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Abstract

In the present paper, we construct the minimal and maximal operators generated by
special type linear differential-operator expression for first order in the weighted
Hilbert space of vector-functions defined on right semi-axis with the use of standard
technique. In this case, the minimal operator is accretive but not maximal. Our main
goal in this paper is to describe the general form of all maximally accretive extensions
of the minimal operator in the weighted Hilbert space of vector-functions. Using the
Calkin-Gorbachuk method, the general representation of all maximally accretive
extensions of this minimal operator in terms of boundary conditions is obtained. We
also investigate the structure of the spectrum set such maximally accretive extensions of
this type of minimal operator.

Keywords: Accretive operator, differential operator, deficiency index, space of
boundary values, spectrum.

Birinci dereceden tiim maksimal akretif diferansiyel operatorlerin
gosterimi

Oz

Bu c¢alismada, standart teknik kullanilarak, sag yari eksende tamimlanan vektor-
fonksiyonlarimin  agwlikli  Hilbert uzayinda birinci mertebeden é6zel tip lineer
diferansiyel-operator ifadesi tarafindan iiretilen minimal ve maksimal operatorleri
vapiulandirdik. Bu durumda, minimal operator akretif olup maksimal degildir. Bu
calismadaki asil amacimiz, vektor fonksiyonlarimin agirlikly Hilbert uzayinda, minimal
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operatoriin tiim maksimal akretif geniglemelerinin genel formunu tamimlamaktir.
Calkin-Gorbachuk metodu kullanilarak, bu minimal operatoriin tiim maksimal akretif
genislemelerinin genel gosterimi simir degerleri dilinde ifade edilmistir. Ayrica bu
minimal operatoriin maksimal akretif genislemelerinin spektrum yapist arastiriimistir.

Anahtar kelimeler: Akretif operator, diferansiyel operator, defekt sayilari, sinwr
degerler uzayi, spektrum.

1. Introduction

Operator theory is important to understand the nature of the spectral properties of an
operator associated with a boundary value problem acting on a Hilbert space. A linear
closed densely defined operator T: D(T) € X — X in a Hilbert space X is called to be
accretive (dissipative) if and only if

Re(T, ¥)x =0 (Im(Ty,P)x =0 ), € D(T),

where, Re(:, -) (Im(-, +)) and D(T) denote the real (imaginary) part of the inner
product and the domain of the operator T, respectively (see [1, 2]). If an accretive
(dissipative) operator has no any proper accretive (dissipative) extension, then it is
called maximally accretive (dissipative) (see [1, 2]). The class of accretive operators is
an important class of non-selfadjoint operators in the operator theory and maximally
accretive operators play very efficient role in mathematics and physics. In physics, there
are many interesting applications of the accretive operators in areas like hydrodynamic,
laser and nuclear scattering theories. It is noteworthy to recall that the spectrum set of
the accretive operators lies in right half-plane.

The maximally accretive extensions and their spectral analysis of the minimal operator
generated by regular differential-operator expression in Hilbert space of vector-
functions defined on a finite interval (0, b) have been studied by Levchuk [3].

In the present study, in Section 3, using the Calkin-Gorbachuk method, the
representation of all maximally accretive extensions of the minimal operator generated
by the linear singular differential operator expression in the weighted Hilbert spaces of
the vector functions defined at right semi-axis is obtained. In Section 4, the geometry of
the spectrum of these type extensions is researched.

2. Statement of the problem

Let X be a separable Hilbert space and a € R. In the weighted Hilbert space
L% (X, (a,)) of X-valued vector-functions defined on the right semi-axis, consider the
following linear differential operator expression for first order in the form

) = Z5000)' (@) + Av(D),

where:
(1) x,0 : (a,0) = (0,), k, 0 € C(a,x);
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(2) 5 € L' (a,);
K
(3) A: X — X is a selfadjoint operator with condition A > 0.

The minimal L, and maximal L operators corresponding to differential expression I(-,-)
can be constructed by following the way in [4]. In this case, the minimal operator L, is
accretive, but it is not maximal in L3 (X, (a, )).

