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Abstract
In this paper, we present generalized Pólya-Szegö type inequalities for positive invertible
operators on a Hilbert space for arbitrary operator means between the arithmetic and
the harmonic means. As applications, we present operator Grüss, Diaz–Metcalf, and
Klamkin–McLenaghan inequalities.
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1. Introduction
Let Φ be a positive linear map on B (H); the algebra of all bounded linear operators on

a Hilbert space H. Ando [1] proved the inequality

Φ (A♯B) ≤ Φ (A) ♯Φ (B) , (1.1)

for any positive linear map Φ and positive operators A, B, where “♯” is the geometric mean
in the sense of Kubo-Ando theory [11]. That is,

A♯B = A
1
2
(
A− 1

2 BA− 1
2
) 1

2 A
1
2 .

Speaking of means, the arithmetic mean A∇B and the harmonic mean A!B of two invert-
ible positive operators A, B ∈ B(H) are defined, respectively, by

A∇B = A + B

2
and A!B =

(
A−1 + B−1

2

)−1

.

It is well-known that A!B ≤ A♯B ≤ A∇B. In fact, if σ is a symmetric operator mean
(in the sense that AσB = BσA), then A!B ≤ AσB ≤ A∇B, for the invertible positive
operators A, B ∈ B(H).

The operator Pólya-Szegö inequality presents a converse of Ando’s inequality (1.1), as
follows.
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Theorem 1.1. Let Φ be a positive linear map and A, B ∈ B (H) be such that mI ≤
A, B ≤ MI for some scalars 0 < m < M (I stands for the identity operator). Then

Φ (A) ♯Φ (B) ≤ M + m

2
√

Mm
Φ (A♯B) . (1.2)

The inequality (1.2) was first proved in [12, Theorem 4] under the sandwich condition
sA ≤ B ≤ tA (0 < s ≤ t) for matrices (see also [3]).

Recall that a continuous real-valued function f defined on an interval J is said to be
operator monotone if A ≤ B implies f (A) ≤ f (B) for all self-adjoint operators A, B with
spectra in J . Very recently, Dinh et al. [10, Theorem 2.12] proved the following converse
of (1.1) that extends (1.2).

Theorem 1.2. Let Φ be a positive linear map, f be an operator monotone function on
[0, ∞), τ, σ operator means such that ! ≤ τ, σ ≤ ∇, and 0 < m < M . Then for any positive
operators A, B satisfying mI ≤ A, B ≤ MI, the following inequality holds

f (Φ (A)) τf (Φ (B)) ≤ (M + m)2

4Mm
f (Φ (AσB)) . (1.3)

The first target of this article is to present a generalized form of Pólya-Szegö inequality.
In particular, we present relations between

Φ (f (A)) τΦ (f (B)) and Φ (f (AσB))
under the sandwich condition sA ≤ B ≤ tA, for the operator monotone function f and the
symmetric operator means σ, τ . Similar discussion will be presented for operator monotone
decreasing functions. See Theorem 2.4 below for the exact statements. We refer the reader
to the recent references [6, 8] treating similar topics.

2. Main results
In this section we present relations between

Φ (f (A)) τΦ (f (B)) and Φ (f (AσB))
as generalized forms of Pólya-Szegö inequality. Then we show some applications including
Grüss, Diaz–Metcalf, and Klamkin–McLenaghan type inequalities.

The first main result in this direction will be presented in Theorem 2.4 below. However,
we will need some lemmas first.

Lemma 2.1. Let A, B ∈ B (H) such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t.
(a) If st ≥ 1, then

2
√

s +
√

t
A∇B ≤ A♯B ≤

√
s +

√
t

2
A!B. (2.1)

(b) If st ≤ 1, then
2
√

st
√

s +
√

t
A∇B ≤ A♯B ≤

√
s +

√
t

2
√

st
A!B. (2.2)

Proof. By appealing to functional calculus, it suffices to show the corresponding scalar
inequalities. We define f (x) := x+1

2
√

x
where 0 < s ≤ x ≤ t. It is straightforward to see that

f (x) ≤ 1
2

max
{√

s + 1√
s

,
√

t + 1√
t

}
.

Consequently,
x + 1

2
≤


√

s+
√

t
2

√
x if st ≥ 1,√

s+
√

t

2
√

st

√
x if st ≤ 1,

(2.3)
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for 0 < s ≤ x ≤ t, and

1/x + 1
2

≤


√

s+
√

t
2

1√
x

if st ≥ 1,
√

s+
√

t

2
√

st
1√
x

if st ≤ 1,
(2.4)

for 0 < 1
t ≤ 1

x ≤ 1
s . Now, if 0 < s ≤ x ≤ t, the inequalities (2.3) and (2.4) imply

2
√

s +
√

t

(
x + 1

2

)
≤

√
x ≤

√
s +

√
t

2

(1/x + 1
2

)−1

whenever st ≥ 1, and

2
√

st
√

s +
√

t

(
x + 1

2

)
≤

√
x ≤

√
s +

√
t

2
√

st

(1/x + 1
2

)−1

whenever st ≤ 1. This completes the proof of the lemma. �

Remark 2.2. The substitution of s = m
M and t = M

m in Lemma 2.1 implies the celebrated
result [5, Theorem 13]

2
√

Mm

M + m
A∇B ≤ A♯B ≤ M + m

2
√

Mm
A!B.

