Arastirma Makalesi BAUN Fen Bil. Enst. Dergisi, 22(2), 403-414, (2020)
DOI:10.25092/baunfbed. 707344 J. BAUN Inst. Sci. Technol., 22(2), 403-414, (2020)

Ranks of some subsemigroups of full contraction
mappings on a finite chain

Kemal TOKER*

Harran University Faculty of Science and Literature,
Department of Mathematics, Osmanbey Campus, Sanlurfa.

Gelis Tarihi (Received Date): 28.09.2019
Kabul Tarihi (Accepted Date): 13.03.2020

Abstract

Let Z*denotes the set of all positive integers. Let X,, = {1,2, ..., n} be the finite chain for
n € Z* and let T,, be the full transformation semigroup on X,,. Also let OCT,, and
ORCT,, be the semigroup of order-preserving full contraction mappings, and the
semigroup of order-preserving or order-reversing full contraction mappings on X,,,
respectively. It is well-known that OCT,, and ORCT,, are subsemigroups of T,,. In this
paper we obtain ranks of the semigroups OCT,, and ORCT,,.

Keywords: Order-preserving/order-reversing contraction mappings, generating set,
rank.

Sonlu zincir tizerindeki tam daralma doniisiimlerinin bazi alt
yarigruplarinin ranklari

Oz

Z*, tiim pozitif tamsayllarin kiimesi olsun. n € Z* icin X,, = {1,2, ...,n} sonlu bir zincir
ve T,,, X,, tizerindeki tam doniisiimler yarigrubu olsun. Ayrica OCT,, ve ORCT,, sirasiyla
X, tizerindeki sira-koruyan tam daralma doniisiimler yarigrubu ve sira-koruyan veya
swra-geviren tam daralma doniisiiler yarigrubu olsun.OCT,, ve ORCT,, yarigruplarinin
T, yarigrubunun altyarigruplar: oldugu bilinmektedir. Bu ¢alismada OCT,, ve ORCT,
yarigruplarinin ranklar: arastirilmigtir.

Anahtar kelimeler: Sira-koruyan/sira-¢eviren daralma déniisiimleri, doguray kiimeleri,
rank.
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1. Introduction

Let Z*denotes the set of all positive integers. Let X,, = {1,2, ..., n} be the finite chain
forn € Z* and let T;, and S,, be the full transformation semigroup and the symmetric
group on X,,, respectively. Also let

0, ={a €T, |(VX,yEX,) X<y = xa<ya}, (D)

the semigroup of all order-preserving full transformations on X,,. For any a € T,,, if
|xa — ya| < |x — y| for all x,y € X,, then « is called a full contraction mapping on X,,.
Then let CT,, be the set of all full contraction mappings on X,,, say

CTn:{aETnl(inyEXn) |xa—ya|3|x_y|}, (2)

and let OCT,, be the set of all order-preserving full contraction mappings on X,,, say
OCT,, = 0,, N CT,, which are clearly subsemigroups of T,,. Also, let OR, be the
semigroup of all order-preserving or order-reversing transformations on X,,, and let
ORCT,, = OR,, N CT,,, which is clearly a subsemigroup of T,, consisting of all order-
preserving or order-reversing full contraction mappings on X,,. Recall that, Garba et al.
have presented characterisations of Green’s relations on CT,\S,, and OCT,\S, in [1],
and that Adeshola and Umar have investigated the cardinalities of some equivalences on
OCT,, and ORCT, in [2] which lead naturally to obtaining the orders of these
subsemigroups.

