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1. Introduction 

 

Let ∑𝑥𝑛 be a given infinite series with sequence of 

partial sums (𝑠𝑛)  and 𝐴 = (𝑎𝑛𝑣) be an infinite matrix 

of complex numbers. By 𝐴(𝑠) = (𝐴𝑛(𝑠)), we denote 

the 𝐴-transform of the sequence 𝑠 = (𝑠𝑛), i.e.,  

 

𝐴𝑛(𝑠) = ∑𝑎𝑛𝑣𝑠𝑣

∞

𝑣=0

 

 

which converges for 𝑛 ≥ 0.   
The 𝑛th (𝑁, 𝑝𝑛) weighted mean of the sequence (𝑠𝑛) is 

given by  

𝑇𝑛 =
1

𝑃𝑛
∑𝑝𝑣𝑠𝑣

𝑛

𝑣=0

, 

 

where (𝑝𝑛) is a sequence of positive real constants such 

that 𝑃𝑛 = ∑ 𝑝𝑣
𝑛
𝑣=0 → ∞ as 𝑛 → ∞  (𝑃−1 = 𝑝−1 = 0).  

Let (𝜑𝑛) be any sequence of positive real constants. 

Then the series ∑𝑥𝑛 is said to be summable 

|𝑁, 𝑝𝑛 , 𝜑𝑛|𝑘, 𝑘 ≥ 1, if (see [1])  

 

∑(𝜑𝑛)
𝑘−1

∞

𝑛=1

|𝑇𝑛 − 𝑇𝑛−1|
𝑘 < ∞.               (1.1) 

 

Note that |𝑁, 𝑝𝑛 , 𝑃𝑛 𝑝𝑛⁄ |𝑘 = |𝑁, 𝑝𝑛|𝑘 and |𝑁, 𝑝𝑛, 𝑛|𝑘 =
|𝑅, 𝑝𝑛|𝑘, which are defined by Bor and Sarıgöl in [2,3].  

Taking account of  

𝑇𝑛 − 𝑇𝑛−1 =
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑𝑃𝑣−1𝑥𝑣

𝑛

𝑣=1

 

 

the relation (1.1) can be stated as  

 

∑(𝜑𝑛)
𝑘−1

∞

𝑛=1

|
𝑝𝑛

𝑃𝑛𝑃𝑛−1
∑𝑃𝑣−1𝑥𝑣

𝑛

𝑣=1

|

𝑘

< ∞.    (1.2) 

 

An appropriate extension of (1.2) to a factorable matrix 

would be as follows [4]. Let 𝐴𝑓 = (𝑎𝑛𝑣) denote the 

factorable matrix defined by 

 

𝑎𝑛𝑣 = {
�̂�𝑛𝑎𝑣 ,   0 ≤ 𝑣 ≤ 𝑛,
0,      𝑣 > 𝑛,

 

 

where (�̂�𝑛) and (𝑎𝑛) are any sequences of real numbers. 

Then the series ∑𝑥𝑛 is said to be summable |𝐴𝑓 , 𝜑𝑛|𝑘
, 

𝑘 ≥ 1, if (see [4])  

 

∑(𝜑𝑛)
𝑘−1

∞

𝑛=1

|�̂�𝑛∑𝑎𝑣𝑥𝑣

𝑛

𝑣=1

|

𝑘

< ∞.  

 

If we take �̂�𝑛 =
𝑝𝑛

𝑃𝑛𝑃𝑛−1
  and 𝑎𝑣 = 𝑃𝑣−1, then |𝐴𝑓 , 𝜑𝑛|𝑘

 

summability is equivalent to |𝑁, 𝑝𝑛, 𝜑𝑛|𝑘 summability. 