The next elementary lemma is given for completeness.

Lemma 2.3. Let α ≥ 1.
(a) If f : [0, ∞) → [0, ∞) is an operator monotone function, then

f (αt) ≤ αf (t) .

(b) If g : [0, ∞) → [0, ∞) is an operator monotone decreasing function, then

g (αt) ≥ 1
α

g (t) .

Now we are ready to prove the first main result,.

Theorem 2.4. Let Φ be a positive linear map, τ, σ operator means such that ! ≤ τ, σ ≤ ∇,
and let A, B ∈ B (H) such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t.

(i) If f is an operator monotone increasing function on [0, ∞), then

Φ (f (A)) τΦ (f (B)) ≤
(√

s +
√

t

2

)2

Φ (f (AσB)) (2.5)

whenever st ≥ 1, and

Φ (f (A)) τΦ (f (B)) ≤
(√

s +
√

t

2
√

st

)2

Φ (f (AσB))

whenever st ≤ 1.
(ii) If g is an operator monotone decreasing function on [0, ∞), then

Φ (g (AτB)) ≤
(√

s +
√

t

2

)2

Φ (g (A)) σΦ (g (B)) (2.6)

whenever st ≥ 1, and

Φ (g (AτB)) ≤
(√

s +
√

t

2
√

st

)2

(Φ (g (A)) σΦ (g (B)))

whenever st ≤ 1.
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Proof. First assume that st ≥ 1. We observe that
Φ (f (A)) τΦ (f (B)) ≤ Φ (f (A)) ∇Φ (f (B)) (since τ ≤ ∇)

= Φ (f (A) ∇f (B))
≤ Φ (f (A∇B)) (by [13, Corollary 1.12])

≤ Φ
(

f

((√
s +

√
t

2

)
A♯B

))
(by (2.1))

≤
√

s +
√

t

2
Φ (f (A♯B)) (by Lemma 2.3 (a)).

On the other hand,

Φ (f (A♯B)) ≤ Φ
(

f

((√
s +

√
t

2

)
A!B

))
(by RHS of (2.1))

≤
√

s +
√

t

2
Φ (f (A!B)) (by Lemma 2.3 (a))

≤
√

s +
√

t

2
Φ (f (AσB)) (since ! ≤ σ).

(2.7)

These two inequalities together imply (2.5). This completes the proof of the case of oper-
ator monotone functions and st ≥ 1.

Now assume that g is operator monotone decreasing. We have
g (A) σg (B) ≥ g (A∇B) (by [2, Theorem 2.1])

≥ g

((√
s +

√
t

2

)
A♯B

)
(by of (2.1))

≥ 2
√

s +
√

t
g (A♯B) (by Lemma 2.3 (b)).

(2.8)

On the other hand,

g (A♯B) ≥ g

((√
s +

√
t

2

)
A!B

)
(by (2.1))

≥ 2
√

s +
√

t
g (A!B) (by Lemma 2.3 (b))

≥ 2
√

s +
√

t
g (AτB) (since ! ≤ τ).

(2.9)

Combining (2.8) and (2.9) yields

g (AτB) ≤

(√
s +

√
t
)2

4
(g (A) σg (B)) .

Applying Φ, we obtain that

Φ (g (AτB)) ≤

(√
s +

√
t
)2

4
Φ (g (A) σg (B))

≤

(√
s +

√
t
)2

4
Φ (g (A)) σΦ (g (B)) (by [1, Theorem 3]).

This completes the proof for operator monotone decreasing functions in case st ≥ 1.
The proof of the case st ≤ 1 is similar to that st ≥ 1; except instead of inequality (2.1)

we use the inequality (2.2). �
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As an application of Theorem 2.4, we have the following Grüss type inequalities.

Corollary 2.5. Let Φ be a positive linear map, τ, σ operator means such that ! ≤ τ, σ ≤ ∇,
and let A, B ∈ B (H) be such that mI ≤ A, B ≤ MI for some scalars 0 < m < M .

(i) If f is an operator monotone increasing function on [0, ∞), then

Φ (f (A)) τΦ (f (B)) − Φ (f (AσB)) ≤ (M − m)2

4Mm
f (M) .

(ii) If g is an operator monotone decreasing function, then

Φ (g (AτB)) − Φ (g (A)) σΦ (g (B)) ≤ (M − m)2

4Mm
g (m) .

