
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
8 (1) 55-68 (2020) c©MSAEN

HTTPS://DOI.ORG/10.36753/MATHENOT.621602

On Dual-Complex Numbers with Generalized
Fibonacci and Lucas Numbers Coefficients
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Abstract
In this paper, dual-complex Fibonacci numbers with generalized Fibonacci and Lucas coefficients are
defined. Generating function is given for this number system. Binet’s formula is obtained by the help of
this generating function. Then, well-known Cassini, Catalan, d’Ocagne’s, Honsberger, Tagiuri and other
identities are given for this number system. Finally, it is seen that the theorems and the equations which
are obtained for the special values p = 1 and q = 0 correspond to the theorems and identities in [2].
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1. Introduction
In the 12th century, Fibonacci number sequence was introduced in Liber Abaci which was written by Italian

mathematician Leonardo Fibonacci. Then, this number sequence became important from three fundamental reasons.
Firstly, the elements of the sequence appear in many places of nature such as plants and insects. Secondly, we
get nearly the same rate when we divide any two successive Fibonacci numbers of the sequence. This number,
called the "golden ratio", appears in numerous fields from the proportion of the human body to the pyramids
of Egypt. Thirdly, there are many interesting features in the theory of these numbers. This number sequence is
obtained by adding two consecutive terms, the first two terms being 0 and 1. If the initial values are changed,
another number sequence is created that is completely independent from the Fibonacci number sequence. With this
in mind, the French mathematician Edward Lucas defined the Lucas number sequence by using the initial values
2 and 1, respectively and this number sequence gained serious popularity, too. The fact that the Lucas number
sequence is so widely studied in the literature that is there are many interesting identities between the Fibonacci
number sequence and this sequence.
Numerous studies have been done on Fibonacci and Lucas number sequences [1, 3, 10]. One of these studies
is on dual-complex numbers with Fibonacci and Lucas numbers. Dual-complex numbers with Fibonacci and
Lucas coefficients are defined in [2]. In this paper, we define dual-complex numbers by using the coefficients of
generalized Fibonacci and Lucas numbers. Then the addition, multiplication, conjugation and modules of these
numbers have been presented and identities have been obtained related to them. Also, the generating function
of the dual-complex number with generalized Fibonacci coefficient has been obtained and the Binet formula for
this number is proved. Finally, d’Ocagne’s, Honsberger, Tagiuri, Catalan identities have been found and Cassini’s
identity has been given in case of r = 1.

2. Preliminaries
Fibonacci and Lucas numbers are defined by the following recurrence relations

F0 = 0, F1 = 1, ..., Fn+1 = Fn + Fn−1, n ≥ 1
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and
L0 = 2, L1 = 1, ..., Ln+1 = Ln + Ln−1, n ≥ 1

where Fn and Ln are the n-th Fibonacci and Lucas numbers, respectively. Also, Binet formula for the n-th Fibonacci
and Lucas numbers are given by

Fn =
1√
5

(αn − βn) and Ln = αn + βn, n ≥ 1 (2.1)

(see ref. [9]) .

In 1961 Horadam defined the generalized Fibonacci numbers by using Fibonacci numbers such as

H1 = p, H2 = p+ q, p, q ∈ Z,

the recurrence relation is given by
Hn = Hn−1 +Hn−2, n ≥ 3 (2.2)

and
Hn = (p− q)Fn + qFn+1. (2.3)

In this last equation, if we take p = 1 and q = 0, then the generalized Fibonacci number corresponds to Fibonacci
number. If we take p = 1 and q = 2, then the generalized Lucas number corresponds to Lucas number. Also,
Horadam defined Binet formula for the n-th generalized Fibonacci number as follows

Hn =
1

2
√

5
(αn − µβn) (2.4)

(see ref. [4]).
On the other hand, Majernik has initially introduced dual-complex numbers, [7]. Then, Messelmi has given the
algebraic properties of dual-complex numbers, [8]. The set of dual-complex numbers has been defined by

DC =
{
w = z1 + z2ε| z1, z2 ∈ C where ε2 = 0, ε 6= 0

}
.

Multiplication scheme of these basis elements is shown by follows:

Table 1. Multiplication scheme of the dual-hyperbolic units.