Let S be any semigroup, and let A be any non-empty subset of S. Then the
subsemigroup generated by A, that is the smallest subsemigroup of S containing A4, is
denoted by (A). If there exists a finite subset A of a semigroup S with (4) = S, then S is
called a finitely generated semigroup. The rank of a finitely generated semigroup S is
defined by

rank(S) = min{|A|: (4) = S}. 3)

There are many studies on various generating sets and ranks of any semigroup. Now we
give some examples of recent studies. Let Sing,, = T,,\S,, the subsemigroup of all
singular mappings. Gomes and Howie proved that rank(Sing,) = *®* in [3] and
Ayik et al. found the necessary and sufficient conditions for any set of transformations
with n — 1 image in Sing,, to be a (minimal) generating set for Sing,, in [4]. Let I,, be
the symmetric inverse semigroup on X,,, and let

DP, = {a € I,| Vx,y € dom(a), |xa — ya| = |x — y|} 4)

be the subsemigroup of I,, consisting of all partial isometries on X,,. Also, let

ODP, = {a € DP,|Vx,y € dom(a), x <y = xa < ya} (5)

be the subsemigroup of DB, consisting of all order-preserving partial isometries on X,,.
Bugay et al. examined the subsemigroups

DP,, = {a € DP,||lim(a)| < 1} (6)
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and
ODP,, = {a € ODP,||lim(a)| < r} (7)

for 2 <r <n—1, and showed that rank(DP, ;) = rank(0DP,,) = () in [5]. For any
@ +Y <X, let

Tx,y) = { @ € Tyl Ya =Y} 8

Clearly Ty, y) is a subsemigroup of T,,. Toker et al. examined the subsemigroups
Tinm) = {a € Ty: Xpua = X, } and showed that

2, if (n,m) = (2,1) or (3,2)
rank(T,m)) = {3, if(n,m)=3,1)or4<nandm=n-1 (9)
4, ife<nandl<m<n-2

in [6]. Now, in this paper we examine OCT,, and ORCT,,, and show that

rank (0CT,,) = {i: i£ Z : i or if n> 3. (10)
and
fnTﬂ, if n is an odd number
rank (ORCT,) =< .., (11)
— if n is an even number.
2. Preliminaries
The kernel and the image of a € T,, are defined by
ker(a) = {(x,y) € X;, X X;: xa = ya} (12)
im(a) = {xa:x € X,;}, (13)

respectively. For any a, 8 € T,, it is well known that ker(a) € ker(af) and im(af) <

im(B).

Definition 2.1 Let A be a non-empty subset of X,,. If x,y€e Aandx <z<y=>z€A
for all x,y € A, then A is called a convex subset of X,.

Recall from [Theorem 2.2 [1]] that if « € T,, is a contraction mapping then im(a) is a
convex subset of X,,. Thus, if @ € OCT,, or « € ORCT,, then im(a) is a convex subset of
X,, that is there exists 1 < k <m < n such that im(a) ={k,k+1,..,m}. If a €
OCT, then since a is order-preserving, it is easy to see that each equivalence class of
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ker(a) is a convex subset of X,,, and if « € ORCT,, then since « is order-preserving or
order-reversing, it is easy to see that each equivalence class of ker(a) is also a convex
subset of X,,.

On a semigroup S, (a,b) € L*(S) if and only if the elements a,b € S are related by
Green’s relation L in some oversemigroup of S. The relation R* is defined dually. The
join of relations L* and R* is denoted by D* and their intersection by H*. Those relations
are called starred Green’s relations. Garba et al. have found starred Green’s relations
semigroups of CT,\S,, and OCT,\S,, in [1]. In particular, they proved the following
theorem.

Theorem 2.2 [1] Let S € {CT,\S,,, OCT,\S,}and leta, f € S. Then
(1) (a,B) € L*(S) ifand only if im(a) = im(pB),
(i)  (a,B) € R*(S) ifand only if ker(a) = ker(B),
(i)  (a,B) € H*(S) ifand only if im(a) = im(pB) and ker(a) = ker(p),
(iv) (a,B) € D*(S) ifand only if |im(a)| = |im(B)|.

In this paper we use the same notations with Howie’s book [7].

3. The rank of OCT,,

In this section, we find a minimal generating set of OCT,, and so we obtain the rank of
OCT,. Itis clear that OCT, = {G)} and so rank (OCT;) = 1, itis also clear that

oer=i( .G DG 2 o

If {a,f} € OCT, then we observe that < a, >= {a, 8}, and so rank (OCT,) = 3.
Hence in this paper we consider the case n > 3. Let

Dy ={a € OCT, : | im (a)| = k} (15)

for 1 < k < n. Notice that D}, = {e = G % Z)}

Lemma3.l Ifa € Dy thena €< D;,; >foreachl1 <r<n-2.