Proof. It follows from Theorem 2.4 (i) that

Φ (f (A)) τΦ (f (B)) ≤ (M + m)2

4Mm
Φ (f (AσB)) . (2.10)

Hence

Φ (f (A)) τΦ (f (B)) − Φ (f (AσB)) ≤
(

(M + m)2

4Mm
− 1

)
Φ (f (AσB))

≤
(

(M + m)2

4Mm
− 1

)
f (M) ,

where in the first inequality we used (2.10) and the second inequality follows from the fact
that f (m) I ≤ f (AσB) ≤ f (M) I.

The other case can be obtained similarly by utilizing Theorem 2.4 (ii). �

In [7, Theorem 3], the inequality
∥g(A)♯g(B)∥

∥A♯B∥
≤ 2S(h)2

∥∥∥∥g(A♯B)
A♯B

∥∥∥∥ (2.11)

was proved for the positive matrices A, B satisfying mI ≤ A, B ≤ MI, the operator convex
function g : [0, ∞) → [0, ∞) satisfying g(0) = 0 and the Specht’s ratio S(h). Following the
same ideas as in [7] one can prove the following more general form, which then implies a
refinement of (2.11).

Corollary 2.6. Let A, B ∈ B (H) be such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t
with st ≥ 1, and let g be an operator convex function with g (0) = 0. Then for any τ ≥ ♯,
σ ≤ ♯ and for any unitarily invariant norm ∥·∥u,

||g(A)τg(B))||u
||AτB||u

≤
(√

s +
√

t

2

)2 ∣∣∣∣∣∣∣∣g(A♯B)
A♯B

∣∣∣∣∣∣∣∣
u

, (2.12)

and
||g(A)♯g(B))||u

||A♯B||u
≤
(√

s +
√

t

2

)2 ∣∣∣∣∣∣∣∣g(AσB)
AσB

∣∣∣∣∣∣∣∣
u

. (2.13)

In particular, if ! ≤ τ, σ ≤ ∇,

||g(A)τg(B))||u
||AτB||u

≤
(√

s +
√

t

2

)4 ∣∣∣∣∣∣∣∣g(AσB)
AσB

∣∣∣∣∣∣∣∣
u

.

Proof. By Theorem 2.4,

||g(A)τg(B))||u
||AτB||u

≤
(√

s +
√

t

2

)2

||g(A♯B)||u.
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Consequently, the following double inequality is valid:

||g(A)τg(B))||u
||AτB||u

≤
(√

s +
√

t

2

)2 ||g(A♯B))||u
||A♯B||u

≤
(√

s +
√

t

2

)2 ∥∥∥∥g (A♯B)
A♯B

∥∥∥∥
u

.

The second inequality is obtained by similar arguments. �
The case st ≤ 1 in Corollary 2.6 is also valid if we employ inequality (2.2) instead of

(2.1).
Remark 2.7. In the special cases when s = m

M , t = M
m , and τ = ♯ (respectively σ = ♯),

(2.12) (respectively (2.13)) reduces to
∥g (A) ♯g (B)∥u

∥A♯B∥u

≤ 2
(

M + m

2
√

Mm

)2 ∥∥∥∥g (A♯B)
A♯B

∥∥∥∥
u

. (2.14)

This shows that the inequality (2.14) is a refinement of [7, Theorem 3]. To see that (2.14)
is a refinement of [7, Theorem 3], one has to recall that M+m

2 ≤ S
(

M
m

)√
Mm (see [14]).

Remark 2.8. By choosing Φ as an identity map, s = m
M , t = M

m , and τ = σ = ♯ in (2.7)
and (2.8), we have the following two cases:

(i) If f is an operator monotone increasing function, then

f (A) ♯f (B) ≤ M + m

2
√

Mm
f (A♯B) . (2.15)

(ii) If g is an operator monotone decreasing function, then

g (A♯B) ≤ M + m

2
√

Mm
(g (A) ♯g (B)) . (2.16)

As mentioned in [4, Theorem 6], if A, B ∈ B (H) are two positive operators such that
A ≤ B and mI ≤ A ≤ MI for some scalars 0 < m < M then,

A2 ≤ (M + m)2

4Mm
B2.

Now, by the substitutions A → f (A) ♯f (B) and B → M+m
2
√

Mm
f (A♯B) in the above discus-

sion, we get

(f (A) ♯f (B))2 ≤
(

(M + m)2

4Mm

)2

f(A♯B)2.

A similar approach gives

g(A♯B)2 ≤
(

(M + m)2

4Mm

)2

(g (A) ♯g (B))2.

