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Abstract— In this paper, we present the results of our experiments using a new biologically constrained 

machine intelligence algorithm based on neural processing in the auditory cortex called auditory 
machine intelligence (AMI). This algorithm is an online learning technique for predicting sensory time 

series data i.e. data that comes in streams or a sequential order. The AMI algorithm is particularly 

inspired by the mismatch negativity effect which provides important evidence that the brain learns a 
statistical structure of the world it senses. We show through a number of experiments with popular 

benchmarks, how this algorithm may be applied in a real world sense. The results of these experiments 

have also been compared with two very popular techniques that have been used for time series 
predictions and are very encouraging. 
 

Keywords : Auditory processing, biological machine intelligence, predictions, sensory data, time 

series. 

 

1. BACKGROUND  
 Sequence or time-series prediction of real world sensory data plays a very vital role in modern day 

society as the ever increasing need to deliver more useful products increases and the need to guarantee 

minimal or zero service down-times with effective product distributions and higher sales/profits rises 

on a continual basis. For instance, some important sensory data prediction estimates required by service 

delivery agents include the times of day a potential customer will visit a retail store, the number of times 
a particular product or commodity is demanded and the amount traded, the fluctuating demand for 

electrical load at power station centres etc. Some other more specific examples include forecasting the 

opening and closing stock prices in a stock exchange, forecasting weather events in order to determine 
flight schedules or business trips and determining the required electrical power generation schedule from 

electrical power demand predictions.  

More recently, there has been a surge in interest on the use of artificial intelligence (AI) techniques 
and algorithms for making reliable prediction estimates. However, the problem of developing an AI 

algorithm that is general enough and that can solve a variety of tasks has been an obvious challenge to 

AI experts across the globe particularly as it pertains sequence (time-series) predictions of the 

aforementioned examples. In particular, AI algorithms that can make adaptive predictions or decode 
possible (future) state(s) of an incoming sensory signal continually are indeed of particular interest in 

both academic and industry setting. However, it is not always possible for an algorithm to perform better 

than others in all the assigned tasks. One possible explanation for this situation is derived from the ‘No 
Free Lunch Theorem’ or simply NFLT which generalizes the problem and hypothesizes that it is not 

possible for any algorithm to do better than another in all tasks (Wolpert and Macready, 1997).  
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Classical Artificial Neural Networks (ANN), also known as universal function approximators have been 

very successful in the prediction of a number of time series related data. Some of such popular ANN or 

neural machine learning techniques include the Long Short-Term Memory (LSTM) developed in 
(Hochreiter and Schmidhuber, 1997), the Group Method of Data Handling (GMDH) developed in 

(Ivakhnenko, 1968), and the Online-Sequential Extreme Learning Machines (OS-ELM) developed in 

(Liang et al., 2006). These algorithms have indeed been successfully applied in many tasks and due to 
space restrictions we do not list them all here. However, their inherent complexity particularly the case 

of excessive hyper-parameter tuning and the need for very large data for training makes such neural 

networks incompatible prediction algorithms in real time scenarios. 

Recently, a class of artificial neural networks (ANNs) called the Hierarchical Temporal Memory 
(HTM) has been proposed as a candidate solution as par developing AI algorithms that are general 

enough to be used in a variety of real world prediction tasks and that work in accordance to the principles 

of the brain (Hawkins et al., 2010; Hawkins et al., 2016). However, HTM still faces the challenges of 
biological constrain and unnecessary complexity of the temporal part always requiring the need for a 

time stamp attribute in most sequence level data mining tasks (Struye and Latré, 2019); thus, its 

reliability in certain applications may be in doubt. Indeed, the HTM-like algorithm may require some 
exhaustive sort of parameter tuning to work in certain time series related prediction problems.  

For machine intelligence algorithms that must adapt to changing statistics in a timely and more reliable 

manner, a reduction in the inherent complexities in their temporal processing and parameterization step 

cannot be over-emphasized.  
In this paper, we propose yet another online learning machine intelligence algorithm, the Auditory 

Machine Intelligence (AMI), that is though more biologically constrained, but is less complex than HTM 

obviating the need for a time stamp attribute and does perform well in a number of time series prediction 
tasks. Following the idea and findings about the Mismatch Negativity Effect (MMN) we have developed 

an algorithm that can learn to give more precise predictions in a deterministic manner through time. The 

emphasis of this research is not necessarily on bettering the state-of-the-art neural 

algorithms/techniques, but on developing a simple but yet effective continual machine learning neural 
technique that is general enough to be applied to various problems in different application domains – 

software and on embedded hardware prediction problems inclusive. 

Our research paper is organized as follows: Section 2 will present briefly previous work in the state-
of-the-art highlighting the key algorithms that have been used for sequence prediction of data. Section 

3 describes our proposed methodology. Section 4 will present the experiments; comparisons will be 

made with two state-of-the-art sequence learning neural networks that have been used more recently for 
time series prediction: the HTM which is a biological based neural network that is trained using Hebbian 

learning rules and the LSTM – a more traditional (mathematical) neural network that is trained using 

the very popular back-propagation (gradient descent) algorithm. Specific comparisons will also be made 

with the HTM using real-world sensory datasets obtained from the Numenta Anomaly Benchmark. In 
Section 5 we present our conclusions and discuss some shortcomings of our proposed technique and 

how the AMI may be improved upon. 

