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1. Introduction 

 

Assistive technologies (AT) are crucial to helping 

disabled persons with their intentions to evolve the 

quality of life. Individuals with spinal cord injury (SCI), 

locked-in syndrome (LIS), and other impairments of the 

degenerative neuromuscular disorders require self-

supported possibilities to be able tasks in performing 

daily needs without another person’s continuous help 

[1]. There are so many ongoing research on a kind of 

electroencephalography (EEG)-based brain-computer 

interfaces (BCI) developed for paralyzed persons. Other 

systems such as head and eye trackers demand high 

concentration and visual dependence. Then these 

systems may result in neck pains. However, tongue-

operated methods are convenient because they are 

almost invisible and manageable. Moreover, the tongue 

is characterized as a good manipulator for assistive 

devices, including sophisticated motor control [2]. The 

hypoglossal cranial nerve is the bridge between the 

brain and tongue, which has the ability direct 

communication channel at a relatively low distance 

from the brain.  

 

Furthermore, the tongue can not be damaged easily and 

named as the last affected organ in spinal cord injuries. 

Another advantage of using the tongue in ATs is that 

this organ has complex muscle groups and is not 

exhausted due to the less sensed effort [3-5]. Besides, 

the oral cavity is a very sensitive area compared to other 

body parts. Oral structures perform a cortex mapping 

similar to hand size. In contrast, the whole body and 

lower limbs of the body have a relatively small mapping 

in the somatic sensory cortex. Otherwise, some mouth 

structures such as the tongue are more delicate than the 

fingertip according to the psychophysical papers about 

the strength of discrimination and sensitivity [6]. For 

this reason, it appears that tongue can yield encouraging 
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performances for a human-machine interface (HMI) 

compared to other body parts, depending on the cortex 

brain mapping [7-8]. 

 

Glossokinetic potentials are electrical responses, which 

occur when the tongue touches the tissues in the mouth, 

especially the buccal walls. The tip of the tongue 

possesses a negative electric charge compared to the 

tongue root; therefore, when the tongue touches the 

tissues, it causes decreasing of potential levels near the 

contact surface. Hence analyzing the spatial pattern of 

GKP responses can be used to trace the tongue 

movements inside the mouth. GKPs originate in the 

noncerebral region, therefore interfering with the 

alpha/beta frequencies obtained from mental activities is 

very low. Because delta (1-3 Hz) and theta (4-7 Hz) 

waves occur in the low bands of frequencies [3-5]. In 

conventional synchronous brain-computer interfaces, 

the nonstationary EEG signals have inherent problems. 

These are the loss of control (LoC) and degrees of 

freedom (DoF)  [9]. Besides, the major disadvantages of 

synchronous BCIs are shown as high cognitive 

workload and long training duration [10]. At this point, 

GKP and tongue might serve to give solutions without 

so much effort due to voluntary intuitive movements. 

 

Recently, tongue-operated assistive technologies have 

been proposed in the literature. Few of them are 

benefited from the glossokinetic potentials. Nam et al. 

have developed the “Tongue Rudder.” In this article, the 

researchers measured GKPs and electromyography 

(EMG) electrical signals over the scalp to drive the 

electric wheelchair for 1-D control. Then the teeth 

clenching is to calibrate and toggle the wheelchair [4]. 

The same authors have also attempted the “GOM-Face.” 

In this work, electrooculogram (EOG) biosignals were 

utilized besides the GKP and EMG to remote the 

humanoid robot for 2-D control in a real-time 

application. All the potential variations were recorded 

from the face. Eigenvalue decomposition of two 

covariance was determined to discriminate eye and 

tongue movements due to being called charged organs. 

Then the SVM was employed to recognize each 

movement. Also, the review paper of the glossokinetic 

potential in using the ATs was published by the same 

researchers [5]. At this point, to the best of our 

knowledge, this research is also the first attempt using 

the support vector machine (SVM) and linear 

discriminant analysis (LDA) with power spectral 

density (PSD)  and mean-absolute value (MV) using 

GKPs to structure a TMI. 

 

So far, considerable amount of the tongue-driven work 

on the assistive devices has been dealing with the 

hardware inside the mouth and around the headset. 

Primary of them are; Huo et al. realized a series of 

tongue-driven systems that communicate with wireless 

transmissions in a state of stroke. Some were connected 

directly to the computer, and others were forwarded via 

smartphone for processing. However, they have a 

similar principle. A small permanent magnet is 

connected to trace the induced magnetic variations on 

the scheme of sensors assembled in the oral cavity [1]. 

Krishnamurthy et al. handled a similar principle to carry 

out an interface technology [11]. Nevertheless, 

interfaces operated by such an equipment-based system 

can irritate paralyzed patients while breathing or 

speaking, and at the same time are not hygienic and 

visually appealing. Therefore, GKP-based TMI may 

offer a natural, fast, attractive, and accurate control 

approach for stroke individuals. 

 

Another approach of a tongue-based interface is on the 

airflow pressure variations generated by the tongue 

movements in the oral cavity. Vaidyanathan et al., have 

designed several ATs using a microphone attached to 

the ear canal to detect changes of airflow pressure in the 

ear canal due to the discrete tongue movements [12]. 

However, GKP-based TMI may contribute an inherent 

solution to trace the tongue motion without disturbing 

the listening performance. 

 

This article is intended to carry out a natural, reliable, 

fast, and easy-to-use tongue-operated machine for 

stroke patients. GKP-based TMI is a novel AT utilizing 

glossokinetic potential responses to extract 1-D motion. 

The experimental paradigm has been configured in the 

offline measurement. Linear discriminant analysis and 

support vector machine and were employed in mean-

absolute value (MAV) and power spectral density 

(PSD) methods. Moreover, principal component 

analysis (PCA) and independent component analysis 

(ICA) were implemented to the data to reduce the 

dimension. And comparison was made by these 

methods (ICA and PCA) in the article. 