 

Abstract 

In this paper, we establish the general summability factor theorems related to generalized absolute 

Cesàro summability |𝐶, 𝛼, 𝛽|𝑘 and absolute factorable matrix summability  |𝐴𝑓 , 𝜑𝑛|𝑘
 methods for 𝑘 ≥ 1, 

 𝛼 + 𝛽 > −1, where (𝜑𝑛) is arbitrary sequence of positive real constants and 𝐴𝑓 = (𝑎𝑛𝑣) is a  factorable 

matrix such that 𝑎𝑛𝑣 = �̂�𝑛𝑎𝑣  for 0 ≤ 𝑣 ≤ 𝑛, 𝑎𝑛𝑣 = 0 for  𝑣 > 𝑛, (�̂�𝑛) and (𝑎𝑛) are any sequences of 

real numbers.  Also, absolute factorable summability method includes all absolute Riesz summability 

and absolute weighted summability methods in the special cases.  Therefore, not only some well  known 

results but also several new results for absolute Cesàro and weighted means are obtained as corollaries. 

 

Keywords: Absolute Cesàro summability, Factorable matrix, Matrix methods, Sequence spaces, 

Summability factors. 
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Borwein [5] has introduced the 𝑛th generalized Cesàro 

mean (𝐶, 𝛼, 𝛽) of order (𝛼, 𝛽) with 𝛼 + 𝛽 > −1,  of the 

sequence (𝑠𝑛) by 

 

𝜎𝑛
𝛼,𝛽

=
1

𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑠𝑣 , 

 

where  𝐴𝑛
𝛼+𝛽

= 𝑂(𝑛𝛼+𝛽), 𝛼 + 𝛽 > −1,  𝐴0
𝛼+𝛽

= 1,

 𝐴𝑛
𝛼 =

(𝛼+1)(𝛼+2)…(𝛼+𝑛)

𝑛!
 𝑎𝑛𝑑  𝐴−𝑛

𝛼+𝛽
= 0, 𝑛 ≥ 1.  

 

Obviously, (𝐶, 𝛼, 0) is the same as (𝐶, 𝛼) whereas 

(𝐶, 0, 𝛽) is (𝐶, 0).   
 

We write 𝜏𝑛
𝛼,𝛽

 as the (𝐶, 𝛼, 𝛽)  transform of the 

sequence (𝑛𝑥𝑛),  i.e.,  
 

𝜏𝑛
𝛼,𝛽

=
1

𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑣𝑥𝑣 . 

 

Then, the series ∑𝑥𝑛 is said to be summable  |𝐶, 𝛼, 𝛽|𝑘, 

𝑘 ≥ 1, for 𝛼 + 𝛽 > −1, if (see [6]) 
 

∑
1

𝑛

∞

𝑛=1

|𝜏𝑛
𝛼,𝛽
|
𝑘
< ∞. 

 

The summability |𝐶, 𝛼, 𝛽|𝑘 includes all Cesàro methods 

in the special cases. For example, if we take 𝛽 = 0, 

𝛼 = 0 and 𝛼 = 1,  then the summability |𝐶, 𝛼, 𝛽|𝑘 

reduces to |𝐶, 𝛼|𝑘 defined by Flett in [7], to |𝐶, 0|𝑘  and 

the absolute Riesz summability |𝑅, 𝑝𝑛|𝑘 with 𝑝𝑛 = 𝐴𝑛
𝛽

 

for 𝛽 ≥ 0 [3].  
 

Throughout this paper, 𝑘∗ denotes the conjugate of 

𝑘 > 1,  i.e., 1/𝑘 + 1/ 𝑘∗ = 1, and 1/ 𝑘∗ = 0 for 𝑘 = 1. 

Let 𝑋 and 𝑌 be two summability methods. If ∑𝜀𝑛𝑥𝑛 is 

summable by the method 𝑌 whenever ∑𝑥𝑛 is summable 

by the method 𝑋, then we say that the sequence 

𝜀 = (𝜀𝑛)  is a summability factor of type (𝑋, 𝑌) and we 

write 𝜀 ∈ (𝑋, 𝑌). Also, note that if 𝜀 = 1, then 1 ∈
(𝑋, 𝑌) means the comparisons of these methods, where 

1 = (1,1, . . . ) , i.e.,  𝑋 ⊂ 𝑌. 
 