Proof. Leta € D; for 1 < r < n — 2, then there exists a partition {4;, A,, ..., A, } of
X, and there exists 1 < k < n —r + 1 such that

A Ay . A A
“_(k k+1 oo k—=1+i .. k—1+r)' (16)

It is clear that |A;| = 2 at least for one 1 < i <r since r <n — 2. Without loss of
generality let A; = {a4,a,, ..., a,,} form = 2 and let x; be the maximum element in 4;.
Ifk>1andk+7r—1<n,let

_ (A \{x1} () A, v A,
ﬁ_( k k+1 k+2 .. k+r)' 17)
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fori =1, let
B = (Al A v Arg A\{x ) {x} )
k k+1 k+r—2 k+r—1 k+7r/

fori = r, and let

ﬁ:(A1 Aiq A\{x} {x:} Ajiq
k ... k+i—-2 k+i—-1 k+i k+i+1

for2 <i <r—1. Also, let y be the mapping defined as

(k— 1; if
N r if k<j<k+i—1
Jy—i{—n if k+i<j<k+r
k+r—-1, if j>k+r,

1<j<k-1

for1<i<r.ThenpB,y € D;,, and a = Sy.

Ifk=1,let
_ (A\{x1} {1} A . Ay
B ( 1 2 3 .. T+ 1)'
fori =1, let
'3 — (Al AZ Ar—l Ar\{xr} {xr} )
1 2 .. r—-1 T r+1/’

fori =r, and let

,8=(A1 e A AN} {a} A o 4
1 v 1—1 [ i+1 i+2 ... r+1

for 2 <i <r — 1. Also, let y be the mapping defined as

bk if j<i
jy=4ji—-1 if i+1<j<r+1
r+1; if r+2<j<n,
for1 <i < r.Then,similarly 8,y € D;,; and a = By.

Ifk+r—1=n,let

_ (A\{x1} {x} A o Ay
ﬁ_(k—l k kjl - n)

fori =1, let
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_( A Ay o Ao AN{x ) {x}
ﬁ_(k—l k .. n—-2 n-1 n )' (26)

fori = r, and let

e

B = (kAl e Ajg A\{x;} {xi} Ajyq

_ - Ar) 27
-1 .. k+i-3 k+i—-2 k+i—-1 k+i .. n) @7

for2 <i <r—1. Also, let y be the mapping defined as

k—1, if 1<j<k-2
Jjy=3j+1, if k—-1<j<k+i-2 (28)
; if k+i—-1<j<n,

for1 <i <r.Then,similarly 8,y € D/, and a = By.
Corollary 3.2 Dj €< D;_; >foreach1 <i<n-1.

Let OCT(r) = {a € OCT,: | im (a)| < 7} for 1 <r <n. Itis clear that OCT,, is an
ideal of OCT,,. Thus we have

< Dj_y >= OCTgn_1) = OCT,\S, = OCT,\{€}. (29)

If « € D;,_; then im (@) ={1,2,..,n—1} or im (a) = {2,3,...,n} since im (a) is a
convex subset of X,,. Moreover since kernel classes of a are convex subsets of X,,, there
exists 1 < i < n — 1 such that

ker(a) = U—y {(G, )}V (G + 1,0, (0, i + 1)}, (30)

In this case, we denote ker(a) by [i,i + 1] instead of Uj_; {U, DIV {(+ 1D, i+
1)} for convenience.

It is clear that |[D;_;| = 2(n — 1) for n = 3 and so rank (OCT(;5—1)) < 2n — 2 from
Corollary 3.2. Notice that, since OCTy, ) is an ideal of OCT, 1y forn =3, a €
D; _, can be written as a product of only the elements of D,,_,. Moreover, since there
are n — 1 R*-classes (kernel classes) in D;_;, we have rank (OCT(;,-1)) = n — 1 for
n=3.