 

2. Materials and Methods 

 

The glossokinetic potential responses were measured 

over the scalp in terms of the 10-20 international system 

for the location of electrodes [8]. The left-eyebrow and 

earlobes of left-right (A1-A2) were assigned as ground 

and reference, respectively. The monopolar placement 

of electrodes is represented in Table 1. The sampling 

frequency was at 1024 Hz and 0.5-100 Hz range was 

implemented for filtering operation. Also, the notch 

filter of 50 Hz was applied for elimination the noise of 

the power line. Then GKP biosignals were filtered using 

a low-pass filter of 10th order infinite impulse response 

(IIR) Butterworth in the cutoff frequency of 40 Hz [8]. 

The low-pass filtering EOG signal processing was also 

made at the same time because of the general 

assumption for lower frequency filtering (40 and 100 

Hz) of EOG signals. 
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Table 1. The Monopolar Placement Electodes. 
 

Number of Channels Name of Channels 

1 Fp2 

2 Fp1 

3 F7 

4 F3 

5 Fz 

6 F4 

7 F8 

8 T3 

9 C3 

10 Cz 

11 C4 

12 T4 

13 T5 

14 P3 

15 Pz 

16 P4 

17 T6 

18 O1 

19 O2 

 

Then filtered data was normalized in the range of (0-1) 

according to the Eq.2.1 below: 
 

𝑋𝑆
𝑛𝑜𝑟𝑚 =

𝑋𝑆 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

                                                 (𝟐. 𝟏) 

 

XS defines the sth data in the data set, Xmax (maximum) 

and Xmin (minimum) are the least and highest values [8]. 

The main illustration of the system can be viewed in 

Fig.1. 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 1. The workflow graph of GKP-based TMI. 

 

2.1. Data Collection 

 

This work consists of naive healthy subjects (8 male and 

2 female) who were right-handed without any disorder 

of the nervous system. Subjects were in a comfortable 

situation placed in front of the LCD screen half-meter 

away without any movement except tongue movements 

during the experimental setup instructions. The 

statistical information for each participant can be shown 

in Table 2. 

 

GKPs were measured and recorded by employing the 

EEG signal acquisition device of Micromed 

SAM32RFO with 19 channels, and the electrode 

impedances were held below 10kΩ.  The recorded each 

trial was 98 seconds and initiated after the 10 s delay. 

Each touching process was 6 s, and the rest period was 5 

s between the following instructions for right- left 

tongue movements. Four right and four left tongue 

movements were implemented in terms of the 

experimental sequences represented in Fig.2. For each 

channel, 6 s tongue movements and toucings to the 

buccal walls are stored with digitized samples of 

(6×1024). Participants were directed to touch the tongue 

and buccal walls during distinct, fast, and rhythmic 

contacts between 10-15 times for 6 seconds. Then, the 

resting time of the extended tongue was 5 seconds and 

no longer motion at this interval. 
 

Table 2. Statistical information for each participant. 
 

 Gender Age 

Subject-1 F 25 

Subject-2 M 23 

Subject-3 M 22 

Subject-4 F 22 

Subject-5 M 23 

Subject-6 M 32 

Subject-7 M 22 

Subject-8 M 25 

Subject-9 M 23 

Subject-10 M 34 

 

 

 

 

Figure 2. The experimental setup sequence of tongue 

Movements. 

 

2.2. Feature Extraction 

 

The transformation of the input signal data into a feature 

vector is named as feature extraction. The stage's 

purpose is to highlight distinctive properties in the input 

signal patterns. Mean-absolute value (time-domain) and 

power spectral density (frequency domain) methods 

were implemented in this research study. MAV is 

situated on the signal amplitude and does not need a 

transformation process between domains [8]. However, 

PSD has a transformation stage that implies more 

computational time. Frequency domain properties are 

calculated, estimating the power spectrum density of the 

signal and are implemented via parametric methods and 

periodogram [8]. In Eq.2.2, the mathematical 

presentation of the mean-absolute value is defined as: 
 

𝑀𝐴𝑉 =  
1

𝑁
 ∑|𝑥𝑖|

𝑁

𝑖=1

                                                  (𝟐. 𝟐) 

 

where Xi=1,2,3…N  shows time series of samples, and 

N means the samples’ length. Power signal variations of 

hemispherical scalp in motor tasks including the tongue 
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have different frequency ranges on the cortex that the 

PSD exhibits. The PSD is a function that defines the 

power distribution over a signal frequency. The 

mathematical expression of PSD is as follows in 

Eqs.2.3.-2.6.: 
 

𝑃𝑥(𝑓) =
1

𝑁
|∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛

𝑁−1

𝑛=0

|

2

=
1

𝑁
|𝑋(𝑓)|2     (𝟐. 𝟑) 

 

where X(f) means the Fourier transform of the data 

sequence of x(n) and N is length of the sampled signal. 

The PSD formation is periodogram. Moreover the 

Welch’s method is a special usage of periodogram. The 

data segments are divided and then overlapped, as 

shown below: 
 

𝑥𝑖(𝑛) = 𝑥(𝑛 + 𝑖𝐷)    𝑛 = 0,1, … , 𝑀 − 1                                   

                                       𝑖 = 0,1, … , 𝐿 − 1                     (2.4) 
 

where i represents the segment of the data, while n is the 

segment length. Moreover, iD is the first point of the ith 

order where D = M, and then the segments do not 

overlap. However, D = M/2, 50 % overlapping occurs 

between the consecutive data segments. After that, each 

data segment was windowed to obtain the overall PSD. 

The Eq.2.5. represents the modified periodogram: 
 

�̅�𝑋
(𝑖)(𝑓) =

1

𝑀𝑈
|∑ 𝑥(𝑛)𝑤(𝑛)𝑒−𝑗2𝜋𝑓𝑛

𝑁−1

𝑛=0

|

2

           (𝟐. 𝟓) 

 

where U is the normalization factor in the window 

function of power ‘‘w(n)’’ as: 

 

𝑈 =
1

𝑀
∑ 𝑤2(𝑛)

𝑁−1

𝑛=0

                      (𝟐. 𝟔) 

 

The references can be examined for more details of PSD 

and Welch’s method [8]. In our research, eight segments 

and 50% overlapping with hamming windows were 

used for data samples. 