Absolute summability factors and comparison of the 

methods related to |𝑁, 𝑝𝑛|𝑘 and |𝐶, 𝛼|𝑘 were widely 

studied by many authors [8-12]. We refer the reader to 

[11-13] for the most recent work in this topic. Also the 

Cesàro series spaces have been defined as the set of all 

series summable by absolute Cesàro summability 

methods in [14-16]. 
 

2. Results and Discussion 
 

The aim of this paper is to characterize the sets 

(|𝐶, 𝛼, 𝛽|, |𝐴𝑓 , 𝜑𝑛|𝑘
), 𝑘 ≥ 1 and 

(|𝐴𝑓 , 𝜑𝑛|𝑘
, |𝐶, 𝛼, 𝛽|) , 𝑘 > 1 for 𝛼 + 𝛽 > −1. As a 

direct consequence of these results, we also obtain 

various new results as corollaries. 
 

We use the following lemmas to prove our results.  

Lemma 2.1. Let 1 < 𝑘 < ∞.  Then,  𝐴(𝑥) ∈ ℓ whenever 

𝑥 ∈ ℓ𝑘 if and only if 
 
 

∑(∑|𝑎𝑛𝑣|

∞

𝑛=0

)

𝑘∗∞

𝑣=0

< ∞ 

 

where ℓ𝑘 = {𝑥 = (𝑥𝑣) ∶  ∑ |𝑥𝑣|
𝑘

𝑣 < ∞}, ℓ1 =  ℓ, [17]. 

Lemma 2.2. Let 1 ≤ 𝑘 < ∞. Then, 𝐴(𝑥) ∈ ℓ𝑘 whenever 

𝑥 ∈ ℓ if and only if  

 

sup
𝑣
∑|𝑎𝑛𝑣|

𝑘

∞

𝑛=0

< ∞, 

[18]. 

 

Lemma 2.3. Let 𝜇 > −1, 1 ≤ 𝑘 < ∞ and 𝜆 < 𝜇. Then, 

for 𝑘 = 1, 

𝐸𝑣 = {
𝑂(𝑣−𝜇−1),    𝜆 ≤ −1

𝑂(𝑣−𝜇+𝜆),    𝜆 > −1
 

and  

𝐸𝑣 = {

𝑂(𝑣−𝑘𝜇−1),    𝜆 < −1 𝑘⁄

𝑂(𝑣−𝑘𝜇−1𝑙𝑜𝑔𝑣), 𝜆 = −1 𝑘⁄

𝑂(𝑣−𝑘𝜇+𝑘𝜆),    𝜆 > −1 𝑘⁄

 

 

for 1 < 𝑘 < ∞, where 𝐸𝑣 = ∑
|𝐴𝑛−𝑣
𝜆 |

𝑘

𝑛(𝐴𝑛
𝜇
)
𝑘

∞
𝑛=𝑣  for 𝑣 ≥ 1, [9]. 

 

Now, we are ready to prove the main theorems. 

 

Theorem 2.4. Let 𝑘 ≥ 1 and 𝛼 + 𝛽 > −1. Then the 

necessary and sufficient condition for 

𝜀 ∈ (|𝐶, 𝛼, 𝛽|, |𝐴𝑓 , 𝜑𝑛|𝑘
) is that 

 

sup
𝑟
{∑|𝜑𝑛

1 𝑘∗⁄
�̂�𝑛𝑟𝐴𝑟

𝛼+𝛽
∑

𝑎𝑣𝜀𝑣𝐴𝑣−𝑟
−𝛼−1

𝑣𝐴𝑣
𝛽

𝑛

𝑣=𝑟

|

𝑘∞

𝑛=𝑟

} < ∞.  (2.1) 