Let @; ;11 € D;,_; be the element with im (a;;41) = {1,2,..,n — 1} and ker(a;;4,) =
[i,i + 1], thatis

Qi i+l i+2 .. n
%“1_(1." i i+l .. n—1) (31)
forl<i<n-2,and
(1 2 .. n—-1 n
T COE | (32)
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Let Bii+1 € D;_; be the element with im (8;;41) = {2,3,...,n} with ker(B;;41) =
[i,i+ 1], that is

(1 2 3 .. n

pa=(3 3 3 7w (33)
(1 2 .. i i+l .. n

5”'*1_(2 3 .. i+1 i+1 .. n) (34)

for2<i<n-1.
Theorem 3.3 rank (OCT,-1)) =n—1forn = 3.

Proof. Letn >3 and W = {a1,} U {f;i+1]2 <i <n—1}where a;,,f;i4+1 (251 <
n — 1) are the elements defined above. It is clear that |[W| = n — 1 and so for the proof
it is enough to show that W is a generating set of OCTy, 1) since rank (OCT, n—1)) =
n — 1. By using the multiplication it is a routine matter to show a; ,f8,—1, = 1, and
Piiv1012 = @41 for 2<i<n-1. Thus, D E<W > and so <W >=
OCTn-1) from Corollary 3.2. Therefore, rank (0CTpn—1y) =n—1forn >3, as
required.

3, ifn=2

Theorem 3.4 rank (OCT,) = {n fn=1 orif n>3

Proof. Recall that rank (OCT;) = 1 and rank (OCT,) = 3. Forn > 3, it is clear that
OCT, = OCT(nn-1) U {€} Where € is the identity mapping on OCT;,. Since OCT, is a
monoid and OCT, -y is a finitely generated semigroup, and since af # € for all
a,f € OCTnn-1y, We have rank (OCT,) = rank (OCT(;n—1y) + 1 =nforn = 3.

4. The rank of ORCT,,

In this section, we find a generating set and the rank of ORCT,,. It is clear that ORCT, =
{(i)} and so rank (ORCT;) = 1. Itis also clear that

oret={(; 1.G 2G DG ) )
Since
ORCT, =< (1 i)(; i)> (36)

and since ORCT, is not a commutative semigroup, we have rank (ORCT,) = 2. Now
we consider the generating sets of ORCT,, forn > 3. Let

F, = {a € ORCT,: | im ()| = k} (37)

for1 <k <n.
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Lemma4.l Ifa € F. thena €< F, ; >for1 <r<n-—2.

Proof. Let1 <r <n-—2. If ¢ € OCT, N F,, then the result follows from Lemma 3.1.
Let « € ORCT,\OCT,, and « € F.. Then a is an order-reversing full contraction
mappings and so there exists a partition {4;, 4,, ..., A} of X,, and there existsr < k <
n such that

AL A, . A . A,
“_(k k=1 . k—i+1 .. k—r+0' (38)

It is clear that |A;| = 2 at least for one 1 <i <r since r <n — 2. Without loss of
generality let A; = {aq, ay, ..., a,,} for m = 2, and let x; be the maximum element in 4;.
Ifk<nandk—r>1,let

_ (A\{x1}  {xal Ay v Ay
p=(M0 2 ) (39)
fori =1, let

— Al AZ Ar—l Ar\{xr} {xr}
B (k k-1 ... k—r+2 k—1r+1 k—r)' (40)
fori=r,let

_ (A1 Ay .. Ay AN} {xd Ajtq o Ay
B (k k-1 ... k—-i+2 k—i+1 k—i k—i—1 .. k- )' (41)

