Icarus [25] 

were used to demonstrate the results. The games do not 

contain any 3D assets and complex visual features. In the 

examples, an abstract tone has been intentionally given to 

the well-known benchmark games to highlight the neural 

style transfer’s potential in enhancing the game aesthetics. 

A more realistic output could have been possible by 

changing the hyperparameters and the number of 

iterations. 

3.1. Edge Pipeline Results 

In theory, edge-based features were expected to provide 

usable results. The human eye can, in fact, differentiate the 

game objects and possible colliders only by looking at the 

image constituted by only the edges. Figure 5c is an 

example of such an image; the human eye can imagine the 

possible appearance and shape of the colliders only by 

looking at that field. 

The steps of the forward edge pipeline produce the fields 

that are shown in Figure 5. The dilation has some 

remarkable effects on the performance of the Canny edge 

detector, as the output of this step is able to give reliable 

clues about the way the colliders will be put in the later 

steps. The noise elimination process, which is the 

connected component thresholding step, did, in fact, 

eliminate the small chunks of the objects, which can create 

a smoother and better gaming experience on the map. In 

the last step, the Unity game engine generated a sprite that 

contains the colliders that the image processing steps have 

created. The collider generation is done via approximating 

the polygons that can be put on the binary image, and for 

this particular pipeline, the polygons have meaningful 

scales and positions. As mentioned earlier, the tolerance of 

not covering the features indicated in the mask was set to 

be low; therefore, the approximations tend to become more 

complex yet more accurate. On the other side, the 

backward edge pipeline, whose outputs are given in Figure 

6, seems to have more noisy outputs in the intermediate 

steps. In the case of Figure 6b, and possibly in any case of 

styling with a different style image pair, the level image 

gains some 3D effects, such as subtle color gradient 

changes and alpha effects. The later steps then tend to 

struggle remarkably in detecting the image features. The 

colliders have also become more complex as the features 

tend not to have trivial shapes. 

3.2. Color Pipeline Results 

The overall performance of the color pipeline varies due to 

the pipelines preferred. In the forward pipeline with the 

SLIC algorithm having 1000 segments as in Figure 7, the 

separations seem to be well distributed. The segments are 

meaningful in terms of their contents and their 

neighborhood. When it comes to the elimination of the 

redundant segments, which mostly correspond to the 

background of the level image, the variance-based 

thresholding results in eliminating several unimportant 

parts that do not signify meaningful and potential game 

mechanics. Most of the segments have rectangular areas 

that decrease the complexity and make the game sprites not 

overlap completely with the game mechanics. On the other 

hand, the fact that the segments have low shape 

complexities creates an easier environment for the Unity 

game engine to fit the polygons. The polygons on the 

output are very close to the input mask. However, in some 

places, the collider generator connects and covers multiple 

segments to create a single polygon, which produces 

inaccurate outcomes. The backward pipeline using SLIC, 

which can be seen in Figure 8, has some major 

inaccuracies. 

The style added before the segmentation process adds some 

complexity, better yet, a slight dimensionality, which 

affects the segmentation process. Besides, the variance-

based thresholding seems to fail as the gradient on the 

image added by the styling step makes the variances 

distribute too evenly throughout the segments. After this 

point, the collider generation is seen to work poorly 

because it is too difficult to fit the polygons inside the 

selected regions. 

In Figure 9, Felzenszwalb segmentation seems to separate 

the segments better than the SLIC algorithm since not 

every segment requires to have similar color properties. 

For instance, the sky in the game level is taken as a single 

segment, which simplifies the thresholding process. 

However, it is seen that some of the large objects are 

dropped out during the thresholding process, such as the 

green pipes. The collider generation step is also more 

effective in terms of the precision of the edges of the 

colliders. The backward pipeline in Figure 10 performs in 

a different way —the segments are not as well-defined as 

the forward pipeline. However, looking at the overall mask 

generated from the variance-based thresholding, the result 

is well-organized and well put together, apart from some 

cases where the clouds are too close to the platforms. The 

output of the collider generation shows that the estimated 

polygons seem to fit well to create an overall playable map 

(Figure 10 and Figure 11). Figure 12, Figure 13, and Figure 

14 demonstrate the end-to-end pipeline outcomes of the 

games Rainbow Islands, Lode Runner, and Kid Icarus, 

respectively. 
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Figure 5. Results of the forward edge pipeline, from top to bottom, intermediate results: (a) Mario game content image, 