 

Proof. Let 𝜏𝑛
𝛼,𝛽

 be the 𝑛th (𝐶, 𝛼, 𝛽) mean of the 

sequence (𝑛𝑥𝑛) and define the sequence (𝑦𝑛) by  

 

𝑦𝑛 =
𝜏𝑛
𝛼,𝛽

𝑛
=

1

𝑛𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑣𝑥𝑣 ,

𝑛 ≥ 1      𝑎𝑛𝑑    𝑦0 = 𝑥0.           (2.2) 
 

So, ∑𝑥𝑛 is summable |𝐶, 𝛼, 𝛽| iff  𝑦 = (𝑦𝑛) ∈ ℓ. Also, 

by inversion of  (2.2), we have for  𝑛 ≥ 1 

𝑥𝑛 =
1

𝑛𝐴𝑛
𝛽
∑𝐴𝑛−𝑣

−𝛼−1𝑣𝐴𝑣
𝛼+𝛽

𝑦𝑣 .

𝑛

𝑣=1

                 (2.3) 
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Using definition of factorable matrix 𝐴𝑓, we define the 

sequence (�̃�𝑛) by  

 

�̃�𝑛 = 𝜑𝑛
1 𝑘∗⁄

�̂�𝑛∑𝑎𝑣𝑥𝑣𝜀𝑣

𝑛

𝑣=1

  , �̃�0 = 𝜀0𝑥0. 

 

This gives us that ∑𝜀𝑛𝑥𝑛 is summable |𝐴𝑓 , 𝜑𝑛|𝑘
 iff  

�̃� = (�̃�𝑛) ∈ ℓ𝑘. 
 

Hence, in view of (2.3), we get for 𝑛 ≥ 1, 

�̃�𝑛 = 𝜑𝑛
1 𝑘∗⁄

�̂�𝑛∑𝑎𝑣𝜀𝑣

𝑛

𝑣=1

𝑥𝑣

= 𝜑𝑛
1 𝑘∗⁄

�̂�𝑛∑𝑎𝑣𝜀𝑣

𝑛

𝑣=1

1

𝑣𝐴𝑣
𝛽
∑𝐴𝑣−𝑟

−𝛼−1𝑟𝐴𝑟
𝛼+𝛽

𝑦𝑟 

𝑣

𝑟=1

= 𝜑𝑛
1 𝑘∗⁄

�̂�𝑛∑ 

𝑛

𝑟=1

(𝑟𝐴𝑟
𝛼+𝛽

∑
𝑎𝑣𝜀𝑣𝐴𝑣−𝑟

−𝛼−1

𝑣𝐴𝑣
𝛽

𝑛

𝑣=𝑟

)𝑦𝑟

=∑𝑑𝑛𝑟

𝑛

𝑟=1

𝑦𝑟  

where  

𝑑𝑛𝑟 = {
𝜑𝑛
1 𝑘∗⁄

�̂�𝑛𝑟𝐴𝑟
𝛼+𝛽

∑
𝑎𝑣𝜀𝑣𝐴𝑣−𝑟

−𝛼−1

𝑣𝐴𝑣
𝛽

𝑛

𝑣=𝑟

 , 1 ≤ 𝑟 ≤ 𝑛

0, 𝑟 > 𝑛.

 

 

Then, ∑𝜀𝑛𝑥𝑛 is summable |𝐴𝑓 , 𝜑𝑛|𝑘
 whenever ∑𝑥𝑛 is 

summable |𝐶, 𝛼, 𝛽| if and only if �̃� ∈ ℓ𝑘 whenever 𝑦 ∈
ℓ. Hence using Lemma 2.2, we obtain that 𝜀 ∈

(|𝐶, 𝛼, 𝛽|, |𝐴𝑓 , 𝜑𝑛|𝑘
)   if and only if  

sup
𝑟
{∑|𝜑𝑛

1 𝑘∗⁄
�̂�𝑛𝑟𝐴𝑟

𝛼+𝛽
∑

𝑎𝑣𝜀𝑣𝐴𝑣−𝑟
−𝛼−1

𝑣𝐴𝑣
𝛽

𝑛

𝑣=𝑟

|

𝑘∞

𝑛=𝑟

} < ∞ 

which completes the proof. 