× 1 i ε iε
1 1 i ε iε
i i −1 iε −ε
ε ε iε 0 0
iε iε −ε 0 0

If we take complex numbers as z1 = x1 + x2i and z2 = y1 + y2i, then any dual-complex number can be written
as

w = x1 + x2i+ y1ε+ y2iε.

There exists five different conjugates for this numbers and these conjugates can be given as follows:

|ω|†1 = z̄1 + z̄2ε complex conjugation,

|ω|†2 = z1 − z2ε dual conjugation,

|ω|†3 = z̄1 − z̄2ε coupled conjugation,

|ω|†4 = z̄1

(
1− z2

z1
ε
)

(ω ∈ DC −A) dual − complex conjugation,

|ω|†5 = z2 − z1ε anti− dual ”conjugation,

where “− “ denotes the standard complex conjugation and the zero divisors of DC is defined by the set A, [8].
Namely,DC−A is a multiplicative group. The dual complex numbers form a commutative ring with 0 characteristic.
Unlike quaternions, the multiplication of dual-complex numbers with generalized Fibonacci and Lucas number
has a commutative ring structure. At the same time, the multiplication of dual-complex numbers with generalized
Fibonacci and Lucas number gives two-dimensional complex Clifford and 4-dimensional real Clifford algebra
structure.
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3. Properties of Dual-Complex Numbers with Generalized Fibonacci and Lucas
Coefficients

Dual-complex Fibonacci and Lucas numbers are defined by

DCFn = Fn + Fn+1i+ Fn+2ε+ Fn+3iε

and
DCLn = Ln + Ln+1i+ Ln+2ε+ Ln+3iε,

respectively. Here Fn and Ln are the n-th Fibonacci and Lucas numbers, respectively and ε denotes dual unit, i
denotes imaginary unit

(
i2 = −1

)
, iε denotes imaginary dual unit

(
iε2 = 0

)
. These numbers have been identified in

[2]. Modules, conjugates and some well-known identities for Fibonacci and Lucas numbers have been obtained
for them. Then, the correspondence of Binet formula for Fibonacci and Lucas numbers have been given. Also,
d’Ocagne’s, Honsberger, Tagiuri, Cassini and Catalan identities for these numbers have been found.

Now, let’s define dual-complex Fibonacci numbers with generalized Fibonacci and Lucas coefficients in the light
of paper [2].

Definition 3.1. Hn is called generalized Fibonacci number which has recurrence relation such as

Hn = Hn−1 +Hn−2 or Hn = (p− q)Fn + qFn+1, n ≥ 3 (3.1)

with the initial conditions

H1 = p, H2 = p+ q, H3 = 2p+ q, ... p, q ∈ Z .

In that case, the set of generalized Fibonacci and Lucas number sequences are defined by

DCX = {DCXn = Rn +R∗nε = (Hn +Hn+1i) + (Hn+2 +Hn+3iε) | Hn is generalized Fibonacci number}

and

DCY = {DCYn = Pn + P ∗nε = (Vn + Vn+1i) + (Vn+2 + Vn+3iε) | Vn is generalized Lucas number}

where ε is dual unit, i is imaginary unit and iε is imaginary dual unit. Hence, basis elements of the dual-complex
numbers systems with generalized Fibonacci and Lucas coefficients are denoted by (1, i, ε, iε).

LetDCX1
n andDCX2

n denote the dual-complex numbers with generalized Fibonacci coefficients. These numbers
are given by

DCX1
n = R1

n +R1∗
n ε = H1

n +H1
n+1i+H1

n+2ε+H1
n+3iε

and
DCX2

n = R2
n +R2∗

n ε = H2
n +H2

n+1i+H2
n+2ε+H2

n+3iε,

respectively.