(b) Grayscale dilation, (c) Canny edge detector, (d) Contours, (e) Thickened contours, (f) Connected components, (g) 

Create feature mask, and (h) Collider generation 

Figure 6. Results of the backward edge pipeline, from top to bottom, intermediate results: (a) Mario game content 

image, (b) Style transferred image, (c) Grayscale dilation, (d) Canny edge detector, (e) Contours, (f) Thickened 

contours, (g) Connected components, (h) Create feature mask, and (i) Collider generation 
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Figure 7. Results of the forward SLIC pipeline, five iterations, from top to bottom, intermediate results: (a) Mario game 

content image, (b) SLIC segmentation, (c) Mask generation, (d) Style transferred image, and (e) Collider generation 

Figure 8. Results of the backward SLIC pipeline, five iterations, from top to bottom, intermediate results: (a) Mario 

game content image, (b) Style transfer, (c) SLIC segmentation, (d) Mask generation, and (e) Collider generation 

Figure 9. Results of the forward Felzenszwalb pipeline, five iterations, from top to bottom, intermediate results: (a) 

Mario game content image, (b) Felzenszwalb segmentation, (c) Mask generation, (d) Style transferred image, and (e) 

Collider generation 
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Figure 11. From left to right, one iteration: (a) Original Mario Kart game level image, (b) Output of the mask 

generation with the forward edge pipeline, and (c) Colliders generated by the Unity game engine 

Figure 10. Results of the backward Felzenszwalb pipeline, five iterations, from top to bottom, intermediate results: (a) 

Mario game content image, (b) Style transferred image, (c) Felzenszwalb segmentation, (d) Mask generation, and (e) 

Collider generation 

Figure 12. From left to right, four iterations: (a) Original of Rainbow Islands, (b) Output of the mask generation with 

the forward Felzenszwalb pipeline, and (c) Styled game level image 
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Figure 13. From top to bottom, left to right, three iterations: (a) Original level image of Lode Runner, (b) Binary mask 

generated with forward the SLIC pipeline, and (c) Styled game level image 

Figure 14. From left to right, two iterations: (a) Original game level of Kid Icarus, (b) Binary mask generated with 

forward Felzenszwalb pipeline, and (c) Styled game level image 
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3.3. Quantitative Results 

The outputs of the pipelines differ drastically based on the 

game they were run with. On the visual outputs, the 

colliders are the most informative pieces of data in terms 

of the overall performances of the pipelines and their game 

mechanics generation processes. On the other hand, the 

colliders are generated based on the outputs of the 

pipelines, which are the binary masks and the components 

inside them. Each pipeline was run to obtain the collider 

coverage, the connected component number, the path sizes, 

and the RAM usages of the final game. 

The collider coverage can be defined as the percentage of 

the pixels that are generated to be a collider over the 

complete game level image. In Table 1, it is possible to see 

the collider coverage values of each iteration of pipelines 

on five games. The collider coverage values deviate across 

the pipelines within a range between 7.34 and 15.55, which 

is a relatively small difference in the context of video 

games considering their versatility in visual features. This 

situation can also imply that one can have some accurate 

predictions about the incoming collider coverage by 

looking at the visual features of the raw level image before 

the game mechanics generation is applied. Conversely, the 

average collider coverage percentages vary drastically, 

such that they are spread between 19.6 and 66.4 —i.e., a 

difference of 46.4. This implies the fact that the collider 

coverage is highly dependent on the visual features and is 

not a normalized metric across the pipelines. Backward 

SLIC pipeline produced extreme situations as the 

coverages vary between 57 and 78%, which are very high 

percentages, and in such maps, a player can struggle to find 

the places to move around. Another intermediate metric is 

the number of connected components in the generated 

mask. Although the final number of colliders can give more 

information about the overall performance of the pipelines, 

we are using the number of the connected components 

because the Unity game engine treats the colliders inside a 

collider map as a single collider, which does not signify 

any information. However, the collider generation is 

essentially fitting some polygons inside the given mask to 

highlight the parts to be filled (Figure 11). Thus, combining 

the collider coverage along with the number of connected 

components can give a good estimation of the overall 

performance. For instance, Figure 11b signifies the output 

of the game mechanics generation process with the forward 

edge pipeline applied on a level image of Mario Kart.  