for 2 <i <r — 1. Also, let y be the mapping defined as

k—r+1; if 1<j<k-r

)i+ if k—r+1<j<k-—i
V=35 if k—i+1<j<k (42)
k+1; if k+1<j<n

Then B,y € F,,; and a = Sy.
If k =n, let

— A \{x1} {1} A v Ay
B ( n n—-1 n—2 .. n—r)' (43)
fori =1, let

_ (A1 A Arq A \{x} {x;}
B (n n—-1 .. n—-r+2 n—-r+1 n—r)' (44)
fori=r,let

_ (A1 Ay .. Ay AN{x:} {a} Ajq v Ap 4
B (n n-1 .. n—i+2 n—i+1 n—-i n—i—1 .. n—r)' (45)
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for2 <i <r—1. Also, let y be the mapping defined as
n—r; if 1<j<n-r-1

jy=3j+1 if n—-r<j<n-—i (46)
; if n—i+1<j<n

Then B,y € F,,; and a = Sy.

Ifk=r,let

_ (A\{x1} ) A4 . A
ﬁ_(r+1 r r—1 .. 1)' (47)
fori =1, let

— Al AZ Ar—l Ar\{xr} {xr}
ﬁ_(r+1 .3 2 1)' (48)
fori=r,let

_( A A . Ay A\{x} {x:} Aiyr o A
B (r+1 r .. r—i+3 r—i+2 r—i+1 r—i .. 1)' (49)

for 2 <i <r — 1. Also, let y be the mapping defined as
i; if 1<j<r—-i+1

jy=3j—-1, if r—i+2<j<r+1 (50)
r+1;, if r+2<j<n

Then B,y € F,,; and a = Sy.

Corollary4.2 Ifa€e F;for1<i<n-—1thena €< F,_; >forn > 3.

Let ORCTy = {a € ORCT,: | im ()| <7} for 1 <r <n. It is clear that ORCT
is an ideal of ORCT,,. Moreover we have

R=te=(1 5 7 Moo= 2, G

and notice that

< Fy_q >= ORCT -1y = ORCT,\S, = ORCT,\{€, 6} (52)
where € is the identity element of ORCT,, and that 82 = .

Corollary 4.3 ORCT,, =< F,_, U {06} > forn > 3.

If « € F,,_4, since im () is a convex subset of X,,, we have im (a) = {1,2,...,n — 1}
or im (@) = {2,3, ...,n}. Moreover there are n — 1 different kernel classes in F,,_; and
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there exist 4 elements in F,,_; which has the same kernel classes. Thus |F,_;| = 4(n —
1) forn > 3.

Let a; ;44 and f; ;11 be the order-preserving full contraction mappings defined before
Theorem 3.3 for each 1 < i < n — 1. Moreover let A;;,, € F,,_; be the order-reversing
full contraction mappings such that im (4;;,1) = {1,2,...,n — 1} and ker(4) = [i,i +
1], that is

_ 1 i i+1 i+2 v n
Aiirr = (n— 1 .. n—i n—i n—i—1 .. 1)' (53)
fort1<i<n-2,and

_ 1 2 e NM—2 n—1 n
An-in = (n -1 n—-2 .. 2 1 1)' (54)

Also, let u;;4q € F,—; be the order-reversing full contraction mappings with
im (41) = {2,3, ..., n} with ker(u; 41) = [i, i + 1], thatis

(1 2 3 w n—1 n
M2 = (n n n—1 .. 3 2)’ (55)
and
12 . i i+1 .. n
‘ui'”l_(n n-1 .. n—i+1 n—i+1 .. 2)’ (56)

for2<i<n-—1. Also notice that F;,_y = {@; 41, Bii+1 A+ Hiie1|1 ST <n—1}.
We give some equations in the following lemmas.

Lemmad4.4 Forn>3and1<i<n-1,
(1) @jiz10 = Hyisq

(i) Bii+10 = 2141

(ii1). 41416 = Biis1

(V). fii+10 = @ji11-

Proof. By using the multiplication it is a routine matter to show (i) and (ii). Also, the
results (iii) and (iv) follows from the fact 62 = e.