Addition, substraction and multiplication of these numbers are defined by

DCX1
n ±DCX2

n = (R1
n +R1∗

n ε)± (R2
n +R2∗

n ε)
= (H1

n +H1
n+1i+H1

n+2ε+H1
n+3iε)± (H2

n +H2
n+1i+H2

n+2ε+H2
n+3iε)

= (H1
n ±Hn

2) + (H1
n+1 ±H2

n+1)i+ (H1
n+2 ±H2

n+2)ε+ (H1
n+3 ±H2

n+3)iε
(3.2)

and
DCX1

n ×DCX2
n = (R1

n +R1∗
n ε)× (R2

n +R2∗
n ε)

= (H1
n +H1

n+1i+H1
n+2ε+H1

n+3iε)× (H2
n +H2

n+1i+H2
n+2ε+H2

n+3iε)
= (H1

nH
2
n −H1

n+1H
2
n+1) + (H1

nH
2
n+1 +H1

n+1H
2
n)i

+ (H1
nH

2
n+2 −H1

n+1H
2
n+3 −H1

n+3H
2
n+1 +H1

n+2H
2
n)ε

+ (H1
nH

2
n+3 +H1

n+1H
2
n+2 +H1

n+2H
2
n+1 +H1

n+3H
2
n)iε,

(3.3)

respectively. Since dual-complex numbers with generalized Fibonacci coefficients can be expressed as
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DCXn = Rn +R∗nε = (Hn +Hn+1i) + (Hn+2 +Hn+3i)ε (3.4)

there exist five different conjugations. Then, we define these five different conjugates as

DCX†1n = (Hn −Hn+1 i) + (Hn+2 −Hn+3 i) ε complex conjugation, (3.5)

DCX†2n = (Hn +Hn+1 i)− (Hn+2 +Hn+3 i) ε dual conjugation, (3.6)

DCX†3n = (Hn −Hn+1 i)− (Hn+2 −Hn+3 i) ε coupled conjugation, (3.7)

DCX†4n = (Hn −Hn+1 i)

(
1− Hn+2 +Hn+3 i

Hn +Hn+1 i
ε

)
dual− complex conjugation, (3.8)

DCX†5n = (Hn+2 +Hn+3 i)− (Hn +Hn+1 i) ε anti− dual conjugation. (3.9)

By considering the definition of conjugates, five different norms for dual-complex numbers with generalized
Fibonacci coefficients can be given as follows:

Definition 3.2. Let DCXn be a dual-complex number with generalized Fibonacci coefficient. Modulus of DCXn

are denoted by |DCXn|2†i and (i = 1, 2, 3, 4, 5) are given by as follows

|DCXn|2†1 = DCHn ×DCH†1n ,
|DCXn|2†2 = DCHn ×DCH†2n ,
|DCXn|2†3 = DCHn ×DCH†3n ,
|DCXn|2†4 = DCHn ×DCH†4n ,
|DCXn|2†5 = DCHn ×DCH†5n .

(3.10)

Proposition 3.1. Let us take the dual-complex number with generalized Fibonacci coefficient DCXn ∈ DCX . Then, the
following identities are satisfied:

DCXn +DCX†1n = 2 (Hn +Hn+2ε) , (3.11)

DCXn ×DCX†1n = (2p− q) [H2n+1 + 2H2n+3ε]− e [F2n+1 + 2F2n+3ε] , (3.12)

DCXn +DCX†2n = 2 (Hn +Hn+1i) , (3.13)

DCXn ×DCX†2n = −Hn−1Hn+2 + 2HnHn+1i, (3.14)

DCXn +DCX†3n = 2 (Hn +Hn+3iε) , (3.15)

DCXn ×DCX†3n = (2p− q)H2n+1 − e [Fn+1 − 2(−1)
n
iε] , (3.16)

DCXn +DCX†4n = 2Hn +

(
Hn+2 −

(Hn −Hn+1i) (Hn+2 +Hn+3i)

Hn +Hn+1i

)
ε+Hn+3iε, (3.17)

DCXn ×DCX†4n = (2p− q)H2n+1 − eF2n+1, (3.18)

DCXn +DCX†5n = Hn +Hn+2 + (Hn+1 +Hn+3)i+Hn+1ε+Hn+2iε, (3.19)

DCXn ×DCX†5n = (HnHn+2 −Hn+1Hn+3) + (HnHn+3 +Hn+1Hn+2) i
+ (Hn−1Hn+2 −Hn+1Hn+4) ε+ 2 (Hn+2Hn+3 −HnHn+1) iε.