 

1.1. Statement Of Problem 

Time series prediction is very challenging and algorithms that have been developed for sequence 

learning tasks such as the Online-Sequential Extreme Learning Machines (Liang et al., 2006), the Group 
Method of Data Handling (Ivakhnenko, 1998), the Long Short-Term Memory (Hochreiter and 

Schmidhuber, 1997) and the Hierarchical Temporal Memory which is based on the Cortical Learning 

Algorithms (HTM-CLA) developed in (Hawkins et al., 2016) have been useful but can be very 

expensive/time consuming to implement in real world business or industrial application software. It is 
also particularly very challenging to develop such algorithms on embedded hardware and development 

time is increased when building on cloud computing frameworks.  Thus, an algorithm that is powerful 

but possesses simplicity is highly desired particularly for predictive applications that require rapid 
deployment. 

 

1.2. Research Objective 

The primary objective of this research is to present a new neuro-biological auditory inspired but 
constrained approach that is simple and useful for the prediction of time series data or any type of 

https://www.sciencedirect.com/science/article/pii/S0925231219304369#%21
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sensory data that is characterized by sequential changes through time. In order to attain this first 

objective, we leverage on existing neuro-biological principles and theories related to the studies of the 

mismatch negativity effect (MMN) and a brain region called A1 located in the auditory cortex. 
 It is also the objective of this research to compare our proposed (AMI) technique with a traditional 

sequence learning neural and statistical prediction model using several open source and real time series 

benchmark datasets. 
 

2. Previous Work  
Deep neural networks such as the Long Short-Term Memory (Hochreiter & Schmidhuber, 1997; 

Gers et al., 2000) and the Group Method of Data Handling (Ivakhnenko, 1998) emerged as possible 

candidates for predictive classification tasks. This class of machine learning  neural algorithms can 

operate in unsupervised/semi-supervised levels and have been particularly useful in solving a variety of 
real world challenging problems including but not limited to speech recognition (Graves et al., 2013), 

image recognition (Sutskever & Hinton, 2007), sentiment analysis and natural language processing 

(Socher et al, 2011a, Socher et al, 2011b). One primary reason for the success of deep neural networks 

is their ability to learn multiple layers of representation (Hinton et al, 2007). Notwithstanding these 
promising benefits, the deep neural network models still require extensive hand tuning making it very 

difficult to implement in real world tasks (Cui et al., 2016b). Another drawback is their computational 

cost and over reliance on very big data which in most cases is not readily available, too expensive to 
process and in some instances may not be necessary particularly for real-time applications that use 

sensor/actuators.  

HTM, an online learning machine intelligence and an emerging sequence learning neural technique 
has been particularly very useful for analyzing streaming sensory data i.e. continual data with a changing 

statistic through time. This includes short-term load forecasting (Osegi et al., 2018) and prediction of 

taxi passenger data (Cui et al, 2016a; Cui et al, 2016b).  HTM is also very useful as an anomaly detector 

and have been applied to a variety of tasks including but not limited to weld flaw detection (Rodriguez-
Cobo et al, 2013) and anomaly detection in streaming data (Ahmad et al, 2017). 

In the subsequent section, we present the details of a biologically constrained but less complex 

machine intelligence neural technique. 

 

3. AUDITORY MACHINE INTELLIGENCE 
Auditory Machine Intelligence (AMI) is a type of neural machine intelligence technique that 

fundamentally uses time dependent deterministic processing for time series prediction. The primary 

purpose of the AMI technique was to overcome the limitations in the temporal learning phase of the 

existing Hierarchical Temporal Memory (HTM) neural techniques developed in (Cui et al., 2016a, Cui 
et al., 2016b & Cui et al., 2017). In an AMI, the concept of mismatch negativity effect (MMN) and 

intelligent processing in mammalian auditory cortex are exploited to develop a precise and reliable 

algorithm that can give more precise predictions in a timely and deterministic way. AMI was introduced 

earlier in (Osegi & Anireh, 2016) bearing the name of “Deviant Learning Algorithm”. Some recent 
applications can be found in (Osegi et al., 2018) where it was used for time series prediction of Internet-

of-Things (IoT) data, in the prediction of critical clearing time of a resonant fault limit electrical 

protection system (Wokoma & Osegi, 2019) and in a very recent application, the dynamic load 
prediction for smart grid applications (Osegi et al., 2019).  

AMI exploits the idea and findings about the mismatch negativity effect (MMN) and intelligent 

processing in mature mammalian auditory cortex (called A1), to build an algorithm that can give more 
precise predictions in a timely and more reliable manner. The MMN is a differential neuronal response 

to a repetition of stimulus presentations and an oddball or deviant stimulus signal (Takaura & Fuji, 

2016). Indeed, MMN has been shown to exhibit very useful properties for high-level cognitive 

operations (Näätänen et al., 2007). 