 

Theorem 2.5. Let 𝑘 > 1, 𝛼 + 𝛽 > −1 and 𝛽 > −1. 

Then the necessary and sufficient condition for  

𝜀 ∈  (|𝐴𝑓 , 𝜑𝑛|𝑘
 , |𝐶, 𝛼, 𝛽|)  is that   

 

∑(∑|
1

𝑛𝐴𝑛
𝛼+𝛽

𝜑𝑣
1 𝑘∗⁄

�̂�𝑣
Ω𝑛𝑣|

∞

𝑛=𝑣

)

𝑘∗∞

𝑣=1

< ∞, (2.4) 

where Ω = (Ω𝑛𝑣) is defined by  

Ω𝑛𝑣 = {
𝐴𝑛−𝑣
𝛼−1𝐴𝑣

𝛽
𝑣𝜀𝑣

𝑎𝑣
−
𝐴𝑛−𝑣−1
𝛼−1 𝐴𝑣+1

𝛽
(𝑣+1)𝜀𝑣+1

𝑎𝑣+1
, 1 ≤ 𝑣 ≤ 𝑛,

0, 𝑣 > 𝑛.

 

 

Proof. Let (�̃�𝑛) denote the sequence defined by  

 

�̃�𝑛 = 𝜑𝑛
1 𝑘∗⁄

�̂�𝑛∑𝑎𝑣𝑥𝑣

𝑛

𝑣=1

, 𝑛 ≥ 1, 𝑎𝑛𝑑 �̃�0 = 𝑥0.  (2.5) 

 

So, we can write that ∑𝑥𝑛 is summable |𝐴𝑓 , 𝜑𝑛|𝑘
 iff  

�̃� = (�̃�𝑛) ∈ ℓ𝑘. By inversion of (2.5), we obtain for 

𝑛 ≥ 1, 

𝑥𝑛 =
1

𝑎𝑛
(

�̃�𝑛

𝜑𝑛
1 𝑘∗⁄

�̂�𝑛
−

�̃�𝑛−1

𝜑𝑛−1
1 𝑘∗⁄

�̂�𝑛−1
).        (2.6) 

 

Also let (𝑢𝑛
𝛼,𝛽
) be the 𝑛th (𝐶, 𝛼, 𝛽) mean of the 

sequence (𝑛𝑥𝑛𝜀𝑛), i.e.,   

𝑢𝑛
𝛼,𝛽

=
1

𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑣𝜀𝑣𝑥𝑣 . 

 

If we define 𝑦 = (𝑦𝑛) by 

 

𝑦𝑛 =
𝑢𝑛
𝛼,𝛽

𝑛
=

1

𝑛𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑣𝜀𝑣𝑥𝑣 , 

 

then, we say that ∑𝜀𝑛𝑥𝑛 is summable |𝐶, 𝛼, 𝛽| iff  

𝑦 = (𝑦𝑛) ∈ ℓ.  Hence, by virtue of the (2.6), we get for 

𝑛 ≥ 1, 

 

𝑦𝑛 =
1

𝑛𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑣𝜀𝑣𝑥𝑣

=
1

𝑛𝐴𝑛
𝛼+𝛽

∑𝐴𝑛−𝑣
𝛼−1

𝑛

𝑣=1

𝐴𝑣
𝛽
𝑣𝜀𝑣

1

𝑎𝑣
(

�̃�𝑣

𝜑𝑣
1 𝑘∗⁄

�̂�𝑣
−

�̃�𝑣−1

𝜑𝑣−1
1 𝑘∗⁄

�̂�𝑣−1
)