(3.20)
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Proof. (3.11) From the equations (3.2), (3.4) and (3.5), we obtain

DCXn +DCX†1n = 2 (Hn +Hn+2ε) .

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn +

DCX
†1
n = 2 (Fn + Fn+2ε).

(3.12) Considering the equations (3.3), (3.4), (3.5) and using the identities H2
n−1 +H2

n = (2p− q)H2n−1 − eF2n−1
(see ref. [4]) and HnHm +Hn+1Hm+1 = (2p− q)Hn+m+1 − eFn+m+1 (see ref. [5]), we find

DCXn ×DCX†1n =
(
H2
n +H2

n+1

)
+ 2 (HnHn+2 +Hn+1Hn+3) ε

= (2p− q) [H2n+1 + 2H2n+3ε]− e [F2n+1 + 2F2n+3ε] .

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn ×
DCX

†1
n = F2n+1 + 2F2n+3ε.

(3.13) From the equations (3.2), (3.4) and (3.6), we get

DCXn +DCX†2n = 2 (Hn +Hn+1i) .

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn +

DCX
†1
n = 2 (Fn + Fn+2i) .

(3.14) Using the equations (3.3), (3.4) and (3.6), we conclude that

DCXn ×DCX†2n = −Hn−1Hn+2 + 2HnHn+1i.

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn ×
DCX

†2
n = −Fn−1Fn+2 + 2FnFn+1i.

(3.15) From the equations (3.2), (3.4) and (3.7), the following equation is found

DCXn +DCX†3n = 2 (Hn +Hn+3iε) .

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn +

DCX
†3
n = 2 (Fn + Fn+3iε) .

(3.16) Using the equations (3.3), (3.4), (3.7) and the identities H2
n−1 +H2

n = (2p− q)H2n−1 − eF2n−1, HnHn+r+1 −
Hn−sHn+r+s+1 = (−1)

n+s
eFsFr+s+1, (see ref. [4]), the multiplication of DCXn and DCX†3n can be written as

DCXn ×DCX†3n =
(
H2
n +H2

n+1

)
+ 2 (HnHn+3 −Hn+1Hn+2) iε

= (2p− q)H2n+1 − e [Fn+1 + 2(−1)
n
iε] .

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn ×
DCX

†3
n = F2n+1 − 2(−1)

n
iε.

(3.17) From the equations (3.2), (3.4) and (3.8), we have

DCXn +DCX†4n = 2Hn +

(
Hn+2 −

(Hn −Hn+1i) (Hn+2 +Hn+3i)

Hn +Hn+1i

)
ε+Hn+3iε.

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn +

DCX
†4
n = 2Fn +

(
Fn+2 − (Fn−Fn+1i)(Fn+2+Fn+3i)

Fn+Fn+1i

)
ε+ Fn+3iε.

(3.18) If we use the equations (3.3), (3.4), (3.8) and make the necessary calculations, then the rearranged equation
(3.18) yields to

DCXn ×DCX†4n = (2p− q)H2n+1 − eF2n+1.
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Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn ×
DCX

†4
n = F2n+1.

(3.19) Considering the equations (3.2), (3.4) and (3.9), we find

DCXn +DCX†5n = Hn +Hn+2 + (Hn+1 +Hn+3)i+Hn+1ε+Hn+2iε.

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach DCXn +

DCX
†5
n = Fn + Fn+2 + (Fn+1 + Fn+3)i+ Fn+1ε+ Fn+2iε.

(3.20) From the equations (3.3), (3.4) and (3.9), the following identity is given by

DCXn ×DCX†5n = (HnHn+2 −Hn+1Hn+3) + (HnHn+3 +Hn+1Hn+2) i
+ (Hn−1Hn+2 −Hn+1Hn+4) ε+ 2 (Hn+2Hn+3 −HnHn+1) iε.

Here, if p = 1 and q = 0 are specially taken for the generalized Fibonacci number Hn, then we reach

DCXn ×DCX†5n = (FnFn+2 − Fn+1Fn+3) + (FnFn+3 + Fn+1Fn+2) i
+ (Fn−1Fn+2 − Fn+1Fn+4) ε+ 2 (Fn+2Fn+3 − FnFn+1) iε.