Recent experiments on macaque monkeys using electro-corticography in the context of the roving 

odd-ball has shown the MMA (corresponding MMN effect in animals) to exhibit Specific-Stimulus 

Adaptation (SSA)  properties including cortical response to deviant stimulus (odd-balls) over a wide 
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area of cortical regions (Takaura & Fujii, 2016). In (Sollini et al., 2018), it has also been shown via 

neuronal simulations that functional reorganization of the receptive fields in A1, will occur when 

subjected to appropriate frequency fine-tuning and exposure of the cortical front (ON/OFF) receptive 
fields to sound waves. Thus, in a developing auditory cortex, the ON/OFF receptive fields sensitivity to 

sensory signals (frequency modulated tone sweeps) can be explained by using a simple universally 

accepted hebbian rule. A visual concept of this frequency tuned learning for functional reorganization 
is as shown in Fig. 1; in the visual, the large white blob represent a neuron, excitatory and inhibitory ON 

synaptic weight inputs are indicated as green, open and filled blobs while excitatory and inhibitory OFF 

inputs are indicated as red, open and filled blobs. As illustrated in Fig. 1, after hebbian learning 

operation, a divergence in synaptic weight inputs (indicated by the thick dark connected arrows) to the 
processed or simulated neuron (now grey) occurs. 

 

Fig. 1. A Visual of a freqency-tuned hebbian learning concept in A1 (Sollini et al., 2018). 

In particular, at high frequencies, the divergence should be larger in magnitude while at lower 
frequencies this should be lower. Thus, learning may be viewed as a set of adaptive synaptic connecting 

links where the rate or level of connection is frequency-dependent. 

The following sub-section (sub-section 3.1) presents and describes the details of the MMN effect 
theory and highlights two important application theories used in the AMI while in sub-section 3.2, a 

mathematization of the processes that describe the principle of operation of the core AMI technique is 

also presented. 

 

3.1. Concept of the Mismatch Negativity Effect 

The Mismatch Negativity Effect (MMN) typically represents a differential neuronal response to a 

repetition of stimulus presentations and a consequent oddball or deviant stimulus signal (Takaura and 
Fuji, 2016). The MMN exhibits very important high level cognitive processes including such key 

processes as grammar and semantic meaning higher perception and cognition functions such as in speech 

and music etc (Näätänen et al., 2007). In recent electro-corticography experiments on macaque 

monkeys, it has also been shown that the Mismatch Activity (MMA) – the analogue of the MMN effect 
in animals exhibits Specific-Stimulus Adaptation (SSA)  properties including cortical response to 

deviant stimulus signals or odd balls over wide cortical regions (Takaura and Fuji, 2016). 

In subsections 3.1.1-3.1.3, the theoretical models related to the MMN effect including the Change 
Detection (CD) and Model Adjustment (MA) theories are presented while subsection 3.1.4 details the 

AMI neuronal structure. 

 

3.1.1. Theoretical Models of the Mismatch Negativity Effect  

Lieder et al (2013a), proposed a theoretical framework including five theoretical models for 

describing the statistical structure and importance of the Mismatch Negativity (MMN) effect in auditory 

stimulation. These models are categorized into two frameworks: 

 The Phenomenological (PM) Framework - which includes the Change Detection (CD) and 

Neural Adaptation (NA) theories, and, 
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 The Free Energy Principle (FEP) which includes the Prediction Error (PE), Novelty Detection 

(ND) and the Model Adjustment (MA) theories. 

The PM and FEP leads to the derivation of 13 computational models (or response functions) of a 

generalized state space model. The response functions can be found in (Lieder et al 2013a, table 2) and 
are based on the model expressions in Eq. (1) and Eq. (2): 
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where, 

t
x = a generative non-observable internal state 

f = an evolution function describing x, 

ty  a mapping of all x to a sensory input, u, 

g  = a response function describing y, 

p  the state space parameters. 

 2,0    

  a representation of the variance of the medial geniculate nucleus. 

Using Eq. (1) and Eq. (2), a generative function can be formulated as: 

  pgfM ,,            (3)  

where p(θ) represents a prior density function.  

 
The evolution function, response function in conjunction with the prior density function describes 

the core features of a generative model based on the MMN effect. Amongst the theories formalized in 

(Lieder et al., 2013a), the CD theory features more prominently in the AMI and will be described 
subsequently in the subsequent sub-section; this will then be followed by the Model Adjustment (MA) 

theory. 

 

3.1.2. Change Detection in the AMI 
As mentioned earlier in section 3.1.1, the CD theory prominently features in the AMI as most sensor 

based time series problems are of the univariate type. This theory quantitatively defines the following 

MMN mismatch predictions/operations expressed as response functions (Lieder et al., 2013a): 

 An MMN indexes only when a change occurs or not. This is denoted by the response function 

g1. 