=
1

𝑛𝐴𝑛
𝛼+𝛽

(∑
𝐴𝑛−𝑣
𝛼−1𝐴𝑣

𝛽
𝑣𝜀𝑣�̃�𝑣

𝑎𝑣𝜑𝑣
1 𝑘∗⁄

�̂�𝑣

𝑛

𝑣=1

−∑
𝐴𝑛−𝑣−1
𝛼−1 𝐴𝑣+1

𝛽
(𝑣 + 1)𝜀𝑣+1�̃�𝑣

𝑎𝑣+1𝜑𝑣
1 𝑘∗⁄

�̂�𝑣

𝑛−1

𝑣=0

)

= −
𝐴𝑛−1
𝛼−1𝐴1

𝛽
𝜀1�̃�0

𝑛𝐴𝑛
𝛼+𝛽

𝑎1𝜑0
1 𝑘∗⁄

�̂�0

+
1

𝑛𝐴𝑛
𝛼+𝛽

∑(
𝐴𝑛−𝑣
𝛼−1𝐴𝑣

𝛽
𝑣𝜀𝑣

𝑎𝑣

𝑛

𝑣=1

−
𝐴𝑛−𝑣−1
𝛼−1 𝐴𝑣+1

𝛽
(𝑣 + 1)𝜀𝑣+1

𝑎𝑣+1
)

�̃�𝑣

𝜑𝑣
1 𝑘∗⁄

�̂�𝑣
=∑𝑑𝑛𝑣�̃�𝑣

𝑛

𝑣=0

 

 

where 𝐷 = (𝑑𝑛𝑣) is defined by 

 

𝑑𝑛𝑣 =

{
 
 

 
 −

𝐴𝑛−1
𝛼−1𝐴1

𝛽
𝜀1

𝑛𝐴𝑛
𝛼+𝛽

𝑎1𝜑0
1 𝑘∗⁄

�̂�0
, 𝑣 = 0, 𝑛 ≥ 1,

1

𝑛𝐴𝑛
𝛼+𝛽

𝜑𝑣
1 𝑘∗⁄

�̂�𝑣
Ω𝑛𝑣 , 1 ≤ 𝑣 ≤ 𝑛

0, 𝑣 > 𝑛,

 

and Ω = (Ω𝑛𝑣) is as in Theorem 2.5. 
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Then, ∑𝜀𝑛𝑥𝑛 is summable  |𝐶, 𝛼, 𝛽| whenever ∑𝑥𝑛 is 

summable |𝐴𝑓 , 𝜑𝑛|𝑘
 if and only if 𝑦 ∈ ℓ whenever 

�̃� ∈ ℓ𝑘. Hence in view of Lemma 2.1, we obtain that 

𝜀 ∈  (|𝐴𝑓 , 𝜑𝑛|𝑘
 , |𝐶, 𝛼, 𝛽|)   if and only if  

∑(∑|𝑑𝑛𝑣|

∞

𝑛=𝑣

)

𝑘∗∞

𝑣=0

< ∞ 

which gives that 

 

(∑|𝑑𝑛0|

∞

𝑛=1

)

𝑘∗

+∑(∑|𝑑𝑛𝑣|

∞

𝑛=𝑣

)

𝑘∗∞

𝑣=1

= (∑ |
𝐴𝑛−1
𝛼−1𝐴1

𝛽
𝜀1

𝑛𝐴𝑛
𝛼+𝛽

𝑎1𝜑0
1 𝑘∗⁄

�̂�0
|

∞

𝑛=1

)

𝑘∗

 

+∑(∑|
1

𝑛𝐴𝑛
𝛼+𝛽

𝜑𝑣
1 𝑘∗⁄

�̂�𝑣
(
𝐴𝑛−𝑣
𝛼−1𝐴𝑣

𝛽
𝑣𝜀𝑣

𝑎𝑣

∞

𝑛=𝑣

∞

𝑣=1

−
𝐴𝑛−𝑣−1
𝛼−1 𝐴𝑣+1

𝛽 (𝑣 + 1)𝜀𝑣+1
𝑎𝑣+1

)|)

𝑘∗

< ∞. 