 

The collected data set for each subject have 

(6×8×1024)×19 dimension that 1024 stands for 

sampling frequency, 8 means total durations for four 

right and four left tongue motions in a trial, six presents 

6 s of contact duration for discrete tongue movements 

and 19 are the channel numbers. Throughout the feature 

extraction, 100 ms was applied to form the feature 

vector due to the covering all EEG frequencies. 1 

second data have 1024/100ms=10 parts (approx), 

therefore (6x8x10) equals 480 data length. However, 

some of the subjects were not able to start and end the 

sessions at the exact time during the experiment. For 

this reason, we have to cut out and equalize the data set 

for each trial and participant to 400 data lengths. 

Finally, the raw data set was set to 400x19 for each 

subject. 

 

2.3. Principal Component Analysis 
 

Principal component analysis (PCA) constructs a set of 

new orthogonal features by calculating the data 

variance, called principal components. PCA intends to 

take away the unnecessary data. Thus, easier 

computation is obtained for MLs [8]. Calculating the 

eigenvalues and eigenvectors of the covariance matrix 

(C) are employed in converting higher dimensional 

vector (Xt) into a lower dimensional one (St). The 

concerned equations of PCA are those: 

 

𝐶(𝑋) =  ∑
(𝑋𝑖𝑋

𝑇)

𝑁

𝑁

1

                                                (𝟐. 𝟕) 

 

 𝜆𝑖𝑢𝑖 = 𝐶𝑢𝑖 ,           𝑖 = 1,2,3 … 𝑚                (𝟐. 𝟖) 
 

where λi presents the eigenvalues and ui is named as the 

corresponding eigenvector of covariance matrix. 

 

𝑆𝑡(𝑖) = 𝑢𝑡
𝑇𝑋𝑡 ,               𝑖 = 1,2,3 … 𝑚                 (𝟐. 𝟗) 

 

where St(i) defines the principal components of the (Xt) 

[8]. By selection of principal components according to 

the variance values, In this research, twelve features’ 

vector were created for a 400×12 data set indicating in 

the range of 98.18%-99.79%. The feature selection 

process by PCA and ICA was shown in Fig.3. 

 

 
 

Figure 3. Feature selection process (PCA and ICA). 

 

2.4. Independent Component Analysis 
 

Independent component analysis (ICA) is a very 

powerful method for revealing concealed factors called 

independent components. ICA is a kind of statistical 

technique aiming to find linear projections of data that 

maximize mutual independence. Also, the widespread 

blind source separation (BSS) technique is based on 

ICA that can be used to select the best EEG channels. 

The system of assistive technologies with fewer EEG 

channels is preferred for better portability and 

convenience. In particular, ICA may serve to understand 

the functioning of the human brain easier as a finer 

mapping of brain responses during voluntary tongue 

movements [13]. 

 
𝑥𝑖(𝑡) = 𝑎𝑖1𝑠1(𝑡) + ⋯ + 𝑎𝑖𝑛𝑠𝑛(𝑡)   𝑖 = 1,2, … , 𝑛     (𝟐. 𝟏𝟎)  

 

where xi (t) is the linear signal mixture belongs to n 

differently and randomly varying coefficients, and sn (t) 

is the hidden component [8], as shown in Eqs.2.10-2.12. 

ICA notation can be presented in matrix form below: 
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[
𝑥1(𝑡)

⋮
𝑥𝑛(𝑡)

] = 𝐴 [
𝑠1(𝑡)

⋮
𝑠𝑛(𝑡)

] ,      𝐴 = [𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛]    (𝟐. 𝟏𝟏) 

 

𝑥 = 𝐴𝑠                                               (𝟐. 𝟏𝟐) 

 

In this article, ICA was employed to reduce the size of 

the data (400×12) for the (400×19) raw data set, and the 

results compared to PCA. 

 

3. Machine Learning Algorithms 
 

Applying feature extraction and feature selection (PCA-

ICA) operations, the data set is conveyed to classifiers 

to discriminate glossokinetic potential responses for 1-D 

movements. Support vector machine and linear 

discriminant analysis are the common pattern 

recognition algorithms in biomedical signal processing 

and called kernel-based methods adapting the problem 

easier [8].   

 

Accuracy (ACC), specificity (SPEC), sensitivity 

(SENS), and information transfer rate (ITR) was 

calculated to evaluate the performance of the GKP-

based TMI. All the results were processed using the k-

fold cross-validation technique, which is called the 

hold-out method to take out one part of the k-divided 

parts and structure the training data set. Moreover, the 

rest of the (k-1) parts are joined to form the test data set. 

Then all processes are repeated k-times in the 

independence of selection for samples [8]. In this study, 

10-fold cross-validation was employed on all processed 

results for more robustness. Mathematical equations for 

the accuracy of the classification success can be seen in 

Eqs.3.1.-3.3.: 
 

𝐴𝐶𝐶(𝑇𝑆) =
∑ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛𝑖)

|𝑇𝑆|
𝑖=1

|𝑇𝑆|
 ,  𝑛𝑖𝑇𝑆     (𝟑. 𝟏) 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = {
1  , 𝑖𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = 𝑐𝑛
0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (𝟑. 𝟐) 

 

𝐶𝑙𝑎𝑠𝑠. 𝐴𝐶𝐶 =
∑ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑇𝑆𝑖)

|𝑘|
𝑖=1

|𝑘|
               (𝟑. 𝟑) 

 

in which TS is the test data set, while 𝑛𝑇𝑆, cn means 

the class of n. Furthermore, estimate(n) stands for the 

classification result of n, k is the number of k-fold cross 

validation [8]. 

 

Transmitting data of information per trial or time in 

EEG-based BCI systems is provided by information 

transfer rate (ITR). The ITR was produced from 

Shannon and Weaver's study and denoted by B. The 

approach of ITR can be seen in Eq.3.4.: 
 

𝐵 = log2 𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2

(1 − 𝑃)

(𝑁 − 1)
 (𝟑. 𝟒) 

 

B defines the bit numbers per trial, N is the different 

type of mental tasks, and P means the classification 

accuracy. The more various mental functions for a BCI 

system enhance the ITR, and the parameter value is 

shown in the range of (0-1) [8]. 

 

3.1. Support Vector Machine 

 

Support vector machine is included in machine learning 

algorithm concept [8]. Support vectors are the keys for 

SVM to define the decision boundary (hyperplane). 

