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Abstract 

 

In the present paper, we construct the minimal and maximal operators generated by 

special type linear differential-operator expression for first order in the weighted 

Hilbert space of vector-functions defined on right semi-axis with the use of standard 

technique. In this case, the minimal operator is accretive but not maximal. Our main 

goal in this paper is to describe the general form of all maximally accretive extensions 

of the minimal operator in the weighted Hilbert space of vector-functions.  Using the 

Calkin-Gorbachuk method, the general representation of all maximally accretive 

extensions of this minimal operator in terms of boundary conditions is obtained. We 

also investigate the structure of the spectrum set such maximally accretive extensions of 

this type of minimal operator.  

 

Keywords: Accretive operator, differential operator, deficiency index, space of 

boundary values, spectrum. 

 

 

Birinci dereceden tüm maksimal akretif diferansiyel operatörlerin 

gösterimi 
 

 

Öz 

 

Bu çalışmada, standart teknik kullanılarak, sağ yarı eksende tanımlanan vektör-

fonksiyonlarının ağırlıklı Hilbert uzayında birinci mertebeden özel tip lineer 

diferansiyel-operatör ifadesi tarafından üretilen minimal ve maksimal operatörleri 

yapılandırdık. Bu durumda, minimal operatör akretif olup maksimal değildir. Bu 

çalışmadaki asıl amacımız, vektör fonksiyonlarının ağırlıklı Hilbert uzayında, minimal 
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operatörün tüm maksimal akretif genişlemelerinin genel formunu tanımlamaktır. 

Calkin-Gorbachuk metodu kullanılarak, bu minimal operatörün tüm maksimal akretif 

genişlemelerinin genel gösterimi sınır değerleri dilinde ifade edilmiştir. Ayrıca bu 

minimal operatörün maksimal akretif genişlemelerinin spektrum yapısı araştırılmıştır.     

 

Anahtar kelimeler: Akretif operatör, diferansiyel operatör, defekt sayıları, sınır 

değerler uzayı, spektrum. 

 

 

1. Introduction 

 

Operator theory is important to understand the nature of the spectral properties of an 

operator associated with a boundary value problem acting on a Hilbert space. A linear 

closed densely defined operator 𝑇: 𝐷(𝑇) ⊂ 𝑋 → 𝑋 in a Hilbert space 𝑋 is called to be 

accretive (dissipative) if and only if     

 

𝑅𝑒(𝑇𝜓, 𝜓)𝑥 ≥ 0  (𝐼𝑚(𝑇𝜓, 𝜓)𝑥 ≥ 0  ), 𝜓 ∈ 𝐷(𝑇),  

 

where, 𝑅𝑒(∙ , ∙) (𝐼𝑚(∙ , ∙)) and 𝐷(𝑇) denote the real (imaginary) part of the inner 

product and the domain of the operator 𝑇, respectively (see [1, 2]). If an accretive 

(dissipative) operator has no any proper accretive (dissipative) extension, then it is 

called maximally accretive (dissipative) (see [1, 2]). The class of accretive operators is 

an important class of non-selfadjoint operators in the operator theory and maximally 

accretive operators play very efficient role in mathematics and physics. In physics, there 

are many interesting applications of the accretive operators in areas like hydrodynamic, 

laser and nuclear scattering theories. It is noteworthy to recall that the spectrum set of 

the accretive operators lies in right half-plane.   

 

The maximally accretive extensions and their spectral analysis of the minimal operator 

generated by regular differential-operator expression in Hilbert space of vector-

functions defined on a finite interval (0, 𝑏) have been studied by Levchuk [3].  

 

In the present study, in Section 3, using the Calkin-Gorbachuk method, the 

representation of all maximally accretive extensions of the minimal operator generated 

by the linear singular differential operator expression in the weighted Hilbert spaces of 

the vector functions defined at right semi-axis is obtained. In Section 4, the geometry of 

the spectrum of these type extensions is researched. 