The collider coverage of this image with the forward edge 

pipeline is 32%, and the number of components is one, 

according to Table 1. This single map is converted into a 

collider map, which can be seen in Figure 10c. Therefore, 

a single large component is converted into a high number 

of colliders in the Unity environment. Connected 

component values are directly related to the image features 

that are relatively far from each other such that they are not 

clustered together or connected during the dilation process. 

According to the standard deviation values of the 

connected component numbers for different pipelines in 

Table 2, there can be some extreme situations, such as a 

component occupying 78% of the image or a component 

occupying 0.25%. Again, the backward SLIC pipeline has 

some high results where the colliders occupy a great 

portion of the whole image, and the number of components 

varies between 1 and 11. Thus, each component occupies 

bigger portions of the map rather than the components of 

the other outputs of the pipelines. 

In Table 3, the results of the path size and the RAM usage 

of the five games according to different pipelines are 

presented. Game pipeline-based evaluation is meaningful 

since the path sizes are found according to each pipeline’s 

binary masks. The path size signifies the number of 

significant colliders generated by the Unity game engine. 

Each significant collider has smaller regions located inside 

them; therefore, a smaller path size can signify a less 

complex collider graph. For instance, if the mask generated 

from any pipeline possesses a connected component that 

has a high density, it is likely that a single large polygon 

can be fit into that component, thus reducing the number of 

polygons to be generated in order to cover each component. 

Therefore, it is possible that there is an inverse correlation 

between the amount of space each component occupies and 

the path size. The backward SLIC pipeline produced high-

density components, as can be seen in Table 2, and the path 

size of this pipeline is the smallest of all the outputs, as can 

be seen in Table 3. 

On RAM usage of the generated games, the expectation 

would be in the way that a denser collider map, which is 

directly related to the collider coverage, would use more 

memory. However, such a correlation is not present in the 

results shown in Table 2 and Table 3. On the other hand, 

memory usage seems to be related to the area of the map, 

which is valid in theory, as in the simplest terms, the more 

the size of the area means more data to keep in RAM. 

Therefore, the memory usage is more correlated with the 

dimensions of the game level image, regardless of the 

pipeline, given that the segments are overlapped 

completely in terms of their shapes. 

The collider generation step is also more effective in terms 

of the precision of the edges of the colliders. The backward 

pipeline in Figure 10 performs in a different way; the 

segments are not as well-defined as the forward pipeline. 

However, looking at the overall mask generated from the 

variance-based thresholding, the result is well-organized 

and well put together, apart from some cases, for instance, 

the places where the clouds are too close to the platforms. 

The output of the collider generation is also unusual 

because the estimated polygons seem to fit well in order to 

create an overall playable map. It is not easy to come to a 

conclusion on the superiority of either of the pipelines, as 

there are cases where they perform better or worse. 

However, because styling an image creates new 

dimensions and breaks the 2D properties of the games, 

backward pipelines tend to create unstable colliders. 

Although it can be argued that having unexpected colliders 

on the map can have some ways of entertainment, it is 

likely to be frustrating for the players as well. 
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Particularly, in the backward edge pipeline, most of the 

edges are, in fact, detected, but their thickened versions and 

their passes from the thresholding based on the pixel 

numbers create unpleasing results; however, the places that 

are kept fit on the collider space in a nice way. In the 

backward color pipelines, the qualities of the outputs vary. 

For instance, in the Felzenszwalb backward pipeline 

(Figure 6e), the colliders on the left side of the level image 

are as expected, but the ones on the right side are not 

playable. Overall, it can be concluded that the generation 

of the collider bitmap before the stylization process is a 

more reliable way of processing the level image. 

The outcomes of the segmentation types also differ given 

that both color- and edge-based segmentation have flawed 

parts, which is understandable considering the fact that the 

game levels have varying parts with shapes and colors in  

 

it. Edge-based segmentation seems to be accurate in terms 

of the positions and shapes of the objects. However, the 

colliders seem to be larger than they should be because of 

the thickening process, which is a necessary procedure for 

connected components. Color-based segmentation does 

not have such a problem as the extracted segments are used 

as they are. However, because the elimination is done via 

the variances, the output of this thresholding process may 

not always give the desired output since it can eliminate the 

segments that could be meaningful when overlapped with 

the colliders. 