Margin is called as the distance from the hyperplane to 

the nearest support vectors for both sides. Then gaining 

generalization ability is aimed to maximize the margin 

and to find the optimal hyperplane [8], as depicted in 

Fig.4. The formulations of SVM is exhibited in Eqs.3.5-

3.7. 
 

𝑋{𝑡} = {
𝑟𝑡 = +1, 𝑥𝑡 ∈ 𝐶1 

𝑟𝑡 = −1, 𝑥𝑡 ∈ 𝐶2
                              (𝟑. 𝟓) 

 

𝑔(𝑥) = {
𝑤𝑇𝑥𝑡 + 𝑤0 ≥ +1, 𝑥𝑡 ∈ 𝐶1 

𝑤𝑇𝑥𝑡 + 𝑤0 ≤ −1, 𝑥𝑡 ∈ 𝐶2
            (𝟑. 𝟔) 

 

𝑟𝑡(𝑤𝑇𝑥𝑡 + 𝑤0) ≥ +1                 (𝟑. 𝟕) 
 

The hyperplane is described by g(x), w0 situates the 

hyperplane and the orientation is pointed by w. Learning 

rate, initializations and checking for convergence is not 

carried out by SVM [8]. 

 

 
Figure 4. SVM and maximizing margin [8]. 

 

3.2. Linear Discriminant Analysis 

 

Linear discriminant analysis is a kind of projection 

technique classifier reducing the dimension of the data. 

LDA intends to maximizing the between-class distance 

and minimizes within-class distance [22]. 

When C1 and C2 are the classes of the samples and 

LDA finds the projection direction (w) to discriminate 

the spatial pattern for maximum separability as possible. 

Formulations of LDA can be seen in Eqs.3.8-3.10. 
 

𝑧 = 𝑤𝑇𝑥                                       (𝟑. 𝟖) 

 

where, x (samples) are projected onto w. Projection 

technique of LDA is shown in Fig.5 below: 
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Figure 5. Classification task of LDA via the projection 

of data [8]. 

 

where projection technique implements from 𝒎𝟏 to 𝑚1 

referring to means of samples in 𝐶1 before and after 

respectively. Thus, 𝒎𝟏 ∈ ℜ𝑑and 𝑚1 ∈ ℜ. Then 𝒎𝟐 

and 𝑚2 have the same means. 𝑠1
2 and 𝑠2

2 are scattered 

samples around the means [8]. If training sample is 

𝑋{𝑥𝑡 , 𝑟𝑡}: 
 

𝑋{𝑡} = {
𝑟𝑡 = 1, 𝑥𝑡 ∈ 𝐶1    

𝑟𝑡 = 0, 𝑥𝑡 ∈ 𝐶2
                       (𝟑. 𝟗) 

 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
=

|𝑤𝑇(𝑚1 − 𝑚2)|2

𝑤𝑇𝑆𝑊𝑤
               (𝟑. 𝟏𝟎) 

 

where in 𝐽(𝑤), 𝑆𝐵  and 𝑆𝑊  are named as between-class 

scatter matrix and within-class scatter matrix, 

respectively. Moreover, x represents the input, r is the 

output in the training sample pairs. 

 

4. Results 

 

In this research, the discrimination of glossokinetic 

potential responses generated by the tongue for 1-D 

extraction has been investigated by implementing the 

SVM and LDA algorithms.  

 

The mean-absolute value and power spectral density 

methods have been applied to machine learning 

methods. The raw data set for each participant was 

determined as a 400x19 dimension. The data sets to be 

processed by machine learning algorithms were 

obtained as: 

 

 The raw data set (400x19) 

 The data set reduced by PCA (400x12) 

 The data set reduced by ICA  (400x12) 

 The frontal and temporal lobes’ data set (11 

channels) (400x11) 

 

The classification performances were arranged 

according to the data sets above. All results throughout 

the article were represented in the decimal base and 

percentage expression (in %) except the outcomes of 

ITR. Then, the best and worst participants were stated 

by taking into account of results of the raw data set for 

distinguishing and comparison in an easy manner. Thus, 

the statements and implications of findings were stated 

on these subjects throughout the paper. 

 

 

        Table 3. Performance outcomes in the raw data set (400×19). 

 

 

 

Met .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver 

 

  
  

  
  

  
 L

D
A

 

 (
M

A
V

) 

   

Acc 75.13 96.02 77.21 77.44 91.06 95.01 86.29 72.17 76.02 96.01 84.24 

Sen 76.52 93.50 79.98 73.13 90.80 97.05 84.00 64.19 68.88 97.83 82.59 

Spe 73.63 98.52 73.44 83.84 91.67 92.04 88.93 82.22 85.85 93.51 86.36 

ITR 0.191 0.759 0.226 0.230 0.565 0.714 0.423 0.147 0.205 0.758 0.422 

 

  
  

  
  

  
  

 L
D

A
 

(P
S

D
) 

   

Acc 74.04 93.01 76.02 78.01 89.35 95.09 83.03 72.21 73.19 93.14 82.71 

Sen 72.23 88.50 76.98 71.47 91.21 97.46 76.60 63.32 59.73 97.83 79.53 

Spe 76.46 97.52 75.07 87.27 86.97 91.74 90.66 83.52 91.27 87.10 86.76 

ITR 0.174 0.634 0.205 0.240 0.511 0.717 0.343 0.147 0.161 0.640 0.377 

 

  
 

  
  

 S
V

M
  

  
  

  
  

(M
A

V
) 

  

Acc 77.07 97.03 77.14 79.05 91.12 94.23 85.39 74.22 78.00 96.02 84.93 

Sen 87.23 97.50 84.55 80.49 93.33 96.20 83.59 69.21 74.02 97.84 86.4 

Spe 63.35 96.52 67.51 76.95 87.79 91.48 87.38 80.73 83.30 93.58 82.86 

ITR 0.223 0.807 0.224 0.259 0.567 0.682 0.400 0.177 0.240 0.758 0.434 

 

  
  

  
  

  
  

 S
V

M
 

(P
S

D
) 

   

Acc 77.10 96.02 77.07 79.13 90.07 94.07 85.69 67.80 75.17 96.22 83.83 

Sen 86.40 96.00 82.71 73.55 92.45 97.03 80.22 85.77 62.77 99.13 85.6 

Spe 65.31 96.06 69.61 86.78 86.06 90.02 91.89 44.61 92.47 92.20 81.5 

ITR 0.224 0.758 0.223 0.261 0.533 0.675 0.408 0.094 0.191 0.768 0.414 
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   Table 4. Performance outcomes in the PCA data set (400×12). 