 An MMN indexes the unsigned or absolute value of the change in a physical property of a 

sensory input signal. This is denoted by the response function g2. 

 An MMN indexes the signed value of the change in a physical property of a sensory input. This 

is denoted by the response function g3. 
The response functions modelling these predictions are given in Eq. (4) to Eq. (6) and are all mimicked 

by the AMI in software. 
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Note that, xt and ut are the non-observable generative internal state and sensory input respectively. 

 

3.1.3. Model Adjustment in the AMI 
In the AMI, performing level-2 mismatch operations requires certain adjustments to be made during 

predictions. The Model Adjustment (MA) theory provides support for this operation and is indexed 
programmatically by adjusting a sequence length: 
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 where,  

ρ2 = a permanence threshold value 

xin = is the input observation and 
xstore = sparse representation of xin.  

 

Consider a group of observation sequences say Sm; then the probability that a sequence say So, will 

be correctly predicted at the next time step may be approximated as:     
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where,  

Td = a deviant overlap threshold value,  
Sp = the sparse generated predictions,  

S’
o(t-1) = the future prediction of So and  

Nz = size of Sm.  

 

3.1.4. AMI Neuronal Structure 
The AMI primary formula as described in Section 3.1 and as outlined in Algorithm 1-2 (sub-sections 

3.1 and 3.2) is as captured in the neural schematic of Fig.2. In this diagram, mathematical formulas are 

described by the operator sign while the functional modules and a trigger block describe key functional 

routines and time series feature control initializations used in the AMI. The Binary Encoder and Binary-

to-Integer Transformer modules are used to convert the inputs (Xt) from a multivariate to a univariate 
time series. By default, the CD mismatch processing is enabled and a trigger control is set to 0. When a 

transition is needed from a univariate to a multivariate time series processing, the trigger is enabled and 

the MA processing of Xt is called upon; otherwise it remains disabled and the CD processing of Xt 
continues. 

One important feature of this neural architecture is the availability of a dual-prediction output. This 

feature accounts for the two prominent MMN properties – the CD property which indexes a response 
function as a difference between sensory observation and an internal generative state and the MA 

property which permits adjustments to be made on the sequence length of a set of sensory observations 

in accordance to a threshold limitation (Leider et al., 2013a). This second property facilitates level-2 

mismatch operations to be performed by the AMI. In most instances of the AMI predictions, a univariate 
time series persists and a CD operation is assumed. Where the time series is of a multivariate form, the 

MA function is called into action through the aforementioned AMI’s special decoding circuit.   
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Fig.2. AMI Neural Structure. 

 

3.2. AMI Operational Principle 

The AMI principle is based on the MMN theory (Takaura & Fujii, 2016; Näätänen et al., 1978, 

2007; Lieder et al., 2013a, 2013b), and on the theory of functional reorganization in mammalian auditory 
cortex, A1 (Sollini et al., 2018). In the context of MMN, the change detection theory features more 

prominently. Furthermore, the concept of functional reorganization is exhibited by a frequency-tuned 

hebbian-like learning mechanism. 

The prediction operations in the AMI basically occur in two-phases (Osegi et al., 2018):  

 Phase-1 (low-level) prediction of an observed time series value in the current time step based 

on a history of time series data values several time steps back. These data values may be 

sparse and they correspond to the evoked potentials originally observed by Näätänen et al 

(1978) as the “odd-ball” phenomenon. 

 Phase-2  (top-level) prediction for performing predictions several time steps in advance.  

The details of these phases of predictions are presented in the extended sub-sections that follow (sub-

sections 3.2.1 and 3.2.2). 

 

3.2.1. Phase-1 Predictions in the AMI 

In the AMI, a Phase-1 prediction is used for making predictions one-step ahead. This is basically 
done using a single learning formula and random fine-tuning is not necessary for learning purposes. 

Specifically, in phase-1 predictions, the AMI learns a sequence of data points (values) 

automatically/temporally in an adaptive manner such that a mean deviant point is computed as in Eq.(8): 
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where, 

n = number of data points in a temporal sequence 

Sdeviant = the (n-1)th value of the temporal sequence 

Sdev = the difference between Sdeviant and Sstars 
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Sstars = the (n-2)th values of the temporal sequence 

S* = sparse set of input sequences 

In order to make a prediction with the AMI, the considered deviant is added to the mean deviant as: 

 
)(meandevdeviantpred SSS   (9) 

where, 

 1 

ndeviant SS  (10) 

 2 

nstars SS  (11) 

 
The AMI algorithm is as described in Algorithm 1. 

 

Algorithm 1. AMI Processing Algorithm 

A. 1: Initialize Spred, as prediction parameter, Sstars, as input sequences (standards) State, Sdev(mean) as 
deviant mean, j as iteration counter. 

