Some Properties on Sums of Element Orders in Finite p-groups

Nil Mansuroğlu*

Abstract

In literature, there are many papers on the sum of element orders of a finite group. In this study, in particular, we deal with the cases in finite p-groups. Our main aim is to investigate the sums of element orders in finite p-groups and to give some properties of such sums. Let $\psi(G)$ denote the sum of element orders of a finite group G. As an immediate consequence, we proved that $\psi(G)<\frac{3}{4} \psi(C)$ and $\psi(G)<\frac{1}{p-1} \psi(C)$, where G is a non-cyclic finite p-group of order p^{r} and C is a cyclic group of order p^{r} for some prime p.

Keywords: Finite p-group; group element orders; sum of element orders. AMS Subject Classification (2020): Primary: 20D60; Secondary: $20 E 34$.
*Corresponding author

1. Introduction

Our main starting point is given by the papers (see H. Amiri [2], H. Amiri and S.M.J. Amiri [1], Herzog et al. [5]) which studied on the sums of element orders in finite groups. Given a finite group G, we denote the sum of element orders in G by $\psi(G)$. Historically, the most enlightening in this area is due [5], who introduced the function $\psi(G)$ for a finite group G in [2] and proved that $\psi(G)<\psi(C)$, where C denotes a cyclic group of the same order with the order of G. Then, in [5], by improving the results obtained by S.M. Jafarian Amiri and M. Amiri in [4] and by R. Shen, G. Chen and C. Wu in [10], M. Herzog, P. Longobardi and M. Maj found an exact upper bound for sums of element orders in non-cyclic finite groups. In [8], N. Mansuroğlu derived the exact formula for the sums of element orders in symmetric groups.
Throughout this paper, we assume that G is a finite p-group of order p^{r} for a prime p. In this note we will focus on the study of $\psi(G)$. Our main aim is to investigate the sum of element orders in finite p-groups and to give some properties of the sum of element orders in finite p-groups. We investigate to find an exact upper bound for sums of element orders in non-cyclic p-finite groups.

2. Preliminaries

This section contains necessary preliminary results and notation. We use standard notation. We define the function $\psi(G)=\sum_{x \in G} o(x)$, where as usual, $o(x)$ is the order of the element x. Basic concepts and some results on group theory can be found in [6, 9]. Specially, more details for finite p-groups can be found in [7].
An important ingredient in our proofs is the following two lemmas which are particular case of Lemma 2.9 in the paper [5].
Lemma 2.1. If C is a cyclic group of order p^{r} for some prime p, then

$$
\psi(C)=\frac{p^{2 r+1}+1}{p+1}
$$

Received : 05-09-2019, Accepted : 14-02-2020

Proof. Let $\varphi(p)$ be Euler's function.

$$
\begin{aligned}
\psi(C) & =1+p \varphi(p)+p^{2} \varphi\left(p^{2}\right)+\ldots+p^{r} \varphi\left(p^{r}\right) \\
& =1+p p\left(\frac{p-1}{p}\right)+p^{2} p^{2}\left(\frac{p-1}{p}\right)+\ldots+p^{r} p^{r}\left(\frac{p-1}{p}\right)=\frac{p^{2 r+1}+1}{p+1} .
\end{aligned}
$$

Lemma 2.2. If C is a cyclic group of order p^{r} for some prime p, then

$$
\psi(C)>p^{2 r-1}(p-1) .
$$

Proof. By Lemma 2.1,

$$
\begin{aligned}
\psi(C) & =\frac{p^{2 r+1}+1}{p+1} \\
& =p^{2 r}-p^{2 r-1}+p^{2 r-2}-\ldots+1>p^{2 r-1}(p-1) .
\end{aligned}
$$