 

 

The highest accuracy of the classification performance 

in the raw data set (400x19-Table 3) was obtained as 

97.03% in SVM+MAV method. Then the lowest result 

was achieved with SVM+PSD method as 67.80%. Thus, 

Subject-2 (the best subject) and Subject-8 (the worst 

subject) were defined as the highlighted participants in 

the article. The accuracy results are very close to each 

other except for LDA+PSD (93.01%) in the best 

subject. After that, the LDA+MAV and SVM+PSD 

values were calculated as the same (96.02%). However, 

the SENS, SPEC, and ITR values are different. For the 

worst subject, SVM+MAV had the highest score 

(74.22%), followed by LDA+PSD and LDA+MAV as 

72.21% and 72.17% success, respectively. The 

similarity was observed for the highest average result 

with SVM+MAV (84.93%). 

 

Reduced data set with PCA (400×12) has relatively 

successful results represented in Table 4. The 

SVM+MAV method provided the highest outcomes for 

the best (97.01%) and worst (69.05%) participants. 

Then SVM + PSD (95.02%), LDA+MAV (95.00%), 

and LDA + PSD (91.29%) were achieved in terms of 

accuracy for the best subject. Meanwhile, the worst 

subject’s results were ranked in decreasing order as 

LDA+MAV (69.02%), LDA+PSD (66.01%), and 

SVM+PSD (61.13%). Similar to the highest value of 

raw data set results, SVM+MAV was characterized by 

83.53%. Hence consistent result (1.64% decreasing) 

was obtained compared to the average highest value of 

the raw data set (84.93%). The presentation of the 

covariance matrix for reduced data set was exhibited 

between the 98.18%-99.79% values. And the average 

highest presentation was observed as 99.45% with PSD.  

According to Table 5, ICA results seem to be better than 

PCA [8]. Especially, the worst subject has reached 

74.03% (in SVM+MAV), an increasing percentage is 

6.72 (compared to 69.05%). Moreover, the other MLs 

also have greater outcomes compared to the PCA for the 

worst subject. On the other hand, the variations for the 

best subject is limited, and the results are close to the 

PCA. The best participant achieved 96.28% accuracy 

(in SVM+MAV), and the decline is about 0.75% 

compared to the highest outcome of PCA (97.01%). 

Moreover, the ultimate mean accuracy is again provided 

by SVM+MAV method (84.35%), and 0.97% boosting 

was obtained to the PCA. 

 

The brain is structured by different functional lobes 

consisting of the cerebral and subcortical regions. Core 

and crucial functions of the body, such as involuntary 

breathing and heartbeat, are implemented by subcortical 

neuronal areas. Then the brain cortex carries out high-

level functions such as conscious thinking and planning 

related to the voluntary movement of body functions, 

including tongue movement. The frontal lobe is known 

in charge of attention, planning, conscious motor 

functions, and behavioral control. Then, the temporal 

lobe is known in language-speech and face recognition 

as well as in the responsible of memory [8]. Thus 

voluntary tongue movement needs focus and planning 

efforts in fast, rhythmic, and stable motions during 

GKP-based TMI experimental work. For this reason, the 

results of frontal and temporal lobes were observed 

against voluntary tongue movements. 

 

One of the goals of the GKP-based TMI is to explain 

the effect and contribution of different lobes of the brain 

Met .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver 

 

  
  

  
  

  
 L

D
A

 

 (
M

A
V

) 

   
Acc 77.26 95 79.07 75.18 89.16 94.04 84.7 69.02 71 94.04 82.85 

Sen 79.29 91 81.38 73.59 88.64 96.2 81.26 61.05 60.13 95.71 80.82 

Spe 74.41 99.02 76.57 77.33 90.02 91.17 88.65 78.94 86.01 91.48 85.36 

ITR 0.226 0.714 0.26 0.192 0.505 0.674 0.383 0.107 0.131 0.674 0.387 

 

  
  

  
  

  
  

 L
D

A
 

(P
S

D
) 

   

Acc 75.12 91.29 78.1 76.05 87.31 91.15 82.25 66.01 67.02 93.02 80.73 

Sen 71.25 85 80.51 73.19 89.51 93.7 69.94 69.8 48.53 96.96 77.84 

Spe 80.24 97.49 75.03 79.78 84.03 87.82 96.25 61.33 92.44 87.49 84.19 

ITR 0.191 0.573 0.242 0.206 0.451 0.568 0.325 0.075 0.085 0.635 0.335 

 

  
 

  
  

 S
V

M
  

  
  

  
  

(M
A

V
) 

  

Acc 77.03 97.01 77.16 76.39 91.04 95.24 85.31 69.05 72.01 95.07 83.53 

Sen 85.85 97.5 82.79 81.43 91.65 96.61 82.71 65.65 61.9 97.83 84.39 

Spe 65.55 96.43 69.89 69.41 89.94 93.13 88.09 73.06 85.74 91.5 82.27 

ITR 0.223 0.806 0.225 0.211 0.565 0.724 0.398 0.107 0.145 0.717 0.412 

 

  
  

  
  

  
  

 S
V

M
 

(P
S

D
) 

   

Acc 79.33 95.02 76.33 77.62 88.16 93.01 84.1 61.13 68.28 95.01 81.8 

Sen 86.78 95 86.26 79.2 90.82 96.56 77.47 87.53 55.43 97.84 85.29 

Spe 70.02 95.09 63.65 75.67 84.59 88.01 91.65 27.41 86.04 91.31 77.34 

ITR 0.265 0.715 0.21 0.233 0.475 0.634 0.368 0.036 0.099 0.714 0.375 
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to the tongue-machine interface in terms of the 

classification accuracy. Therefore, the data set of 

400×11 were generated by extracting 11-channels 

(Frontal + Temporal Lobe) data sets from the raw data 

set (400×19). T3, T4, T5, and T6 electrodes were used 

for eleven channels (Frontal + Temporal Lobe) as well 

as these seven electrodes for the seven channels (Fp1, 

Fp2, F7, F8, Fz, F3, and F4) (Frontal Lobe), as shown in 

Table 1.  