The main goal of this work is to describe of all maximally accretive extensions of the
minimal operator L, in terms of boundary condition in L} (X, (a, ©)) and to investigate
the geometry of the spectrum set of these extensions.

3. Description of maximally accretive extensions

The minimal operator L generated by the operator expression
+(v) = — D (1)
I*(v) = 20 (kv)' () + Av(7)

can be defined in L3 (X, (a, )) in a similar way following [4]. In this case, the operator
L* = (Lo)* in L3(X, (a, o)) is called the maximal operator generated by I*(-, -). It is
easy to see that L, c L and L c L*.

If L is any maximally accretive extension of the operator L, in L3 (X, (a,)) and M is

corresponding extension of the minimal operator M, generated by the differential
expression

0 '
m(v) = o) (rkv)' (1)
in LZ (X, (a, )), then it is clear that

L(v) = % (kv) (1) + Av(7)

=i (—i% (Kv)’) (1) + Av(7)
=i(-M)v(@) + Av(v)

=i (—(Re]W + iImIW)) v(1) + Av(T)
(ImeT)v(T) - i(ReIVI)v(T) + Av(1)
= [(ImM) + A]v(r) — i(ReIVI)v(r).

Therefore,
(Rel) = (ImM) + A.
Furthermore,

(Rel) = (ImM) + A = Im(M + A).
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Hence, the necessary and sufficient condition for describing all accretive extension of
the minimal operator L, in Lf, (X, (a,©)) is to describe all dissipative extensions of the
minimal operator S, generated by the differential expression

s(v) = l (KV) (1) + Av(7)

in 12 (X, (a, ©)).

Note that the maximally dissipative operator generated by the differential expression s(:
, ) in L3 (X, (a, ©)) will be denoted by S.

In this chapter, using the Calkin-Gorbachuk method we will research the general
representation of all maximally dissipative extensions of the operator S, in
L3 (X, (a, ©)).

Firstly, let us define the deficiency indices of any symmetric operator in a Hilbert space.
Definition 1 [5]. Let T be a symmetric operator, A be an arbitrary non-real number and
X be a Hilbert space. We denote by Rz and R, the ranges of the operator (T — AI) and
(T — AI), respectively, where I is identity operator on X. Clearly, R; and R, are
subspaces of X, which need not necessarily be closed. We call (X — R3) and (X — R,),
which are their orthogonal complements, the deficiency spaces of the operator T and we
denote them by N3 and 2V, respectively: thus

Ni=X—-R3, Ny =X—-R;.

The numbers

ng = dimNy, ny = dimN),

are called deficiency indices of the operator T.

Let us prove the following auxiliary result which we will need for our main result.
Lemma 1. The deficiency indices S, has the following form

(N4 (S),n_(Sy)) = (dimX, dimX).

Proof. Let A = 0 for the simplicity of calculations then the general solutions of the
differential equations

K(T) (Kv+) @ tivy(r)=0, t>a

are in the forms

v4 (1) —mexp( fa 92(:))ds)f,f €X, T>a.
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For any f € X we have

Ve llZ2 e a0 = Ja OOQ(T)||V+(T)|I)2(dT
=1, |z ew (- 1y 3 ds) f”iQ(T)dr
= [ B exp (-2 S ds) ar I I
= fa eXp( ZfT 92((5))d ) (faf 92((5))d )llfll)z(
= (1-exp (-2 S5 ds)) 7% < oo

Consequently, n,(Sy) = dimker(S + iE) = dim X.

Similarly, for any f € X we get

lIv- ”LZ(X(aOO)) fooQ(T)”V—(T)lIf(dr
=17 s exe (e 4s) 1 ||;2(Q(T)d’
= 7D exp (2 [T £ as) dr I f 1}
= [ exp (2 2 ds)a (7 £ ds) 113
= 2 (exp (27 &2 ds) — 1) 113 < .

As aresult, n_(S,) = dimKker(S — iE) = dim X. This completes the proof of theorem.
Accordingly, the operator S, has a maximally dissipative extension (see [1]).