Lemmad45 Forn>3and1<i<n-1,
(). 0a;i41 = An_in-is1

(iD). 0Bii41 = Hn—-in-i+1

(iii). 04141 = An_in—i+1

(V). Ouiiv1 = Bnin-i+1-

Proof. (i) First notice that 1(6a; ;1) = na; ;41 =n—land n(0a; ;1) = 1ag 41 = 1.

Thus im (6a;;+1) = {1,2,...,n—1} and clearly 6a;;,, is an order-reversing full
contraction mappings. Moreover

(m=—0)0a;is1) = [+ Dajiy =iy = (M — i+ 1)(0a;;41) (57)
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and so we have ker(6a;; ;1) =[n—in—i+1]. Thus, 011 = Ay_jn_i+1, @S
required.
(i), (ii1) and (iv) can be shown similarly.

Lemma4.6 Forn=>3and1<i<n-—1wehave a;;i1fn-1n = Biit+1-
Proof. By using the multiplication it is a routine matter to prove the claim.

Proposition 4.7 Letn > 3 and let A be a generating set for ORCT,,. If n is an odd
number then A must include at least HT_l elements from F,,_,, and if n is an even number

then A must include at least 2 elements from F,,_;.

Proof. Letn > 3 and let A be a generating set for ORCT,,. Recall that F, = {¢, 6} and
6% = € where € is the identity element of ORCT,,. Also ORCT(;n—) is an ideal of
ORCT,, and there are n — 1 different kernel classes in F,,_;. Let « € F,,_; then there
exists 1 < k < n — 1 such that ker(a) = [k, k + 1]. Let m € Z* and suppose that « =
a,ay ..., Where a; € ORCT,, for each 1 < i <m. Then every a; € F,_; U F, since
ORCT(yn—2) is an ideal of ORCT,. If a; € F,,_; then it is clear that ker(a,) = ker(a).
If a; € F, then we can assume that a; = 6 since € is the identity element. Then we can
assume that a, € F,,_, since 82 = ¢ and so ker(a,) = [n — k,n — k + 1] from Lemma

4.5. Thus if nis an odd number then A must include at IeastnT_1 elements from F,,_,
and if n is an even number then A must include at least % elements from F,,_;.

Forn > 3 it is clear that F, = {¢, 6} is a subsemigroup generated by {6} or {6, €}, and
ORCT,\F, = ORCT, 1) is an ideal of ORCT,,. Hence every generating set of ORCT,,

must include the element 6. Thus, if n is an odd number then rank (ORCT,) = nTH and

if n is an even number then rank (ORCT,) = nT-I-Z from Proposition 4.7.

Theorem 4.8 Forn > 1,

n+1
> ; if n is an odd number
rank (ORCT,) = n+2
T; if n is an even number.

Proof. If n = 1 or n = 2 then the result is clear. Let n > 3 and n be an odd number.

Then we have rank (ORCT,) = nTH Let

B -1
W ={0}ufa,ll<i<=—} (58)

and it is clear that |W| = "T“ Hence it is enough to show that I/ is a generating set of

ORCT,,. For1 <k < "7_1 then ay .1 € W and so a1 ,0 = py, and Opy, = frqp. It
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follows that @y x41Bn-1.n = Brk+1: Brk+10 = Airsr AN Q410 = g peqq - Thus if
1<k <™then

{ k+1 B+ 1 Ak k1 Ui k1) ES W >

-1 . .-
Now Iet"T <k<n-—1andleti =n—k. Thenitis clear that a; ;,1 € W. Moreover
. . n—1
01 = Anin—it1 = Aksr AN A 10 = Brs1- Since i < — We have 4;;4, €<
W >, and so Gli,i+1 = Ap—in—i+1 = A k+1 and ak’k+19 = Uk k+1- It follows that

{ k+1 B+ 1 Ak k1 Ui k1) ES W >

So W is a generating set of ORCT,, from Corollary 4.3. Thus if n is an odd number then
we have rank (ORCT,) = "T“ If nis an even number similarly it can be shown that

W={0}U{a;;;1]1<i< 2} is a generating set of ORCT, and so rank (ORCT,) =

n+2 .
— - as required.
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