Since  ∑ |
𝐴𝑛−1
𝛼−1

𝑛𝐴𝑛
𝛼+𝛽|

∞
𝑛=1 < ∞ from Lemma 2.3 , we get that 

(2.4) holds, which completes the proof. 

 

3. Conclusion 

 

Our results have several consequences depending on 

𝛼, 𝛽, (�̂�𝑛) and (𝑎𝑛) .  
 

If we consider the special case 𝜀 = 1 in the Theorem 2.4 

and Theorem 2.5, we have following results dealing 

with comparison of summability fields of methods 

|𝐶, 𝛼, 𝛽| and |𝐴𝑓 , 𝜑𝑛|𝑘
.  

 

Corollary 3.1. Let 𝑘 ≥ 1 and 𝛼 + 𝛽 > −1. Then, 

|𝐶, 𝛼, 𝛽| ⊂ |𝐴𝑓 , 𝜑𝑛|𝑘
 if and only if 

 

sup
𝑟
{∑|𝜑𝑛

1 𝑘∗⁄
�̂�𝑛𝑟𝐴𝑟

𝛼+𝛽
∑

𝑎𝑣𝐴𝑣−𝑟
−𝛼−1

𝑣𝐴𝑣
𝛽

𝑛

𝑣=𝑟

|

𝑘∞

𝑛=𝑟

} < ∞.  

 

Corollary 3.2. Let 𝑘 > 1, 𝛼 + 𝛽 > −1 and 𝛽 > −1.  

Then |𝐴𝑓 , 𝜑𝑛|𝑘
⊂ |𝐶, 𝛼, 𝛽| if and only if 

 

∑(∑|
1

𝑛𝐴𝑛
𝛼+𝛽

𝜑𝑣
1 𝑘∗⁄

�̂�𝑣
(
𝐴𝑛−𝑣
𝛼−1𝐴𝑣

𝛽
𝑣

𝑎𝑣

∞

𝑛=𝑣

∞

𝑣=1

−
𝐴𝑛−𝑣−1
𝛼−1 𝐴𝑣+1

𝛽
(𝑣 + 1)

𝑎𝑣+1
)|)

𝑘∗

< ∞. 

 

Taking �̂�𝑛 =
𝑝𝑛

𝑃𝑛𝑃𝑛−1
 , 𝑎𝑣 = 𝑃𝑣−1 in the Theorem 2.4 and  

Theorem 2.5, we get the following results, respectively.  

 

Corollary 3.3. Let 𝑘 ≥ 1 and 𝛼 + 𝛽 > −1. Then the 

necessary and sufficient condition for 

𝜀 ∈ (|𝐶, 𝛼, 𝛽|, |𝑁, 𝑝𝑛 , 𝜑𝑛|𝑘)  is that 

sup
𝑟
{∑|𝜑𝑛

1 𝑘∗⁄ 𝑝𝑛
𝑃𝑛𝑃𝑛−1

𝑟𝐴𝑟
𝛼+𝛽

∑
𝑃𝑣−1𝜀𝑣𝐴𝑣−𝑟

−𝛼−1

𝑣𝐴𝑣
𝛽

𝑛

𝑣=𝑟

|

𝑘∞

𝑛=𝑟

}

< ∞.  
 

Corollary 3.4. Let 𝑘 > 1, 𝛼 + 𝛽 > −1 and 𝛽 > −1. 