B. 2: for all s s.Sstars, &&  j > 1, do 

C. 3:    Compute Sdeviant and Sstars using equations Eq.(10) and Eq.(11) 

D. 4:    
starsdeviantdev SSS  // deviations from standards 

E. 5:     Compute Sdev(mean) using equations Eq.(8) 

F. 6:     Compute Spred using equations Eq.(8) and Eq.(10) 
G. 7:      Update Sdev(mean) using Algorithm 2 

H. 8: end for 

 
The AMI algorithm uses the concept of hebbian learning and is described in the following way: 

If the current prediction error of the AMI neuron is greater than or lower than zero, its prediction 

value is reinforced by decreasing or increasing its deviant weight value by the absolute prediction error 
difference at the current time step and incrementing its recognition threshold by a small factor; otherwise 

a zero or negligible positive reinforcement is used by adding a very small value (deviant-laplacian 

correction). In instances where exact matches occur, a small laplacian correction value (typically in 

small fractions of about a hundredth), is also used for deviant weight updates. The learning rule is 
described succinctly as in Algorithm 2. 

 

Algorithm 2. AMI Learning Algorithm 
İ. 1: Initialize Spred, as prediction parameter, Sstars, as input sequences (standards)    State, 

Sdev(mean) as deviant mean, Sdiff(1) as difference between Spred, Sdeviant+1 and Sdiff(2) as difference between 

Sdev(mean) and |Sdiff(1)|, lp as correction factor or bias, Th as recognition threshold. 

J. 2: for all s s.Sstars do 
K. 3:    if Sdiff(2) > 0 

L. 4:    
)1()()( diffmeandevmeandev SSS  // Weaken deviant mean by a factor, |Sdiff(1)| 

M. 5:     1,01.0min  hh TT // Positive recognition threshold reinforcement 

 

N. 6:        elseif Sdiff(2) < 0 

O. 7:    
)1()()( diffmeandevmeandev SSS  // Reinforce deviant mean by a factor, |Sdiff(1)| 

P. 8:        else 

Q. 9:   
pmeandevmeandev lSS  )()(
 

R. 10:    01.0 hh TT // recognition threshold bias 

S. 11:    end if 
T. 12: end for 
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3.2.2. Modelling State Transitions - Phase-2 Predictions in the AMI 
In a typical time series prediction, there are several possibilities that may exist when the context 

prediction representation is defined by the time steps. For instance, if we take the current time step as, 
t2, then at the minimum look-ahead/look-back case, the past and future time steps are t1 and t3 

respectively.  However, our goal is to predict the time series value, Vt3, at the future time step using the 

time series values at the current and past time steps namely, Vt2 and Vt1. The possible conditional encoded 
state relations at these time steps are detected in Algorithm 3: 

 

Algorithm 3. Encoding state relations in the AMI 
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These states are then used to update the forecast horizons using the AMI Phase-1 predictions and deviant 
means as in the decoder technique in Algorithm 4: 

 

Algorithm 4. Decoding Phase-2 Predictions in the AMI 
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Just as in Phase-1 predictions, the CD theory applies to Phase-2 predictions as well; in this regard, the 

deviant-phase parameter is computed using Eq,(8). 
 

 

4. EXPERIMENTS AND RESULTS 
4.1. Experiment Details  

The experiments presented in this research are performed in several parts:  

In the first part (section 4.2), a single/double character learning problem is presented; this 
experiment is used as a graphic demonstration of the symbolic prediction and representational capability 

of the AMI neural technique in making continual predictions.  

In the second part (section 4.3), the experiments using some popular and recent time series data are 
presented. Where the data is of the univariate type, it is fed directly to the AMI and the predictions 

decoded through time using the AMI Change Detection (CD) principle (see Section 3, sub-section 3.1.2). 
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In the case when the data is of the multivariate type, we use a binarization routine to encode the inputs 

into a sparse representation, and then train the inputs online using the Model-Adjustment (MA) rule 

described earlier in Section 3 (sub-section 3.1.3). The idea in this approach is to demonstrate the model 
switching high-level transfer learning capability of the AMI technique. Earlier versions of the AMI 

(Osegi et al., 2018) can only handle univariate input. We believe that by including this feature, 

developers can leverage on the full capacity of the AMI neural processing functions to give a more 
generalized predictive representation. 

 

4.1.1. Benchmarked Data of the State-of-the-art 

The experimental studies including simulation results using 5 standard benchmark data sets for time 
series problems and 4 Numenta Anomaly Benchmark (NAB) datasets for real time streaming data which 

have recently been proposed in (Lavin and Ahmad, 2015) are presented; these experiments are provided 

in sections 4.3 and 4.4 respectively. The experimental proof is intended to show that our algorithm is 
scalable in a variety of tasks - both for standard time series benchmark data and streaming benchmark 

data. The feature size and details of the standard time series dataset are presented in Table 1 while that 

of the NAB datasets are presented in Table 2. 
 