 

According to Table 6, the joining effect of the frontal 

and temporal lobes for GKP-based TMI are encouraging 

and robustness compared to the raw data set (400×19) 

results. Not only the individual's success is observed 

highly acceptable, but also average achievements are in 

similar conditions. The best subject had provided 

97.05% accuracy via SVM+MAV when the worst 

subject realized 71.06% correctness with the 

LDA+MAV algorithm. The deviation for the best and 

worst participant have increasing (0.02%) and 

decreasing (4.25%) characteristic respectively. Again 

the greatest outcome of average accuracy is observed in 

SVM+MAV (83.22%). The boosting impact of the 

temporal lobe (11-channels) to the frontal lobe (7-

channels) was obtained as a 6.37% value. Thus, the 

performance of eleven channels seems to be more 

accurate and consistent outcomes than seven channels. 

It's almost as good as 19-channels of success. During 

experimental tasks, GKP signal variations for 

concentrated participants occur in the delta and theta 

bands [3]. The discriminating power of each tongue 

movements touching the buccal walls has spatial 

patterns on the scalp. As shown in Figs.6 and 7, to 

further analyze the brain mappings of the best subject, 

the high power alterations can be observed on the 

frontal and temporal lobe regions and partly pre-motor 

and motor cortex on delta bands. This vital finding was 

confirmed by the classification success shown in Table 

6. Moreover, in theta and alpha frequency bands, 

negligible power assessments were obtained to 

distinguish the certain GKP responses. However, 

insufficient power signals were occurred at the occipital 

lobe between the beta frequency bands on the co 

ntralateral hemispherical side of the brain, depending on 

the visual stimulus in front of the LCD monitor [8]. 

 

The brain mappings for the worst participant (Figs. 8 

and 9) showed dissimilar characteristics as against to the 

best subject. First, there are high-intensity power signal 

variations in the frontal lobe, but not lying correctly and 

smoothly in the temporal lobes of the delta and theta 

frequency. However, the temporal lobe power signal 

variations of the best subject include the T3, T4, T5, and 

T6 electrode locations shown in Fig.6 and Fig.7. 

Another crucial distinction in the worst subject is that 

the theta frequencies have highly acceptable power 

signals on the frontal lobe, which includes only Fp1 and 

Fp2. Furthermore, parietal lobe power signals are higher 

than the best subject’s own. The reason for this may be 

that the worst subject was to deal with experimental 

tasks with inadequate target-oriented motivation and 

disturbing perception [8]. 

 

 

 

   Table 5. Performance outcomes in the ICA data set (400×12).
 

 

 

Met .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver 

 

  
  

  
  

  
 L

D
A

 

 (
M

A
V

) 

   

Acc 76.13 93.05 78.45 77.42 88.82 94.22 87.01 73.44 75.53 95.51 83.96 

Sen 78.81 89.5 81.88 73.19 89.15 95.4 86.36 67.33 65.89 97.84 82.54 

Spe 72.14 96.64 74.47 83.01 88.34 92.41 87.65 81.19 89 92.42 85.73 

ITR 0.207 0.636 0.248 0.229 0.495 0.681 0.443 0.165 0.197 0.736 0.404 

 

  
  

  
  

  
  

 L
D

A
 

(P
S

D
) 

   

Acc 75.15 92.5 76.05 78.65 89.12 93.27 82.38 73.05 73.18 93.19 82.65 

Sen 73.56 88.5 79.9 72.68 92.01 94.51 81.19 64.78 61.03 97.83 80.6 

Spe 76.66 96.52 70.63 86.19 84.74 91.5 83.39 83.52 89.76 86.61 84.95 

ITR 0.191 0.616 0.206 0.252 0.504 0.644 0.328 0.159 0.161 0.641 0.37 

 

  
 

  
  

 S
V

M
  

  
  

  
  

(M
A

V
) 

  

Acc 77.01 96.28 77.29 79.23 90 93.06 85.25 74.03 77.33 94.01 84.35 

Sen 85.06 96 83.52 80.14 90.8 94.13 82.23 70.04 74.02 95.24 85.12 

Spe 66.41 96.39 68.79 78.65 88.78 91.68 88.53 79.01 82.21 92.19 83.26 

ITR 0.222 0.771 0.227 0.263 0.531 0.636 0.397 0.174 0.228 0.673 0.412 

 

  
  

  
  

  
  

 S
V

M
 

(P
S

D
) 

   

Acc 76.89 95.24 77.02 80.24 88.17 94.59 83.15 73.01 76.05 95.77 84.01 

Sen 88.18 96 85.32 78.3 93.7 97.01 80.74 66.92 67.12 97.83 85.11 

Spe 62.21 94.39 66.19 83.4 80.3 91.19 85.97 80.97 88.33 93.17 82.61 

ITR 0.22 0.724 0.222 0.283 0.476 0.696 0.346 0.159 0.206 0.747 0.408 
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   Table 6. Performance outcomes in the 11-channels (Frontal Lobe+Temporal Lobe) data set (400×11). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The best participant’s brain mapping in 

touching the right buccal wall (delta, theta, alfa, beta 

frequencies). 

 

 
 

Figure 7. The best participant’s brain mapping in 

touching the left buccal wall (delta, theta, alfa, beta 

frequencies). 

 
 

Figure 8. The worst participant’s brain mapping in 

touching the right buccal wall (delta, theta, alfa, beta 

frequencies). 

 

 
 

Figure 9. The worst participant’s brain mapping in 

touching the left buccal wall (delta, theta, alfa, beta 

frequencies). 