We conclude this article by showing operator Diaz–Metcalf and Klamkin–McLenaghan
inequalities.
Theorem 2.9. Let Φ be a positive linear map, τ, σ operator means such that ! ≤ τ, σ ≤ ∇,
and let A, B ∈ B (H) such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t. If f is a non-
negative operator monotone function then,

(i) (Operator Diaz–Metcalf type inequality) If st ≥ 1, then

Φ
(
f
(√

stA
))

τΦ (f (B)) ≤
(√

s +
√

t

2

)2

Φ (f (AσB)) . (2.17)

On the other hand, if st ≤ 1, then

Φ
(
f
(√

stA
))

τΦ (f (B)) ≤

(√
s +

√
t
)2

4
√

st
Φ (f (AσB)) .
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(ii) (Operator Klamkin–McLenaghan type inequality) If st ≥ 1, then

Φ(f (AσB))− 1
2 Φ (f (B)) Φ(f (AσB))− 1

2 − Φ(f (AσB))
1
2 Φ
(
f
(√

stA
))−1

Φ(f (AσB))
1
2

≤

(√
s +

√
t
)2

2
− 2I −

((
Φ(f (AσB))− 1

2 Φ
(
f
(√

stA
))

Φ(f (AσB))− 1
2
) 1

2

−
(
Φ(f (AσB))− 1

2 Φ
(
f
(√

stA
))

Φ(f (AσB))− 1
2
)− 1

2

)2

.

(2.18)
On the other hand, if st ≤ 1, then

Φ(f (AσB))− 1
2 Φ (f (B)) Φ(f (AσB))− 1

2 − Φ(f (AσB))
1
2 Φ
(
f
(√

stA
))−1

Φ(f (AσB))
1
2

≤

(√
s +

√
t
)2

2
√

st
− 2I −

((
Φ(f (AσB))− 1

2 Φ
(
f
(√

stA
))

Φ(f (AσB))− 1
2
) 1

2

−
(
Φ(f (AσB))− 1

2 Φ
(
f
(√

stA
))

Φ(f (AσB))− 1
2
)− 1

2

)2

.

(2.19)

Proof. We assume st ≥ 1. From the assumption sA ≤ B ≤ tA, it follows that
√

s ≤(
A− 1

2 BA− 1
2
) 1

2 ≤
√

t. Therefore,
√

stA + B

2
≤
(√

s +
√

t

2

)
A♯B. (2.20)

Now, since f is an operator monotone increasing we have

f
(√

stA
)

+ f (B)
2

≤ f

(√
stA + B

2

)
(by [13, Corollary 1.12])

≤ f

((√
s +

√
t

2

)
A♯B

)
(by (2.20))

≤ f

(√
s +

√
t

2

)2

A!B

 (by (2.1))

≤
(√

s +
√

t

2

)2

f (A!B) (by Lemma 2.3(a))

≤
(√

s +
√

t

2

)2

f (AσB) (since ! ≤ σ).

It follows from the linearity of Φ and the fact τ ≤ ∇ that

Φ
(
f
(√

stA
))

τΦ (f (B)) ≤
Φ
(
f
(√

stA
))

+ Φ (f (B))
2

≤
(√

s +
√

t

2

)2

Φ (f (AσB)) .

So we have (2.17). The case st ≤ 1 can be obtained similarly.
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From (2.17) we easily obtain that

Φ
(
f
(√

stA
))

+ Φ (f (B)) ≤

(√
s +

√
t
)2

2
Φ (f (AσB)) . (2.21)

The estimate (2.21) guarantees

Φ(f (AσB))− 1
2 Φ (f (B)) Φ(f (AσB))− 1

2

≤

(√
s +

√
t
)2

2
− Φ(f (AσB))− 1

2 Φ
(
f
(√

stA
))

Φ(f (AσB))− 1
2 .

We set
X := Φ(f (AσB))− 1

2 Φ (f (B)) Φ(f (AσB))− 1
2

− Φ(f (AσB))
1
2 Φ
(
f
(√

stA
))−1

Φ(f (AσB))
1
2

and observe

X ≤

(√
s +

√
t
)2

2
− T − T −1, (2.22)

where T = Φ(f (AσB))− 1
2 Φ
(
f
(√

stA
))

Φ(f (AσB))− 1
2 . Notice that

T + T −1 =
(
T

1
2 − T − 1

2
)2

+ 2I. (2.23)

Combining (2.22) and (2.23) we get

X ≤

(√
s +

√
t
)2

2
−
(
T

1
2 − T − 1

2
)2

− 2I,

which is equivalent to the inequality (2.18). The inequality (2.19) is obtained by similar
arguments. �
Remark 2.10. Assume

√
st ≥ 1. Due to the monotonicity property of operator means,

we have

Φ (f (A)) τΦ (f (B)) ≤ Φ
(
f
(√

stA
))

τΦ (f (B)) ≤
(√

s +
√

t

2

)2

Φ (f (AσB)) ,

which is stronger than (2.5).
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