 

  

2.  Statement of the problem 

 

Let 𝑋 be a separable Hilbert space and 𝑎 ∈ ℝ. In the weighted Hilbert space 

𝐿𝜚
2 (𝑋, (𝑎, ∞)) of 𝑋-valued vector-functions defined on the right semi-axis, consider the 

following linear differential operator expression for first order in the form  

 

𝑙(𝜈) =
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏) + 𝐴𝜈(𝜏),  

 

where:  

(1)  𝜅, 𝜚 ∶ (𝑎, ∞) → (0, ∞), 𝜅, 𝜚 ∈ 𝐶(𝑎, ∞); 
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(2)  
𝜚

𝜅2
∈ 𝐿1(𝑎, ∞);  

(3)  𝐴: 𝑋 → 𝑋 is a selfadjoint operator with condition 𝐴 ≥ 0.  

 

The minimal 𝐿0 and maximal 𝐿 operators corresponding to differential expression 𝑙(∙ ,∙) 

can be constructed by following the way in [4]. In this case, the minimal operator 𝐿0 is 

accretive, but it is not maximal in 𝐿𝜚
2 (𝑋, (𝑎, ∞)).  

 

The main goal of this work is to describe of all maximally accretive extensions of the 

minimal operator 𝐿0 in terms of boundary condition in 𝐿𝜚
2 (𝑋, (𝑎, ∞)) and to investigate 

the geometry of the spectrum set of these extensions. 

 

 

3.  Description of maximally accretive extensions 

 

The minimal operator 𝐿0
+ generated by the operator expression  

 

𝑙+(𝜈) = −
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏) + 𝐴𝜈(𝜏)  

 

can be defined in 𝐿𝜚
2 (𝑋, (𝑎, ∞)) in a similar way following [4]. In this case, the operator 

𝐿+ = (𝐿0)∗ in 𝐿𝜚
2 (𝑋, (𝑎, ∞)) is called the maximal operator generated by 𝑙+(∙ , ∙). It is 

easy to see that 𝐿0 ⊂ 𝐿 and 𝐿0
+ ⊂ 𝐿+.  

 

If �̃� is any maximally accretive extension of the operator 𝐿0 in 𝐿𝜚
2 (𝑋, (𝑎, ∞))  and �̃� is 

corresponding extension of the minimal operator 𝑀0 generated by the differential 

expression 

 

𝑚(𝜈) = 𝑖
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏)  

 

in 𝐿𝜚
2 (𝑋, (𝑎, ∞)), then it is clear that  

 

�̃�(𝜈) =
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏) + 𝐴𝜈(𝜏)  

         = 𝑖 (−𝑖
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′) (𝜏) + 𝐴𝜈(𝜏)  

         = 𝑖(−�̃�)𝜈(𝜏) + 𝐴𝜈(𝜏)   

         = 𝑖 (−(𝑅𝑒�̃� + 𝑖𝐼𝑚�̃�)) 𝜈(𝜏) + 𝐴𝜈(𝜏)   

         = (𝐼𝑚�̃�)𝜈(𝜏) − 𝑖(𝑅𝑒�̃�)𝜈(𝜏) + 𝐴𝜈(𝜏) 

         = [(𝐼𝑚�̃�) + 𝐴]𝜈(𝜏) − 𝑖(𝑅𝑒�̃�)𝜈(𝜏).  

 

Therefore,  

 

(𝑅𝑒�̃�) = (𝐼𝑚�̃�) + 𝐴.  

 

Furthermore,  

 

(𝑅𝑒�̃�) = (𝐼𝑚�̃�) + 𝐴 = 𝐼𝑚(�̃� + 𝐴).  
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Hence, the necessary and sufficient condition for describing all accretive extension of 

the minimal operator 𝐿0 in 𝐿𝜚
2 (𝑋, (𝑎, ∞))   is to describe all dissipative extensions of the 

minimal operator 𝑆0 generated by the differential expression 

 

𝑠(𝜈) = 𝑖
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏) + 𝐴𝜈(𝜏)  

 

in 𝐿𝜚
2 (𝑋, (𝑎, ∞)).     

 

Note that the maximally dissipative operator generated by the differential expression 𝑠(∙
 , ∙) in 𝐿𝜚

2 (𝑋, (𝑎, ∞)) will be denoted by 𝑆.  

 

In this chapter, using the Calkin-Gorbachuk method we will research the general 

representation of all maximally dissipative extensions of the operator 𝑆0 in 

𝐿𝜚
2 (𝑋, (𝑎, ∞)).  

 

Firstly, let us define the deficiency indices of any symmetric operator in a Hilbert space. 