Met .. Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Aver 

 

  
  

  
  

  
 L

D
A

 

 (
M

A
V

) 

   
Acc 76.08 96.25 76.2 72.06 88.03 94.26 87.16 71.06 72.07 94.02 82.72 

Sen 76.17 94 80.45 70.14 89.53 95.76 83.96 62.96 61.01 96.54 81.05 

Spe 76.11 98.55 70.19 74.12 85.64 91.87 90.88 81.66 87.14 90.49 84.66 

ITR 0.206 0.769 0.208 0.145 0.472 0.683 0.447 0.132 0.145 0.673 0.388 

 

  
  

  
  

  
  

L
D

A
 

(P
S

D
) 

   

Acc 76.3 92 77.04 69.12 87.23 92.05 83.04 69.4 68.03 92.08 80.63 

Sen 75.36 87.5 82.67 64.06 89.55 95.76 72.32 71.01 50.69 97.39 78.63 

Spe 77.3 96.37 70.49 76.12 83.59 86.95 95.44 67.38 91.52 84.75 82.99 

ITR 0.21 0.598 0.223 0.108 0.449 0.6 0.343 0.111 0.096 0.6 0.334 

 

  
 

  
  

S
V

M
  

  
  

  
  

(M
A

V
) 

  

Acc 79.14 97.05 75.27 72.03 88.29 94.29 86.02 70.06 74.07 96.01 83.22 

Sen 88.52 97.5 83.14 75.78 90.4 96.21 83.98 70.45 66.65 99.57 85.22 

Spe 67.08 96.54 64.95 66.52 85.14 91.42 88.23 69.65 84.13 91.11 80.48 

ITR 0.261 0.808 0.193 0.145 0.479 0.684 0.416 0.119 0.174 0.758 0.404 

 

  
  

  
  

  
  

S
V

M
 

(P
S

D
) 

   

Acc 79.46 95.02 72.41 71.2 89.06 93.22 84.25 62.2 70.01 94.01 81.08 

Sen 89.33 95 87.61 72.3 92.9 96.2 75.17 91.92 54.09 96.96 85.15 

Spe 66.57 94.94 53.43 70.03 83.08 88.12 94.59 24.19 91.86 89.81 75.66 

ITR 0.267 0.714 0.15 0.134 0.502 0.642 0.372 0.043 0.119 0.673 0.362 
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Table 7. Computation times of the linear discrimant 

analysis and support vector machine process. 

  

Method LDA 

+MAV 

LDA 

+PSD 

SVM 

+MAV 

SVM 

+PSD 

F.E.T.+ 

C.T. 
0.0057 0.9222 0.0028 0.8936 

F.E.T. (Feature Extraction Time-s), C.T. (Classifying Time-s) 

 

The computation time is a significant metric for TMI’s 

real-time applications [1, 5]. According to Table 7, the 

SVM+MAV method is shown the least computation 

time (0.0028 s) among the other methods. Then 

LDA+MAV (0.0057 s) yielded faster performance than 

SVM+PSD (0.8936 s) and LDA+PSD (0.9222 s) 

methods. It can be observed that the mean-absolute 

value has less computation time than the power spectral 

density because of not requiring transformation from the 

time domain to the frequency domain [8]. Similarly, 

SVM has less processing time than LDA. Computation 

time results were acquired in 1-fold cross-validation for 

an average of the test samples in the best participant's 

raw data set. All reported results in this paper were 

realized using MATLAB (License No: 834260) on a 

computer (Intel Core i5-7200 U CPU 2.50 GHz, 

Windows 10, 64 bit and 8 GB RAM). Finally, it is 

noteworthy that the SVM+MAV method is the best 

algorithm concerning the classification accuracy and the 

speed of execution in real-time usage of the GKP-based 

TMI research. Furthermore, the MAV feature extraction 

method provided better outcomes than PSD regarding 

the average values. Perhaps because of this reason, the 

MAV feature reflects the proper representation of 

glossokinetic potential responses better in GKP-based 

TMI. 

 

5. Discussion 
 

Computational neuroscience information notices the 

design of feedback control methods to distinguish the 

area of the motor cortex at different electrode 

installations on the human-computer interfaces during 

activated human body parts by measuring the local field 

potentials (LFPs). Thus, the multidisciplinary 

investigation aims to design a modern brain-machine 

interface (BMI) reconciling the statistical signal 

processing, machine learning, and information theory 

[15]. It is worth to report that the contribution and 

effects of the frontal+temporal lobes (11-channel) were 

observed in Tables 6, respectively. The correlation of 

frontal and temporal lobes' results are highly promising 

in terms of the classification accuracy for the tongue 

motion. Therefore, the results of eleven-channels are 

very close to the raw data set’s (400×19) outcomes. This 

significant finding was also verified by the brain 

mappings of the best participant shown in Figs.6 and 7. 

Moreover, fewer electrodes with 11-channels may 

provide more degrees of freedom and reliable control to 

the GKP-based TMI [9-10]. For this reason, fewer 

electrodes can lead "wearable" and easy-to-use 

biomedical support technologies and ATs to work in the 

future for stroke individuals [17]. Moreover, 

corticomuscular coupling analysis reveals the mutual 

effect amid ongoing muscular activities (EMG) and the 

brain regions. However, the brain cortex and GKP 

coherence in delta and theta bands during the tongue-

muscle motor functions were realized by GKP-based 

TMI research for the first time in the literature as our 

best knowledge. 

 

The unexpected case of the study of Nam et al. is that 

the antisymmetric formation of GKP responses has 

emerged on the power of brain mapping. However, in 

our research, the power of GKP responses on the brain 

mappings has arisen in symmetric creation. This may 

have occurred from this reason; in the case of producing 

GKP signals, the same team noted that the negatively 

charged of the tip of the tongue uncover a potentially 

increased variation on the noncontact surface as it 

creates a negative potential reduction on the contact 

surface of the buccal wall [3-5]. On the other hand, Nam 

et al. have investigated the patterns of GKPs on the 

scalp related to the language and phonetics research. 