In order to describe all maximally dissipative extensions of S,, it is necessary to
construct a space of boundary values of it.

Definition 2 [1]. Let X be any Hilbert spaces and S: D(S) € ¥ — X be a closed densely
defined symmetric operator on the Hilbert space having equal finite or infinite
deficiency indices. A triplet (X, 8,1, B-), where X is a Hilbert space, 8, and B, are linear

mappings from D(S™) into X, is called a space of boundary values for the operator S, if
forany n,x € D(S")

(5*77’ K)% - (UJS*K)f = (181(77)’ :BZ(K))X - (.BZ(T’)' ﬁl(K))X

while for any G,, G, € X, there exists an element n € D(S*) such that g;(n) = G, and
B(m) = G,.

Lemma 2. The triplet (X, 8,1, 8-), where
B1:D(S) > X, B1(¥) = 7 (k1)) — (kv)(a)) and

B2:D(S) = X, B (v) = %((KV)(OO) + (kv)(@)), v € D(S)
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is a space of boundary values of the operator S, in L} (X, (a, ).
Proof. For any v,9 € D(S)

(SV 19)L2 (X,(a,)) (V’ Sﬁ)Lé(X,(a,oo))
= (2 0wy’ + av,9)

= (iS(Kv)’,ﬁ)

— (v,i5 (ko) + 49)
L3 (X (a,%)) €
, — (v, i< (Kﬁ)’)
L3(X,(a,)) @ L3(X,(a,0))

_ fa ( K(7) (Kv) @), 19(T)> o(7)dt — fa (V(T) LK(T) (x9)’ (r)> o(D)dr
X

= i[fa ((kv)' (1), (K9) (1)) xdT + faoo((lcv)(r),(}cﬁ) (t)xdt]
=i[ (@), (Kﬁ)(f));(dt

= i|(Gev) (), (10 (20)),, = ((ev) (@), (8 (@)

= (B1(v), B2())x — (B2(v), B1(I))x-

Nom let f, g € X. Let us find the function v € D(S) such that

L3(X,(a,))

1) = 5 () (@) — ()(@) = f and B,(v) = = ((9)(20) + (V) (@) = g.

Taking into account these equations, one can see

f

(kv)(e0) =

If we choose the functions v(-, -) in the following form

__1 e~ T lg"'f 1 a-tig—f

then it is obvious thatv € D(S) and B;(v) = f, B,(v) = g

With the use of the Calkin-Gorbachuk method [1], we obtain the following:

Theorem 1. If S is a maximally dissipative extension of the operator S, in
L% (X, (a,)), then it is generated by the differential-operator expression s(-) and the
boundary condition

(kv)(a) = T'(kv) (),

where I': X — X is a contraction operator. Additionally, the contraction operator I in X is
uniquely determined by the extension S, i.e. § = Sy and vice versa.

Proof. Each maximally dissipative extension S of the operator S, is described by
differential-operator expression s(-)with boundary condition

U —-E)p(v) +i(U+E)B,(v) =0
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where U: X — X is a contraction operator. Therefore, from Lemma 2, we obtain

U - E)((KV)(OO) — (Kv)(a)) + (U + E)((KV)(OO) + (Kv)(a)) =0,v € D(S).
Hence, it is obtained that

(kv)(a) = =U(kv) ().

Choosing I' = —U in the last boundary condition we have

(kv)(a) = T'(kv)(0).

Therefore considering this and Theorem 1 together, we can give the following result.

Theorem 2. Each maximally accretive extension L of the operator L, generated by the
linear singular differential expression [(+) and the boundary condition

(kv)(a) = T'(kv)(e0),

where T': X — X is a contraction operator such that this operator is uniquely determined
by the extension L, i.e. L = L and vice versa.

4. The spectrum of the maximally accretive extensions

In this section, we will research the geometry of the spectrum set of the maximally
accretive extensions of the operator L, in L3 (X, (a, ©)).