 

Definition 1 [5]. Let 𝑇 be a symmetric operator, 𝜆 be an arbitrary non-real number and 

𝑋 be a Hilbert space. We denote by ℛ�̅� and ℛ𝜆 the ranges of the operator (𝑇 − �̅�𝐼) and 

(𝑇 − 𝜆𝐼), respectively, where 𝐼 is identity operator on 𝑋. Clearly, ℛ�̅� and ℛ𝜆 are 

subspaces of 𝑋, which need not necessarily be closed. We call (𝑋 − ℛ�̅�) and (𝑋 − ℛ𝜆), 

which are their orthogonal complements, the deficiency spaces of the operator 𝑇 and we 

denote them by 𝒩�̅� and 𝒩𝜆 respectively: thus  

 

𝒩�̅� = 𝑋 − ℛ�̅�,  𝒩𝜆 = 𝑋 − ℛ𝜆.  

 

The numbers  

 

𝑛�̅� = 𝑑𝑖𝑚𝒩�̅�,  𝑛𝜆 = 𝑑𝑖𝑚𝒩𝜆 

 

are called deficiency indices of the operator 𝑇.  

 

Let us prove the following auxiliary result which we will need for our main result. 

 

Lemma 1. The deficiency indices 𝑆0 has the following form 

 
(𝑛+(𝑆0), 𝑛−(𝑆0)) = (𝑑𝑖𝑚𝑋, 𝑑𝑖𝑚𝑋).  

 

Proof. Let 𝐴 = 0 for the simplicity of calculations then the general solutions of the 

differential equations 

 

𝑖
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈±)′(𝜏) ± 𝑖𝜈±(𝜏) = 0 ,  𝜏 > 𝑎  

 

are in the forms  

 

𝜈±(𝜏) =
1

𝜅(𝜏)
exp (∓ ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑓, 𝑓 ∈ 𝑋, 𝜏 > 𝑎.  
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For any 𝑓 ∈ 𝑋 we have  

 

‖𝜈+‖
𝐿𝜚

2 (𝑋,(𝑎,∞))
2 = ∫ 𝜚(𝜏)‖𝜈+(𝜏)‖𝑋

2 𝑑𝜏
∞

𝑎
  

                         = ∫ ‖
1

𝜅(𝜏)
exp (− ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑓‖

𝑋

2

𝜚(𝜏)𝑑𝜏
∞

𝑎
  

                         = ∫
𝜚(𝜏)

𝜅2(𝜏)
exp (−2 ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑑𝜏

∞

𝑎
‖𝑓‖𝑋

2   

                         = ∫ exp (−2 ∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑑 (∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
)

∞

𝑎
‖𝑓‖𝑋

2   

                         =
1

2
(1 − exp (−2 ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)) ‖𝑓‖𝑋

2 < ∞.  

 

Consequently, 𝑛+(𝑆0) = dim ker(𝑆 + 𝑖𝐸) = dim 𝑋.  

 

Similarly, for any 𝑓 ∈ 𝑋 we get  

 

‖𝜈−‖
𝐿𝜚

2 (𝑋,(𝑎,∞))
2 = ∫ 𝜚(𝜏)‖𝜈−(𝜏)‖𝑋

2 𝑑𝜏
∞

𝑎
  

                         = ∫ ‖
1

𝜅(𝜏)
exp (∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑓‖

𝑋

2

𝜚(𝜏)𝑑𝜏
∞

𝑎
  

                         = ∫
𝜚(𝜏)

𝜅2(𝜏)
exp (2 ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑑𝜏

∞

𝑎
‖𝑓‖𝑋

2   

                         = ∫ exp (2 ∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
) 𝑑 (∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

𝜏

𝑎
)

∞

𝑎
‖𝑓‖𝑋

2   

                         =
1

2
(exp (2 ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
) − 1) ‖𝑓‖𝑋

2 < ∞. 

 

As a result, 𝑛−(𝑆0) = dim ker(𝑆 − 𝑖𝐸) = dim 𝑋. This completes the proof of theorem.  

 

Accordingly, the operator 𝑆0 has a maximally dissipative extension (see [1]).  

 

In order to describe all maximally dissipative extensions of 𝑆0, it is necessary to 

construct a space of boundary values of it. 