3. The main results

Now, in this section we give our main results.
Theorem 3.1. Let G be a non-cyclic finite p-group of order p^{r} for some prime p. Then

$$
\psi(G)<p^{2 r-1} .
$$

Proof. Since G is a non-cyclic finite p-group of order p^{r}, for each element $x \in G, o(x) \leq p^{r-1}$. But the order of the identity element 1 is 1 , as a result of this, we have

$$
\psi(G) \leq\left(p^{r}-1\right) p^{r-1}+1=\frac{\left(p^{r}-1\right) p^{r}}{p}+1<\frac{p^{2 r}}{p}=p^{2 r-1},
$$

as required.
Theorem 3.2. Let G be a non-cyclic finite p-group of order p^{r} and C be a cyclic finite group of order p^{r}. Then

$$
\psi(G)<\frac{1}{p-1} \psi(C) .
$$

Proof. Suppose that $\psi(G) \geq \frac{1}{p-1} \psi(C)$. By Lemma 2.2,

$$
\psi(G) \geq \frac{1}{p-1} \psi(C)>\frac{1}{p-1} p^{2 r-1}(p-1)=p^{2 r-1}
$$

This implies that there exists $x \in G$ with $o(x)>p^{r-1}$. Thus $|G:\langle x\rangle|<p$ and $\langle x\rangle$ is a p-group. As a consequence, $|G|=o(x)$, namely $G=\langle x\rangle$. But G is non-cyclic group, which is a contradiction. Hence, $\psi(G)<\frac{1}{p-1} \psi(C)$.

We now provide a quantitative version of Theorem 3.2.
Corollary 3.1. Suppose that p is odd prime. Let G be a non-cyclic finite p-group of order p^{r} and C be a cyclic finite group of order p^{r}. Then

$$
\psi(G)<\frac{1}{2} \psi(C) .
$$

Proof. By Theorem 3.2, we have $\psi(G)<\frac{1}{p-1} \psi(C)$. Since $p-1 \geq 2$, we obtain

$$
\psi(G)<\frac{1}{p-1} \psi(C) \leq \frac{1}{2} \psi(C) .
$$

This competes the proof.

The next result is the analogous of the result obtained by Theorem 1 in [5] for finite p-groups.
Theorem 3.3. Let G be a non-cyclic finite p-group of order p^{r} and C be a cyclic finite group of order p^{r}. Then

$$
\psi(G) \leq \frac{7}{11} \psi(C)
$$

Proof. Assume that G is a non-cyclic finite p-group of order p^{r} satisfying $\psi(G)>\frac{7}{11} \psi(C)$. By Lemma 2.1,

$$
\psi(G)>\frac{7}{11} \psi(C)=\frac{7}{11} \cdot \frac{p^{2 r+1}+1}{p+1}>\frac{7}{11} \cdot \frac{2 p^{2 r}}{p+1}=\frac{14}{11} \cdot \frac{p^{2 r}}{p+1}
$$

There exists $x \in G$ with $o(x)>\frac{14}{11(p+1)}$. It follows that

$$
|G:\langle x\rangle|<\frac{11(p+1)}{14}
$$

Now first we suppose that $p=2$, then G is 2 -group. Therefore, we have

$$
|G:\langle x\rangle|<\frac{33}{14}
$$

Thus $|G:\langle x\rangle|=2,2^{r} \geq 4, r \geq 2$. Let $C_{2^{r-1}}$ be a cyclic group of order 2^{r-1}. Hence

$$
\begin{aligned}
\psi(G) \leq \psi\left(C_{2^{r-1}}\right)+2^{2(r-1)} & =\frac{2^{2 r-1}+1}{3}+\frac{2^{2 r}}{4}=\frac{5}{12} \cdot 2^{2 r}+\frac{1}{3} \\
& \leq \frac{7}{11} \cdot\left(\frac{2^{2 r+1}+1}{3}\right)=\frac{7}{11} \psi(C)
\end{aligned}
$$

which contradicts to the fact that $\psi(G)>\frac{7}{11} \psi(C)$.
Now we investigate the case that $p \geq 3$. Since p is odd prime, it follows from Corollary 3.1 that