Then the necessary and sufficient condition for 𝜀 ∈
(|𝑁, 𝑝𝑛 , 𝜑𝑛|𝑘 , |𝐶, 𝛼, 𝛽|) is that 

 

∑(∑|
𝑃𝑣𝑃𝑣−1

𝑛𝐴𝑛
𝛼+𝛽

𝜑𝑣
1 𝑘∗⁄

𝑝𝑣
(
𝐴𝑛−𝑣
𝛼−1𝐴𝑣

𝛽
𝑣𝜀𝑣

𝑃𝑣−1

∞

𝑛=𝑣

∞

𝑣=1

−
𝐴𝑛−𝑣−1
𝛼−1 𝐴𝑣+1

𝛽
(𝑣+1)𝜀𝑣+1
𝑃𝑣

)|)

𝑘∗

< ∞.   
 

If we take 𝛽 = 0, Theorem 2.4 and Theorem  2.5 reduce 

to the next results, respectively.  

 

Corollary 3.5. Let 𝑘 ≥ 1 and 𝛼 > −1. Then the 

necessary and sufficient condition for 

𝜀 ∈ (|𝐶, 𝛼|, |𝐴𝑓 , 𝜑𝑛|𝑘
) is that 

 

sup
𝑟
{∑|𝜑𝑛

1 𝑘∗⁄
�̂�𝑛𝑟𝐴𝑟

𝛼∑
𝑎𝑣𝜀𝑣𝐴𝑣−𝑟

−𝛼−1

𝑣

𝑛

𝑣=𝑟

|

𝑘∞

𝑛=𝑟

} < ∞.  

 

Corollary 3.6. Let 𝑘 > 1 and 𝛼 > −1. Then the 

necessary and sufficient condition for 

𝜀 ∈ (|𝐴𝑓 , 𝜑𝑛|𝑘
, |𝐶, 𝛼|) is that 

 

∑(∑|
1

𝑛𝐴𝑛
𝛼𝜑𝑣

1 𝑘∗⁄
�̂�𝑣
(
𝐴𝑛−𝑣
𝛼−1𝑣𝜀𝑣
𝑎𝑣

∞

𝑛=𝑣

∞

𝑣=1

−
𝐴𝑛−𝑣−1
𝛼−1 (𝑣+1)𝜀𝑣+1

𝑎𝑣+1
)|)

𝑘∗

< ∞.   

 

Also, taking �̂�𝑛 =
𝑝𝑛

𝑃𝑛𝑃𝑛−1
 ,  𝑎𝑣 = 𝑃𝑣−1 in the Corollary 

3.5. and Corollary 3.6, we have:  
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Corollary 3.7. Let 𝑘 ≥ 1 and 𝛼 > −1. Then the 

necessary and sufficient condition for 

𝜀 ∈ (|𝐶, 𝛼|, |𝑁, 𝑝𝑛 , 𝜑𝑛|𝑘) is that 

 

sup
𝑟
{∑|𝜑𝑛

1 𝑘∗⁄ 𝑝𝑛
𝑃𝑛𝑃𝑛−1

𝑟𝐴𝑟
𝛼∑

𝑃𝑣−1𝜀𝑣𝐴𝑣−𝑟
−𝛼−1

𝑣

𝑛

𝑣=𝑟

|

𝑘∞

𝑛=𝑟

} < ∞. 

 

Corollary 3.8. Let 𝑘 > 1 and 𝛼 > −1. Then the 

necessary and sufficient condition for 

𝜀 ∈ (|𝑁, 𝑝𝑛, 𝜑𝑛|𝑘 , |𝐶, 𝛼|) is that 

 

 

∑(∑|
𝑃𝑣𝑃𝑣−1

𝑛𝐴𝑛
𝛼𝜑𝑣

1 𝑘∗⁄
𝑝𝑣
(
𝐴𝑛−𝑣
𝛼−1𝑣𝜀𝑣
𝑃𝑣−1

∞

𝑛=𝑣

∞

𝑣=1

−
𝐴𝑛−𝑣−1
𝛼−1 (𝑣+1)𝜀𝑣+1

𝑃𝑣
)|)

𝑘∗

< ∞.  
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