Theorem 3. The spectrum of any maximally accretive extension L is in form

o(Lp) = {/1 eca=( faoo:z(—;))ds)_l (n(lul~Y) + i arg(d) + 2ni),
LET (F exp (—A faoofz(—gs))ds)), ne Z}.

Proof. Let us consider the following spectrum problem defined by

Lr(v)=Av+f,A€C A =ReA>0.

Then, we have

%(Kv)’(r) +Av(r) = () + f(1), T > a,

(kv)(a) = I'(kv)(e0).

The general solution of the last differential equation
() (2) = L2 QE — D) (@) + E2f (1), T > a

K2 (1)

is in the following form

445



OZTURK MERT R., IPEK AL P., ISMAILOV Z.I.

v(; 1) = Lexp ((/’IE A) fT 92((5)) s)f,1

© (s)
K(T)f exp <(/1E A) ff ,fzé) >i(z)f(s)ds, fLEX, T>a.

In this case

IIKUexp(@E A 7 L2 as) ||

L3 (X.(a, 00))

>f/1 e(n)dr

>f,1, exp <(/1E A) fT QZ((S)) ds) f,1> o(t)dr
X

o &XP <(/1E A, ¢ 92((5))
= f ( exp (()IE A) f ’ 92((5))
=Ju 2((1)) (2’1 fa 92(5))61 )

(oo (-4 7 2200) e (4 525 5) )

oo 2
=Ja ﬁﬁg ( Ar friisds)”eXp( ‘4fT§§3 )fi”xd’
_f L exp (22, [ L5 ds) drlfillg

(e (22, f; £ ds) = 1) Il < o0

and

=fa

2

el exp(m A J; 5 >(S)f( )ds

L3(X,(a,))

2
T Q(E) o(s)
K(T)f exp <(AE A) [, e )K(S)f(s)ds XQ(T)dT

2

_ (> e® T Q(E) o(s)
- 2057 exo (- ) £ 22 06) 2 oy ar
® o(@) || (o T e® 4 T e®) ;-\ el z
=l ewllle exp (AEI K2(8) )[ ( Al ae )x( )f(s)] dS”XdT
o (1) T 0(&) T 0(&) (s) z
= [ E2 | 17 exp (O + A)E [ E2dE) [exp (-4 [] £ d )i(z)f(s)]ds”)(dr
< J7 5D (17 exp (1, 1722 06) L ([l f ()l )ds)
© (1) (o o(s) 7 0(9)
<J; @(fa o xp (24, [ 43 d¢ ) ds) (S e@IIf () lI3ds)dr
o o() (® o(s T o 2
= fa K2 (1) (fa K2 (s )e p (2/1 Ef K2 (&) df) dS) dt ”f”LE,(X,(a,oo))
_ 009(5) o o(7) 2
= exp (2}‘ El. o f) (fa praly ) 112 0, a,cop) < -

Hence, v(-, 1) € L(X, (a,)) for A € C, Re A = 0.

Using this and boundary condition, we have
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(E —Texp ((/’IE — A)f 92((5))61 )) f exp <(/1E A) fa 92((?) >i§3f( s)ds.
One can see that the necessary and sufficient condition for A € o(Ly) is

exp (-1 25 5) = o (rexp (-4 [ 255)).

Therefore,

-1 faoo 52((5)) ds = In|u| + iargu + 2mmi, m € Z.

Thus,

co _1 3 —_ .
= (fa 52((‘?) ds) (In(|lu|™Y) + iarg(@) + 2nmi), p€EO (F exp( A fa :2((?) s)),
n e 7.

This completes the proof.
Now, we present an example as an application of our results.

Example. All maximally accretive extensions L, of the minimal operator L, generated
by the following first order linear symmetric singular differential expression

l[v) =t *@Yv(1)) +av(r), y,a,a€ Rand2y —a—1>0

in the Hilbert space L2« (1, «) are described by the boundary condition
(t"v)(1) = r(¥v)(e0),

where r € Cand |r| < 1.

Moreover, in this case that » # 0 the spectrum of maximally accretive extension L, is of
the form

o(L,) =1+ a—-2y)(n|r|+iarg(r) + 2nmi),n € Z.
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