 

Definition 2 [1]. Let 𝔛 be any Hilbert spaces and 𝑆: 𝐷(𝑆) ⊂ 𝔛 → 𝔛 be a closed densely 

defined symmetric operator on the Hilbert space having equal finite or infinite 

deficiency indices. A triplet (Χ, 𝛽1, 𝛽2), where Χ is a Hilbert space, 𝛽1 and 𝛽2 are linear 

mappings from 𝐷(𝑆∗) into Χ, is called a space of boundary values for the operator 𝑆, if 

for any 𝜂, 𝜅 ∈ 𝐷(𝑆∗)  

 

(𝑆∗𝜂, 𝜅)𝔛 − (𝜂, 𝑆∗𝜅)𝔛 = (𝛽1(𝜂), 𝛽2(𝜅))
Χ

− (𝛽2(𝜂), 𝛽1(𝜅))
Χ
  

 

while for any 𝒢1, 𝒢2 ∈ Χ, there exists an element 𝜂 ∈ 𝐷(𝑆∗) such that 𝛽1(𝜂) = 𝒢1 and 

𝛽2(𝜂) = 𝒢2.  

 

Lemma 2. The triplet (Χ, 𝛽1, 𝛽2), where  

 

𝛽1: 𝐷(𝑆) → Χ,  𝛽1(𝜈) =
1

√2
((𝜅𝜈)(∞) − (𝜅𝜈)(𝑎)) and  

 

𝛽2: 𝐷(𝑆) → Χ,  𝛽2(𝜈) =
1

𝑖√2
((𝜅𝜈)(∞) + (𝜅𝜈)(𝑎)), 𝜈 ∈ 𝐷(𝑆)  
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is a space of boundary values of the operator 𝑆0 in 𝐿𝜚
2 (𝑋, (𝑎, ∞).  

  

Proof. For any 𝜈, 𝜗 ∈ 𝐷(𝑆)  

 
(𝑆𝜈, 𝜗)𝐿𝜚

2 (𝑋,(𝑎,∞)) − (𝜈, 𝑆𝜗)𝐿𝜚
2 (𝑋,(𝑎,∞))   

 = (𝑖
𝜅

𝜚
(𝜅𝜈)′ + 𝐴𝜈, 𝜗)

𝐿𝜚
2 (𝑋,(𝑎,∞)) 

− (𝜈, 𝑖
𝜅

𝜚
(𝜅𝜗)′ + 𝐴𝜗)

𝐿𝜚
2 (𝑋,(𝑎,∞)) 

  

 = (𝑖
𝜅

𝜚
(𝜅𝜈)′, 𝜗)

𝐿𝜚
2 (𝑋,(𝑎,∞)) 

− (𝜈, 𝑖
𝜅

𝜚
(𝜅𝜗)′)

𝐿𝜚
2 (𝑋,(𝑎,∞)) 

  

 = ∫ (𝑖
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏), 𝜗(𝜏))

Χ

𝜚(𝜏)𝑑𝜏
∞

𝑎
− ∫ (𝜈(𝜏), 𝑖

𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜗)′(𝜏))

Χ

𝜚(𝜏)𝑑𝜏
∞

𝑎
  

 = 𝑖[∫ ((𝜅𝜈)′(𝜏), (𝜅𝜗)(𝜏))Χ𝑑𝜏
∞

𝑎
+ ∫ ((𝜅𝜈)(𝜏), (𝜅𝜗)′(𝜏))Χ𝑑𝜏

∞

𝑎
] 

 = 𝑖 ∫ ((𝜅𝜈)(𝜏), (𝜅𝜗)(𝜏))
Χ

′
𝑑𝜏

∞

𝑎
 

 = 𝑖 [((𝜅𝜈)(∞), (𝜅𝜗)(∞))
Χ

− ((𝜅𝜈)(𝑎), (𝜅𝜗)(𝑎))
Χ

]  

 = (𝛽1(𝜈), 𝛽2(𝜗))Χ − (𝛽2(𝜈), 𝛽1(𝜗))Χ.  

 

Nom let 𝑓, 𝑔 ∈ Χ. Let us find the function 𝜈 ∈ 𝐷(𝑆) such that  

 

𝛽1(𝜈) =
1

√2
((𝜅𝜈)(∞) − (𝜅𝜈)(𝑎)) = 𝑓 and  𝛽2(𝜈) =

1

𝑖√2
((𝜅𝜈)(∞) + (𝜅𝜈)(𝑎)) = 𝑔.  