Theorem 3.1. Let DCXn and DCXn−1 be two dual-complex Fibonacci numbers with generalized Fibonacci coefficients. The
following identities are satisfied for these numbers and their conjugates.

i. (DCXn ×DCX†1n ) + (DCXn−1 ×DCX†1n−1) = (2p− q) [H2n+1 +H2n−1 + 2 (H2n+3 +H2n+1) ε] ,
− e [F2n+1 + F2n−1 + 2 (F2n+3 + F2n+1) ε] ,

ii. DCX2
n = 2Hn DCXn − (DCXn ×DCX†1n ) + 2Hn+2 (Hn ε+Hn+1iε) ,

iii.DCX2
n +DCX2

n−1 = 2 (2p− q)DCX2n−1 −DCXn ×DCX†1n −DCXn−1 ×DCX†1n−1
+(2p− q) (H2n−2 + 4H2n+1 + 2H2n+2iε)−e (F2n+1 + 2F2ni− 2 (F2n+2 + F2n+4) ε− 4F2n+2iε) ,

iv. DCYn ×DCX†1n −DCY †1n ×DCXn = (−1)
n [(

4p2 − 16pq + 8q2
)
i+
(
12p2

)
iε
]
.

Proof. i. Considering the equations (3.3), (3.4) and applying the identitiesHnHm+Hn+1Hm+1 = (2p− q)Hm+n+1−
eFm+n+1 (see ref. [5]), H2

n−1 +H2
n = (2p− q)H2n−1 − eF2n−1 (see ref. [4]), the proof is completed.

ii. Taking into account the equality (3.2), the proof can be easily seen.

iii. If we use the identity HnHm +Hn+1Hm+1 = (2p− q)Hm+n+1 − eFm+n+1 (see ref. [5]) and equation (3.2), the
proof is completed.

iv. The desired result can be obtained by the help of the equation (3.2) and the identity LnFn = Fm+n+(−1)
m
Fm−n

(see ref [4]).

Also, the equations given in the Proposition 2.2 which have been handled in the article [2] are obtained by giving
the special values p = 1 and q = 0 in the above equations.

i.
(
DCXn ×DCX†1n

)
+
(
DCXn−1 ×DCX†1n−1

)
= F2n+1 + F2n−1 + 2 (F2n+3 + F2n+1) ε,

ii. DCX2
n = 2FnDCFn −DCFn ×DCF †1n + 2Fn+2 (Fnε+ Fn+1iε) ,

iii.DCX2
n +DCX2

n−1 = 4DCF2n−1 −DCFn ×DCF †1n −DCFn−1 ×DCF †1n−1
+ (2F2n−2 + 7F2n+1 − 2F2ni+ 2 (F2n+2 + F2n+4) ε+ 8F2n+2iε) ,

iv. DCYn ×DCX†1n −DCY †1n ×DCXn = (−1)
n

[4i+ 12iε] .

Theorem 3.2. LetDCXn be dual-complex number with generalized Fibonacci coefficient. In this case, for n ≥ 0, the following
identities are given:
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i. DCXn +DCXn+1 = DCXn+2.

ii. (DCXn)
2

= 2 (HnDCXn)− 2 (Hn+1DCXn+1)−Hn + 2 (Hn+4 +Hn+1Hn+2) iε.

iii. DCXn −DCXn+1i−DCXn+2ε+DCXn+3iε = −Hn+1.

iv. (DCXn ×DCXm) + (DCXn+1 ×DCXm+1) = DCXm+n+1 + [− (2p− q)Hm+n+2 −Hm+n+1 + eFm+n+2]
+ i [2 (2p− q)Hm+n+2 −Hm+n+2 − 2eFm+n+2]
+ ε [−2 (2p− q)Hm+n+4 −Hm+n+3 + 2eFm+n+4]
+ iε [4 (2p− q)Hm+n+4 −Hm+n+4 − 4eFm+n+4] .

v. DCX2
n +DCX2

n−1 = 2 [(2p− q) (H2ni−H2n+2ε+ 2H2n+2iε)]− 2e [F2ni− F2n+2ε+ 2F2n+2iε] .