 

The GKP biological responses are constituted of 

different spatial and temporal patterns on the brain maps 

during tongue movement. Moreover, in the mentioned 

paper, pronouncing the retroflex consonants led to a 

very strong potential increase over the frontal lobe 

during the tongue bending [14]. For this reason, in our 

study, an antisymmetric occurrence may have been 

suppressed due to strong and fast movements while the 

tongue is bent to touch the buccal walls during 

experimental tasks. Therefore, our results may have a 

symmetrical formation on the brain maps, as shown in 

Figs.7 and 8. The same researchers noted that the 

electrode location and the reference point, which was 

intentionally taken different contrary to general manner 

to occur the antisymmetric state on the brain mappings. 

Also, the experimental setup is different compared to 

our work, not just unlike electrode configurations. In 

their study, the tongue moves in an uninterrupted 

motion on the right-front-left path to touch the buccal 

walls [4-5]. However, in our study, multiple discrete 

contacts were realized in the same duration of 6 s task. 

Thus, all these points might encourage the assumption 

of symmetrical outcomes on brain maps in our study. 

 

The results of GKP-based TMI may be considered more 

reliable and robust, depending on 8 male and 2 female 

subjects (all naive healthy) who were not previously 

experienced. Then, Subject_2 (the best subject) and 

Subject_8 (the worst subject)  were chosen to point out 

and compare the distinct spots. The distinctive 

distinction of the best participant shows that having 

motivation, distinct and fast tongue movements 

provides the basis of achievement. However, the 

success of the worst participant was acceptable because 
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of less concentration and not properly doing instructed 

tasks. Motivation and cognitive effort in the relevant 

literature have been identified as the critical parameter 

for the high performance of BCI / HMI [8]. 

 

In recent years, ICA has been widely utilized in EEG-

based BCI models to reduce the dimension of features 

or to reveal the source components. However, it has not 

been used in GKP signals to reveal the sources and 

reduce the dimension. Therefore, when these two 

methods are used, both ends of the predictions about the 

statistical distribution of the data are tried. Not all EEG 

signals are non-Gaussian (ICA) and uncorrelated 

(PCA). This basis may be the same for GKP signals. 

Therefore, according to Tables 4 and 5, PCA and ICA 

results are so close to each other. However, ICA is 

relatively better than PCA, especially for the worst and 

low participants. Because of this reason may be that the 

data set of the worst subject has more non-Gaussian and 

highly spatial overlapping of cortical activity [18]. 

Moreover, finding linear projections of the data by ICA 

aims is to maximize their mutual independence. 

Therefore, the selection process of the 12 EEG channels 

was made to maximize the classification results in the 

randomly searching algorithm for each iteration [8, 18]. 

The advantages and disadvantages for ICA and PCA 

were stated in Table 8: 

 

Table 8. ICA and PCA comparison for data sets. 

 

ICA PCA 

ICA can improve 

classifier performance as 

it moves away from the 

normal distribution (non-

Gaussian). Therefore, the 

insignificant and worst 

participant data sets are 

more fitting for ICA 

PCA is benefiting from 

the normal distribution of 

data. Thus, better 

participant performances 

can be improved by PCA 

More convenient for 

highly spatial 

overlapping of cortical 

activity. Therefore, EEG 

channels from different 

parts of regions can be 

separated by ICA. 

However, the selection 

process can take a long 

time 

New orthogonal features, 

called principal 

components, are 

calculated by PCA. Thus, 

dimension reduction and 

selection of high 

variance features are 

easy to compute. 

However, PCA is not 

enough to resolve 

complex brain signals 

Removal artifact of 

signals can be made by 

ICA 

Focusing on the 

reduction of data and 

decreasing the 

classification cost time 

 

In BCIs, inter-trial and inter-subject instability are 

observed an important problem regarding the 

performance and reliability of the system. Moreover, 

long sessions of the BCI process present challenges in 

terms of consistent classification. The concept of these 

issues is referred to as transfer learning techniques that 

describe a procedure for using a stored relative data 

(statistical distribution of trial or session) to improve 

performance in another task [15]. However, the GKP-

based TMI study may offer greater robustness for trial 

effects due to the voluntary tongue movements and 

glossokinetic potential responses with high amplitude 

and low frequencies [3, 4].   

 

Moreover, it has been reported that the flexible and long 

cognitive planning time experiments can advance to the 

BCI and HMI research due to goal-oriented results that 

allow the subject to instinctive considerations [8]. In 

future work, the GKP-based TMI system can be 

advanced over this concept.  

 

6. Conclusion 
 

This paper describes GKP-based TMI as a new 1-D 

tongue machine interface research applying mean-

absolute value and power spectral density methods with 

SVM and LDA over scalp-recorded GKP biosignals. 

Some of the equipment based tongue-machine interfaces 

have reached up to the 96-98% accuracy [12]. However, 

these systems have bulky devices inside the mouth and 

in the ear canal or around the headset for stroke people.  

 

The rarely used glossokinetic responses have given 

promising results reaching up to the 97.03 accuracies 

for the construction of assistive technology that can be 

natural, reliable, attractive, and high-throughput 

efficiency for locked-in and ALS conditions. Then 

frontal and temporal lobe contributions can help 

neuroscientific understanding of cortical activity and 

statistical signal processing techniques by measuring 

local field potentials (LFPs) for tongue-related motor 

functions [16]. As far as we know, this critical point and 

glossokinetic potential have been dealt for the first time 

regarding the classification success of SVM and LDA 

with mean-absolute value and power spectral density in 

a tongue-machine interface. Moreover, comparing to 

our previous articles, SVM and LDA algorithms using 

mean-absolute value has greater performances 

compared to the root-mean-square feature extraction 

method for the best subject. Then this outcome provides 

very close results to the neural networks in the raw data 

sets [19-20]. 

 

The main challenges and focal point of this article are 

dedicated to advance the life quality of paralyzed 

individuals with tongue-based ways to reveal their 

wishes without traditional neuro-muscular pathways. 

Furthermore, GKP-based TMI may give a lead of real-

time alternative control channels for traditional EEG-
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driven BCIs with significant deficiencies resulting from 

the nature of EEG signals, which are low signal-to-noise 

ratio, and internally induced stationary mental activities 

or some external factors. 

 

The future work of this research study can be 

progressed by real-time applications using wireless, 

highly accurate data acquisition devices with fewer 

electrodes for developing more portable systems. 

Moreover, the real-time system performances should be 

recorded on the different levels of paralyzed people. 
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