4. CONCLUSION 

Video game research has become a highly active research 

field where the steps on the simplification and automation 

Table 3.  Path sizes and RAM usages of the generated games 

Generated 

Games and 

Their 

Performance 

Outcomes 

Game Mechanics Generation Pipelines 

Level 
Image 

Width 

(pixels) 

Level 
Image 

Height 

(pixels) 

Forward Edge 
Backward 

Edge 
Forward 

SLIC 
Backward 

SLIC 
Forward  

Felzenszwalb 
Backward  

Felzenszwalb 

Path 

Size 

RAM 

(MB) 

Path 

Size 

RAM 

(MB) 

Path 

Size 

RAM 

(MB) 

Path 

Size 

RAM 

(MB) 

Path 

Size 

RAM 

(MB) 

Path 

Size 

RAM 

(MB) 

Super Mario 3232 208 24 495 31 502 34 507 12 509 151 518 66 512 

Super Mario 

Kart 
1024 1024 97 541 134 495 58 558 52 559 40 561 90 518 

Rainbow 

Islands 
297 1404 17 562 212 572 27 573 29 579 113 566 128 586 

Lode Runner 275 214 21 587 48 585 16 594 22 594 5 598 13 604 

Kid Icarus 256 2780 52 603 156 603 33 613 28 611 105 613 100 617 

Std. Dev. 1144.9 948.5 30.1 37.8 67.8 44.4 13.8 36.2 13.2 35.2 52.8 33 38.7 43.9 

Mean 1016.8 1126 42.2 557.6 116.2 551.4 33.6 569 28.6 570.4 82.8 571.2 79.4 567.4 

Table 2. Collider coverages and connected component counts 

Generated 

Games 

and Their 

Mechanics 

Game Mechanics Generation Pipelines 

Forward Edge Backward Edge Forward SLIC Backward SLIC 
Forward  

Felzenszwalb 

Backward  

Felzenszwalb 

Collider 
Coverage 

(%) 

Number of 
Connected 

Components 

Collider 
Cov. 

(%) 

Conn. 
Comp. 

Count 

Collider 
Cov. 

(%) 

Conn. 
Comp. 

Count 

Collider 
Cov. 

(%) 

Conn. 
Comp. 

Count 

Collider 
Cov. 

(%) 

Conn. 
Comp. 

Count 

Collider 
Cov. 

(%) 

Conn. 
Comp. 

Count 

Super Mario 14 10 14 3 34 30 59 6 17 33 22 30 

Super Mario 

Kart 
32 1 23 3 79 2 78 1 19 49 56 61 

Rainbow 

Islands 
6 3 35 11 62 14 77 8 37 76 40 59 

Lode Runner 27 1 34 1 43 12 57 3 30 4 50 2 

Kid Icarus 19 53 22 20 54 19 61 11 24 95 32 60 

Std. Dev. 9.2 20 8 7.1 15.6 9.2 9.2 3.5 7.3 31.9 12.2 23.3 

Mean 19.6 13.6 25.6 7.6 54.4 15.4 66.4 5.8 25.4 51.4 40 42.4 
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of the game development processes —i.e., procedural 

content generation— had a huge impact. This study has 

been a first attempt on merging the neural style transfer and 

game mechanics generation in a single game development 

pipeline. Even with some of the most basic edge detection 

and segmentation algorithms and the use of already 

available collider tools, it is shown that video game 

automatization could be possible, and our study provides a 

fast, effective and enhanced game mechanics generation 

approach. Thus, this study underlines the potential usage, 

feasibility, and effectiveness of the neural style transfer 

with a focus on game mechanics generation. 

This study has been a prototype in the field of neural style 

and game mechanics transfer, and there are methods and 

techniques yet to be tried or discovered to elaborate this 

proposed game generation pipeline forward. In this case, 

for the game mechanics generation part, only some of the 

most basic yet effective image processing methods were 

used; however, deep learning methods are also suitable for 

such practices, for instance, generative models [26]. They 

can also be more adaptable to the unseen types of scenes as 

in versatile domains such as video games, and non-linear 

relationships are likely to represent their generic properties 

rather than a series of image processing techniques. 

Although the authors have tested the updated games 

intensively, future work will focus on the playability and 

usability of the games by a diverse group of participants. 

These tests will include the well-known benchmark games 

that were introduced in this study as well as the authors’ 

unique games that will be enhanced with the current 

study’s algorithmic approach. 

Another case that can be improved using generative models 

is the complex game mechanics generation. In this study, 

the addition of basic colliders has been the most suitable 

solution in terms of game mechanics generation. However, 

2D games can have different types of game mechanics, 

such as rotation, tilt, and move. In future studies, new 

models can also be trained in order to produce more 

complex game mechanics. 
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