 

Taking into account these equations, one can see 

 

(𝜅𝜈)(∞) =
𝑖𝑔+𝑓

√2
 and (𝜅𝜈)(𝑎) =

𝑖𝑔−𝑓

√2
.  

 

If we choose the functions 𝜈(∙ , ∙) in the following form 

 

𝜈(𝜏) =
1

𝜅(𝜏)
(1 − 𝑒𝑎−𝜏)

𝑖𝑔+𝑓

√2
+

1

𝜅(𝜏)
𝑒𝑎−𝜏 𝑖𝑔−𝑓

√2
 ,  

 

then it is obvious that 𝜈 ∈ 𝐷(𝑆) and 𝛽1(𝜈) = 𝑓, 𝛽2(𝜈) = 𝑔.  

 

With the use of the Calkin-Gorbachuk method [1], we obtain the following: 

 

Theorem 1. If �̃� is a maximally dissipative extension of the operator 𝑆0 in 

𝐿𝜚
2 (𝑋, (𝑎, ∞)), then it is generated by the differential-operator expression 𝑠(∙) and the 

boundary condition  

 
(𝜅𝜈)(𝑎) = Γ(𝜅𝜈)(∞),  

 

where Γ: Χ → Χ is a contraction operator. Additionally, the contraction operator Γ in Χ is 

uniquely determined by the extension �̃�, i.e. �̃� = 𝑆Γ and vice versa.  

 

Proof. Each maximally dissipative extension �̃� of the operator 𝑆0 is described by 

differential-operator expression 𝑠(∙)with boundary condition  

 
(𝑈 − 𝐸)𝛽1(𝜈) + 𝑖(𝑈 + 𝐸)𝛽2(𝜈) = 0  
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where 𝑈: Χ → Χ is a contraction operator. Therefore, from Lemma 2, we obtain 

 

(𝑈 − 𝐸)((𝜅𝜈)(∞) − (𝜅𝜈)(𝑎)) + (𝑈 + 𝐸)((𝜅𝜈)(∞) + (𝜅𝜈)(𝑎)) = 0, 𝜈 ∈ 𝐷(�̃�).  

 

Hence, it is obtained that 

 
(𝜅𝜈)(𝑎) = −U(𝜅𝜈)(∞).  

 

Choosing Γ = −𝑈 in the last boundary condition we have 

 
(𝜅𝜈)(𝑎) = Γ(𝜅𝜈)(∞).  

 

Therefore considering this and Theorem 1 together, we can give the following result. 

 

Theorem 2. Each maximally accretive extension �̃� of the operator 𝐿0 generated by the 

linear singular differential expression 𝑙(∙) and the boundary condition  

 
(𝜅𝜈)(𝑎) = Γ(𝜅𝜈)(∞),  

 

where Γ: Χ → Χ is a contraction operator such that this operator is uniquely determined 

by the extension �̃�, i.e. �̃� = 𝐿Γ and vice versa. 
 

 

4.  The spectrum of the maximally accretive extensions 
 

In this section, we will research the geometry of the spectrum set of the maximally 

accretive extensions of the operator 𝐿0 in 𝐿𝜚
2 (𝑋, (𝑎, ∞)).  

 

Theorem 3. The spectrum of any maximally accretive extension 𝐿Γ is in form  

 

𝜎(𝐿Γ) = {𝜆 ∈ ℂ: 𝜆 = (∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)

−1
(ln(|𝜇|−1) + 𝑖 arg(�̅�) + 2𝑛𝜋𝑖),  

       𝜇 ∈ 𝜎 (Γ exp (−𝐴 ∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)) ,    𝑛 ∈ ℤ}.  

 

Proof. Let us consider the following spectrum problem defined by 

 

𝐿Γ(𝜈) = 𝜆𝜈 + 𝑓, 𝜆 ∈ ℂ, 𝜆𝑟 = 𝑅𝑒 𝜆 ≥ 0.  

 

Then, we have  

 
𝜅(𝜏)

𝜚(𝜏)
(𝜅𝜈)′(𝜏) + 𝐴𝜈(𝜏) = 𝜆𝜈(𝜏) + 𝑓(𝜏), 𝜏 > 𝑎,  

(𝜅𝜈)(𝑎) = Γ(𝜅𝜈)(∞).  