Table 1 Standard datasets. Datasets 1-4 (Moritz et al., 2015); dataset 5 (Yöntem et al., 2019) 

 

Id Benchmark Description Number of 
Exemplars 

Number of 
attributes 

1 airpass Monthly total 

international airline 

passengers from 01/1960 
- 12/1971 

144 1 

2 beersales Monthly beer sales in 

millions of barrels, 
01/1975 - 12/1990 

192 1 

3 SP Quarterly S&P 

Composite Stock Index, 
1936Q1 - 1977Q4 

521 1 

4 google Daily returns of the 

google stock from 

08/20/04 - 09/13/06 

168 1 

5 divorce marital perceptions of 

divorced and happily 

married persons 

170 54 

 
 

Table 2 Numenta Anomaly Benchmark (NAB) data (Lavin and Ahmad, 2015) 

 

id Benchmark Description Number of 

Exemplars 

Number of 

attributes 

1 speed_7578 speed obtained from 

specific sensors 

1127 1 

2 nyc_taxi New York city taxi data 10320 1 

3 rogue_agent_key_hold timing anomalies that 

occur when several users 

press the keys of a 
computer 

1182 1 

4 hot_gym Energy consumption 

data from an Australian 
gymnasium 

4391 1 
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4.1.2. State-of-the-art machine learning neural techniques 

In order to compare our proposed technique, we have considered two state-of-the-art machine 
learning neural techniques. These techniques include the Long Short-Term Memory, a recurrent type 

neural network that has gained popularity in recent times and the Hierarchical Temporal Memory (HTM) 

which is based on the Cortical Learning Algorithms. The parameters of these two techniques are 
presented in Appendix A. 

 

4.2. The Single-to-Double Character Learning Problem Experiments 

These experiments are conducted in order to gain insight into the pattern prediction behaviour of 
the proposed AMI technique. Sample character sequences for the single and double character problem 

under study as presented to the AMI program is given in Table 3. These sequences represent the 

characters of the English alphabet in their capitalized form. The sequences are presented character by 
character, one step at a time and the task is for the AMI to tell in advance what the next character in the 

sequence will be. For the single character problem, the sequences are an ordered replicated 

representation of the alphabets, A, B and C as “A, B, C, A, B, C… A, B, C” in that order for the first 73 
values and these values are presented to the AMI one step at a time. For the next 23 symbols, a steady 

symbol representation, “A”, is presented to the AMI one step at a time. 

For the double character problem, the sequences are a mixture of some of the English alphabets in bi-

variate form and with most patterns of the form “AB”.  
 

Table 3 Sample sequences for the AMI character learning problem 

Single Character Sequence Double Character Sequence 

A AB 
B CD 

C EF 

A GH 
B IJ 

C KL 

A MN 
B AB 

C AB 

A AB 

A AB 
A AB 

A AB 

A AB 
A AB 

 

 

4.2.1 Single Character Learning 
The sample numerical results of simulations for single character problem showing the continuous 

learning performance of AMI are provided in Table 4. The predictions are performed one-step ahead 

and in a continuous manner. 
The results show that for the single-character problem, the learning impact of AMI on the data time 

series is improved with time; a continual Mean Absolute Percentage Error (MAPE) plot (see Fig. 3) also 

clearly shows that the AMI will improve its prediction error minimization response as the patterns starts 

becoming more regular. 
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Table 4. Predictions of AMI for single character learning problem 

Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

@ B A C G A B A 

A C I A ? B A A 

_ A ? B A C A A 

@ B A C G A A A 

A C H A @ B A A 

U A ? B A C B A 

? B A C G A A A 

A C H A @ B B A 

Q A @ B A C A A 

@ B A C F A B A 

A C H A @ B A A 

N A @ B A C A A 

@ B A C F A   

A C H A @ B   

L A @ B A C   

@ B A C F A   

A C G A A A   

K A @ B B A   

@ B A C B A   

A C G A B A   

J A ? B A A   

? B A C B A   

A C G A A A   

J A @ B A A   

@ B A C B A   

A C G A B A   

I A ? B A A   

@ B A C B A   

 

 
Fig.3. Continual MAPE response for the single-character problem 
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4.2.2 Double Character Learning 

The sample numerical results of simulations for double character problem showing the performance 

of AMI using threshold recognition factors, Th, from 0.1 to a point where the Th update just equals 1 are 
provided in this experiment. This fine tuning step is done at increments of 0.1 and is equivalent to setting 

the linear spacing between 0.1 and 1.0 at most 10 point of intervals. The first setting for Th (Th, = 0.1) 

and the last setting (Th, = 0.9) are reported in Tables 5 and 6 respectively; no noticeable improvements 
over the first setting were observed for the other different settings of Th. 

 

Table 5 Predictions of AMI for double character learning problem; threshold setting Th, is at 0.1. 

Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

AA IJ CD KL 

BC KL CD MN 

CD MN CD AB 

DE AB CD AB 

EF AB CD AB 

FG AB DE AB 

GH AB DE AB 

FG AB DE AB 

EF AB CD AB 

EF AB CD AB 

DE AB CD AB 

DE AB CD AB 

DE AB CD AB 

DE AB CD AB 

CD AB CD AB 

CD AB   

CD CD   

CD EF   

CD GH   

CD IJ   

 

 

The numerical results obtained when the precision of Th is increased to two places of decimals are 
also presented. In this step the equivalent linear space setting is at most 100 point of intervals and the 

simulation stopping criteria is as in the aforementioned paragraph. Due to space restrictions we restrict 

the reported thresholds to two best settings of Th, 0.84 and 0.92 as depicted in Table 7 and Table 8 
respectively. 

The results show that for the double-character problem, the prediction learning impact of AMI on 

the data time series is not noticeable at a low precision and when increasing the recognition thresholds 

to a factor of 0.9 it improves. However, by increasing the precision to two places of decimals, there is a 
noticeable impact of increasing thresholds. In particular, it was found that a threshold between 0.84 and 

0.92 gives a good matching prediction space; however, there may be degrading matching prediction 

performance as the threshold setting tends to 0 or 1. 
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Table 6 Predictions of AMI for double character learning problem; threshold setting Th, is at 0.9 

Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

AA IJ AB KL 

BC KL JK MN 

CD MN IJ AB 

GG AB IJ AB 

HI AB IJ AB 

IJ AB AB AB 

CD AB AB AB 

BC AB AB AB 

BC AB AB AB 

BC AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB   

AB CD   

AB EF   

AB GH   

 

Table 7 Predictions of AMI for double character learning problem; threshold setting Th, is at 0.84  

Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

AA IJ GH KL 

CC KL GH MN 

DE MN GH AB 

EF AB GH AB 

FG AB GH AB 

GH AB AB AB 

AA AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB AB AB 

AB AB   

AB CD   

AB EF   

AB GH   

HI IJ   

 

Table 8 Predictions of AMI for double character learning problem; threshold setting Th, is at increments 
of 0.92  
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Predicted 

Symbol 

Actual 

Symbol 

Predicted 

Symbol 

Actual 

Symbol 

AA IJ AB KL 

BC KL AB MN 

CD MN KL AB 

GG AB JK AB 

II AB JK AB 

JK AB BC AB 

DE AB BC AB 

CD AB BC AB 

CD AB BC AB 

BC AB BC AB 

BC AB AB AB 

BC AB AB AB 

BC AB AB AB 

BC AB AB AB 

BC AB AB AB 

AB AB   

AB CD   

AB EF   

AB GH   

AB IJ   

 

4.3. Experimental details and results using standard benchmarks 
The experiments are conducted to determine the comparative performance of the proposed AMI 

technique with LSTM and HTM techniques. The experimental results are compared on the basis of their 

cross-entropy error loss as this is well applicable to the machine learning community (Goodfellow et al., 

2016). Simulations are based on the parameters set out in Appendix A and are presented in Table 9; in 
the AMI prediction experiment with divorce dataset, a threshold setting of 0.84 is used while in the 

LSTM model a specific hyperparameter – the Maximum Epoch size is fine tuned to examine its 

influence on the prediction error loss. Furthermore, the results using the AMI and HTM are reported in 
terms of the mean of the computed cross-entropies since they make their predictions in a continual 

manner. As can be seen from the results and based on the default system parameters, the AMI technique 

clearly outperforms the LSTM technique in all tasks. For the comparative performance with the HTM, 

the AMI performs better in all but the Google and Divorce datasets where the performance cross-entropy 
scores are similar. 

In order to investigate the feature of hyper-parameter tuning in the LSTM and its superiority over 

AMI, we increased the number of epochs from the default value to 500, 1000, and 1500. The results are 
as provided in Table 10. 

 

The result for the Airpass dataset (Table 10) goes to show that hyper-parameter tuning gives the 
LSTM technique an inherent advantage as its loss reduces with a graded increase in training epochs. In 

particular, at an epoch of 1000 and 1500 units, the LSTM will outperform the AMI or HTM techniques. 

However, as can be observed in Table 10, the AMI outperformed the LSTM for three of the standard 

datasets (Beersales, SP and Google datasets). For the Divorce dataset, the LSTM fared better than the 
AMI. This goes to show that the underlying structure of the data is important for sequence-wise 

predictions. The failure of the LSTM to perform better than the AMI for the aforementioned three 

datasets may be attributed to the lack of a combined trend and seasonality in the presented datasets (see 
Moritz et al., 2015). Thus, trend or seasonal information is very vital for sequence-to-sequence 

predictors like LSTM. 
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Table 9 Cross-entropy loss scores (ce-loss) for the AMI, LSTM and HTM Techniques using the various 

standard benchmarks  

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Table 10 Cross-entropy loss scores-epochs (ce-loss-epochs) for the LSTM with increasing epochs 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

4.4. Experimental details and results using NAB data 

The experiments are conducted to determine the comparative performance of the proposed AMI 
technique with HTM technique. The essence of this experiment is to validate the robustness of both 

neuro-biological techniques in prediction tasks of real world sensory data examples. Since the LSTM is 

a traditional (classical) neural technique it is not considered in this experiment. 