$$
\psi(G)<\frac{1}{2} \psi(C)<\frac{7}{11} \psi(C)
$$

which is a contradiction. This completes the proof.
Our main result is the following theorem.
Theorem 3.4. Let G be a non-cyclic finite p-group of order p^{r} and C be a cyclic finite group of order p^{r}. Then

$$
\psi(G)<\frac{3}{4} \psi(C)
$$

Proof. Assume that G is a non-cyclic finite p-group of order p^{r} satisfying $\psi(G)>\frac{2}{3} \psi(C)$. Since G is a non-cyclic, for each element $x \in G, o(x) \leq p^{r-1}$. But the order of the identity element 1 is 1 , as a result of this, we have

$$
\psi(G) \leq\left(p^{r}-1\right) p^{r-1}+1
$$

Now first we suppose that $p=2$, then G is 2 -group. Therefore, we have

$$
\psi(G) \leq\left(2^{r}-1\right) 2^{r-1}+1=2^{2 r-1}-2^{r-1}+1<\frac{3}{4}\left(\frac{2}{3} 2^{2 r}+\frac{1}{3}\right)=\frac{3}{4} \psi(C)
$$

Now we investigate the case that $p \geq 3$. Since p is odd prime, by Corollary 3.1, we have

$$
\psi(G)<\frac{1}{2} \psi(C)<\frac{3}{4} \psi(C)
$$

a contradiction. This completes the proof.
The following examples hold all our main consequences.
Example 3.1. Let $G=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$ be a non-cyclic 2-group of order 8 and C be a cyclic group of order 8.
Example 3.2. Let $G=\left\langle a, b \mid a^{8}=b^{4}=1, a^{4}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$. Then G is a generalized quarternion group of order 16. It is easy to see that G satisfies $\psi(G)<\frac{2}{3} \psi(C)$ where C is a cyclic group of order 16 .

References

[1] Amiri, H., Jafarian Amiri, S.M., Isaacs, I.M.: Sums of element orders in finite groups. Comm. Algebra. 37, 2978-2980 (2009).
[2] Amiri, H., Jafarian Amiri, S.M.: Sum of element orders on finite groups of the same order. J. Algebra Appl. 10 2, 187-190 (2011).
[3] Jafarian Amiri, S.M.: Second maximum sum of element orders on finite nilpotent groups. Comm. Algebra. 41 6, 2055-2059 (2013) .
[4] Amiri, H., Jafarian Amiri, S.M.: Second maximum sum of element orders on finite groups. J. Pure Appl. Algebra. 218 3, 531-539 (2014)
[5] Herzog, M., Longobardi, P., Maj, M.: An exact upper bound for sums of element orders in non-cyclic finite groups. J. Pure and Applied Algebra. 222 7, 1628-1642 (2018).
[6] Isaacs, I.M.: Finite group theory. Graduate Studies in Mathematics. 92, American Mathematical Society, Providence, RI, (2008).
[7] Khukhro, E.I.: p-Automorphisms of Finite p-Groups. London Mathematical Society Lecture Note Series 246, Cambridge University Press, (1997).
[8] Mansuroğlu, N.: Sums of element orders in symmetric groups. Afyon Kocatepe University Journal of Science and Engineering. 18, 884-887 (2018).
[9] Robinson, D.J.S.: A Course in the Theory of Groups. 2nd edition, Springer-Verlag, New York, (1996).
[10] Shen, R., Chen, G., Wu, C.: On groups with the Second Largest Value of the Sum of Element Orders. Comm. Algebra. 43 6, 2618-2631 (2015).

Affiliations

Nil MANSUROĞLU
Address: Kırşehir Ahi Evran University, Dept. of Mathematics, 40100, Kırşehir-Turkey. E-MAIL: nil.mansuroglu@ahievran.edu.tr
ORCID ID: 0000-0002-6400-2115