 

The general solution of the last differential equation 

 

(𝜅𝜈)′(𝜏) =
𝜚(𝜏)

𝜅2(𝜏)
(𝜆𝐸 − 𝐴)(𝜅𝜈)(𝜏) +

𝜚(𝜏)

𝜅(𝜏)
𝑓(𝜏), 𝜏 > 𝑎 

 

is in the following form 
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𝜈(𝜏; 𝜆) =
1

𝜅(𝜏)
exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆  

     −
1

𝜅(𝜏)
∫ exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)𝑑𝑠

∞

𝜏
, 𝑓𝜆 ∈ Χ, 𝜏 > 𝑎.  

 

In this case  
 

‖
1

𝜅(𝜏)
exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆‖

𝐿𝜚
2 (𝑋,(𝑎,∞))

2

  

= ∫ ‖
1

𝜅(𝜏)
exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆‖

Χ

2
∞

𝑎
𝜚(𝜏)𝑑𝜏  

= ∫ (
1

𝜅(𝜏)
exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆,

1

𝜅(𝜏)
exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆)

Χ

∞

𝑎
𝜚(𝜏)𝑑𝜏  

= ∫
𝜚(𝜏)

𝜅2(𝜏)
exp (2𝜆𝑟 ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠)

∞

𝑎
  

     (exp (−𝐴 ∫
𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆, exp (−𝐴 ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆)

Χ
𝑑𝜏  

= ∫
𝜚(𝜏)

𝜅2(𝜏)
exp (2𝜆𝑟 ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) ‖exp (−𝐴 ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑓𝜆‖

Χ

2

𝑑𝜏
∞

𝑎
  

≤ ∫
𝜚(𝜏)

𝜅2(𝜏)
exp (2𝜆𝑟 ∫

𝜚(𝑠)

𝜅2(𝑠)

𝜏

𝑎
𝑑𝑠) 𝑑𝜏‖𝑓𝜆‖Χ

2∞

𝑎
   

=
1

2𝜆𝑟
(exp (2𝜆𝑟 ∫

𝜚(𝑠)

𝜅2(𝑠)

∞

𝑎
𝑑𝑠) − 1) ‖𝑓𝜆‖Χ

2 < ∞  

 

and 
 

‖−
1

𝜅(𝜏)
∫ exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)𝑑𝑠

∞

𝜏
‖

𝐿𝜚
2 (𝑋,(𝑎,∞))

2

  

= ∫ ‖
1

𝜅(𝜏)
∫ exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)𝑑𝑠

∞

𝜏
‖

Χ

2
∞

𝑎
𝜚(𝜏)𝑑𝜏  

= ∫
𝜚(𝜏)

𝜅2(𝜏)
‖∫ exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)𝑑𝑠

∞

𝜏
‖

Χ

2
∞

𝑎
𝑑𝜏   

= ∫
𝜚(𝜏)

𝜅2(𝜏)
‖∫ exp (𝜆𝐸 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉) [exp (−𝐴 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)] 𝑑𝑠

∞

𝜏
‖

Χ

2

𝑑𝜏
∞

𝑎
  

= ∫
𝜚(𝜏)

𝜅2(𝜏)
‖∫ exp ((𝜆𝑟 + 𝑖𝜆𝑖)𝐸 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉) [exp (−𝐴 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)] 𝑑𝑠

∞

𝜏
‖

Χ

2

𝑑𝜏
∞

𝑎
   

≤ ∫
𝜚(𝜏)

𝜅2(𝜏)
(∫ exp (𝜆𝑟𝐸 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

∞

𝜏

√𝜚(𝑠)

𝜅(𝑠)
(√𝜚(𝑠)‖𝑓(𝑠)‖Χ)𝑑𝑠)

2

𝑑𝜏
∞

𝑎
  

≤ ∫
𝜚(𝜏)

𝜅2(𝜏)
(∫

𝜚(𝑠)

𝜅2(𝑠)
exp (2𝜆𝑟𝐸 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

∞

𝑎
𝑑𝑠) (∫ 𝜚(𝑠)‖𝑓(𝑠)‖Χ

2𝑑𝑠
∞

𝑎
)𝑑𝜏

∞

𝑎
  

≤ ∫
𝜚(𝜏)

𝜅2(𝜏)
(∫

𝜚(𝑠)