Simulation results are presented in Table 11. The results show the superiority of our proposed 
algorithm over the HTM technique though both techniques did fairly well in all the presented NAB 

datasets. 

 
Table 11 Cross-entropy loss scores (ce-loss) for the AMI and HTM Techniques using the NAB datasets  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Benchmark 

Dataset 

AMIce-loss(mean) 

 

LSTMce-loss 

 

HTMce-loss(mean) 

 

Airpass 0.0200 

 

0.7947 

 

0.0300 

 

Beersales 0.0100 
 

0.1985 
 

0.0200 
 

SP 0.0100 

 

0.3045 

 

0.0200 

 
Google 0.0100 

 

0.2235 

 

0.0100 

 

Divorce 0.0100 
 

0.5062 
 

0.0100 
 

Benchmark 

Dataset 

LSTMce-loss500 

 

LSTMce-loss1000 

 

LSTMce-loss1500 

 

Airpass 0.1471 
 

0.0061 
 

0.0139 
 

Beersales 0.1813 

 

0.0659 

 

0.0186 

 
SP 0.2280 

 

0.1715 

 

0.0666 

 

Google 0.2228 

 

0.0449 

 

0.0479 

 
Divorce 0.0039 

 

0.0055 

 

0.0031 

 

NAB Dataset 

 

AMIce-loss(mean) 

 

HTMce-loss(mean) 

 

speed_7578 0.003100 

 

0.010000 

 
nyc_taxi 0.000540 

 

0.000758 

 

rogue_agent_key_hold 0.001390 
 

0.002778 
 

hot_gym 0.000935 

 

0.001638 
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5. CONCLUDING REMARKS AND FUTURE WORK  

In this paper, a novel machine intelligence algorithm of reduced complexity called the Auditory 

Machine Intelligence (AMI) is proposed for predicting time series data or data that are sensory in nature. 
The algorithm can learn to predict in a deterministic manner using a well defined formula; in fact the 

AMI does not necessarily require the tuning of any system specific parameter or hyper-parameter 

making it a very top candidate for real-time decision making and control functions.  
AMI algorithm has been compared with two well known state-of-the-art algorithms for time series 

prediction: the Long Short-Term Memory (LSTM) and the Hierarchical Temporal Memory (HTM) 

based on cortical learning algorithms considering a number of related example cases. These algorithms 

have been reported by many authors to perform relatively well on a number of these time series 
examples; however, they could not surpass the AMI in all of the considered example cases. The reason 

for this is based on a hypothesized single reason: the AMI does not use the unnecessary weight or biasing 

operations as in most neural network processing schemes or in the case of cortical learning neural 
algorithms such as the HTM, the unnecessary column processing operations in the temporal parts to 

make a prediction. The AMI rather learns on the trend of the data using a novel formula based on sound 

neurobiological principles. 
Despite its promising benefits, the potential of the AMI algorithm to make predictions multiple-

steps ahead or based on multivariate based predictions in the context of anomaly detection remains fully 

unexplored; one possible approach to this may be to use the formulated state transition matrix in Phase-

2 of the AMI to capture the trend in a sequence of n-1 data points, then use the pattern formed from 
novel sequences for match comparisons that trigger a deviant state. We expect that academic researchers 

interested in novel prediction algorithms suitable for anomaly detection in sensory-like or time series 

data will explore this possibility or maybe an alternative but more efficient and less complex biological 
plausible approach. 

The noise robustness of the AMI technique is also not studied in this research paper. Though the 

AMI features a sparsity parameter, s, the benefits are yet to be investigated; thus, this is another 

candidate area for research.  
Another major shortcoming inherent in the AMI model used in this research revolves around the 

optimality of the threshold recognition parameter Th for model adjustment. Thus, it will be advisable to 

investigate the potential of optimization algorithms that are bio-inspired such as the Bee Colony 
Optimization (BCO) or Particle Swarms (PS) for proper fitting of this parameter. Though, optimization 

will be beneficial, it also suggested that such optimizers should not be complex to implement in 

embedded hardware in order to facilitate real time predictive analytics.   
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Appendix-1: Default parameters for the AMI, LSTM and HTM techniques 

 

Table A.1:  Default AMI Parameters 

 
 

 

 

 

 

Table A.2:  Key LSTM Parameters 

 
 

 

 
 

 

 

 

Table A.3:  Key HTM Parameters 

 

Parameter Default value 

Model Adjustment Threshold, 

Th 

0.21 

Sparsity factor, s 2 

Parameter Default value 

Sequence Length 20 

Hidden Neuron Size 100 

Maximum Iteration 100 

Maximum Epoch Size 100 

Learning Rate 0.1 

Parameter Default value 

Number of Columns 250 

Initial Synaptic Permanence 0.21 

Reduct factor 2 

Boost factor 100 

Synaptic Permanence 

Increment 

0.1 

Synaptic Permanence 
Decrement 

0.1 

Number of past sequences 

used as context 

2 
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