𝜅2(𝑠)
exp (2𝜆𝑟𝐸 ∫

𝜚(𝜉)

𝜅2(𝜉)

𝜏

𝑠
𝑑𝜉)

∞

𝑎
𝑑𝑠) 𝑑𝜏

∞

𝑎
‖𝑓‖

𝐿𝜚
2 (𝑋,(𝑎,∞))

2   

= exp (2𝜆𝑟𝐸 ∫
𝜚(𝜉)

𝜅(𝜉)

∞

𝑎
𝑑𝜉) (∫

𝜚(𝜏)

𝜅2(𝜏)
𝑑𝜏

∞

𝑎
)

2
‖𝑓‖

𝐿𝜚
2 (𝑋,(𝑎,∞))

2 < ∞.  

 

Hence, 𝜈(∙ , 𝜆) ∈ 𝐿𝜚
2 (𝑋, (𝑎, ∞)) for 𝜆 ∈ ℂ, 𝑅𝑒 𝜆 ≥ 0.  

 

Using this and boundary condition, we have 
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(𝐸 − Γ exp ((𝜆𝐸 − 𝐴) ∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)) 𝑓𝜆 = ∫ exp ((𝜆𝐸 − 𝐴) ∫

𝜚(𝜉)

𝜅2(𝜉)
𝑑𝜉

𝑎

𝑠
)

𝜚(𝑠)

𝜅(𝑠)
𝑓(𝑠)𝑑𝑠

∞

𝑎
.    

 

One can see that the necessary and sufficient condition for 𝜆 ∈ 𝜎(𝐿Γ) is  
 

exp (−𝜆 ∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
) = 𝜇 ∈ 𝜎 (Γ exp (−𝐴 ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)).  

 

Therefore,  
 

−𝜆 ∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
= ln|𝜇| + 𝑖 arg 𝜇 + 2𝑚𝜋𝑖,  𝑚 ∈ ℤ.  

 

Thus,  

 

𝜆 = (∫
𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)

−1
(ln(|𝜇|−1) + 𝑖 arg(�̅�) + 2𝑛𝜋𝑖), 𝜇 ∈ 𝜎 (Γ exp (−𝐴 ∫

𝜚(𝑠)

𝜅2(𝑠)
𝑑𝑠

∞

𝑎
)),  

𝑛 ∈ ℤ.  

 

This completes the proof.  
 

Now, we present an example as an application of our results. 
 

Example. All maximally accretive extensions 𝐿𝑟 of the minimal operator 𝐿0 generated 

by the following first order linear symmetric singular differential expression  
 

𝑙(𝜈) = 𝜏𝛾−𝛼(𝜏𝛾𝜈(𝜏))′ + 𝑎𝜈(𝜏),  𝛾, 𝛼, 𝑎 ∈ ℝ and 2𝛾 − 𝛼 − 1 > 0 
 

in the Hilbert space 𝐿𝜏𝛼
2 (1, ∞) are described by the boundary condition 

 

(𝜏𝛾𝜈)(1) = 𝑟(𝜏𝛾𝜈)(∞),  

 

where 𝑟 ∈ ℂ and |𝑟| ≤ 1.  
 

Moreover, in this case that 𝑟 ≠ 0 the spectrum of maximally accretive extension 𝐿𝑟 is of 

the form 
 

𝜎(𝐿𝑟) = (1 + 𝛼 − 2𝛾)(ln|𝑟| + 𝑖 arg(𝑟) + 2𝑛𝜋𝑖), 𝑛 ∈ ℤ.   
 

References 

 

[1] Gorbachuk, V.L. and Gorbachuk, M.L., Boundary value problems for 

operator differential equations, Kluwer Academic Publisher, Dordrecht, 

(1991).  

[2] Kato, T., Perturbation theory for linear operators, Springer-Verlag Inc., New 

York, (1966).  

[3] Levchuk, V.V., Smooth maximally dissipative boundary-value problems for a 

parabolic equation in a Hilbert Space, Ukrainian Mathematic Journal, 35, 4, 

502-507, (1983).  

[4] Hörmander, L., On the theory of general partial differential operators, Acta 

Mathematica, 94, 161-248, (1955). 

[5] Naimark, M.A., Linear differential operators, Frederick Ungar Publishing 

Company, New York, USA, (1968). 