Proof. i. Let DCHn and DCHn+1 be two dual-complex numbers with generalized Fibonacci coefficients. If we take
into account the equation (3.2), then the following identity can be easily seen

DCHn +DCHn+1 = Hn+2 +Hn+3i+Hn+4ε+Hn+5iε = DCHn+2.

Specially, if the values p = 1 and q = 0 are taken in the generalized Fibonacci number Hn, then the identity

DCXn +DCXn+1 = DCFn+2

is obtained.

ii. Let DCHn be a dual-complex number with generalized Fibonacci coefficients. In this case, the equation
(3.3) gives us

DCX2
n = [(Hn +Hn+1i) + (Hn+2 +Hn+3i)ε]× [(Hn +Hn+1i) + (Hn+2 +Hn+3i)ε]

= 2 (HnDCXn)− 2 (Hn+1DCXn+1)−Hn + 2 (Hn+4 +Hn+1Hn+2) iε+ 2Hn+1 (Hn+4 +Hn+2) iε.

Specially, if the values p = 1 and q = 0 are taken in the generalized Fibonacci number Hn, then the identity

(DCXn)
2

= 2 (FnDCFn)− 2 (Fn+1DCFn+1)− Fn + 2 (Fn+4 + Fn+1Fn+2) iε

is found.

iii. By using the equation (3.2) and making the direct calculations, we get

DCXn −DCXn+1i−DCXn+2ε+DCXn+3iε = [(Hn +Hn+1i) + (Hn+2 +Hn+3i)ε]
− [(Hn+1 +Hn+2i) + (Hn+3 +Hn+4i)ε] i
− [(Hn+2 +Hn+3i) + (Hn+4 +Hn+5i)ε] ε
+ [(Hn+3 +Hn+4i) + (Hn+5 +Hn+6i)ε] iε
= −Hn+1.

Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then we have

DCXn − iDCXn+1 − εDCXn+2 + iεDCXn+3 = −Fn+1.

iv. From the equation (3.3)

DCXn ×DCXm+DCXn+1 ×DCXm+1 = [Hn +Hn+1i+ (Hn+2 +Hn+3i)ε]×[Hm +Hm+1i+ (Hm+2 +Hm+3i)ε]
+[Hn+1 +Hn+2i+ (Hn+3 +Hn+4i)ε]×[Hm+1 +Hm+2i+ (Hm+3 +Hm+4i)ε]
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can be written. In order to simplify further algebraic manipulations we shall useHnHm+Hn+1Hm+1 = (2p− q)Hm+n+1

− eFm+n+1 (see ref. [5]). Thus, we have

(DCXn ×DCXm) + (DCXn+1 ×DCXm+1) = DCXm+n+1 + [− (2p− q)Hm+n+2 −Hm+n+1 + eFm+n+2]
+ i [2 (2p− q)Hm+n+2 −Hm+n+2 − 2eFm+n+2]
+ ε [−2 (2p− q)Hm+n+4 −Hm+n+3 + 2eFm+n+4]
+ iε [4 (2p− q)Hm+n+4 −Hm+n+4 − 4eFm+n+4] .

Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then the following
identity is found

(DCXn ×DCXm) + (DCXn+1 ×DCXm+1) = DCFn+m+1 − Fn+m+3 + Fn+m+2 i− Fn+m+6 ε+ 3Fn+m+4 iε.

v. The desired result is reached from identity HnHm +Hn+1Hm+1 = (2p− q)Hm+n+1 − eFm+n+1 (see ref. [5]) and
the equation (3.3).

Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then the
following identity is obtained

DCX2
n +DCX2

n−1 = 2 [iF2n − εF2n+2 + 2iεF2n+2] .

Theorem 3.3. Let DCXn and DCLn be dual-complex numbers with generalized Fibonacci and Lucas coefficients, respec-
tively. For n ≥ 0, the following relations can be given between these numbers

i. DCXn+1 +DCXn−1 = pDCLn + qDCLn
and
ii. DCXn+2 −DCXn−2 = pDCLn + qDCLn.

Proof. Let us consider the identity Hn+1 + Hn−1 = pLn + qLn−1 (see ref. [11]) and the recurrence relation Hn =
(p− q)Fn + qFn+1 to prove i. and ii., respectively. Thus, we have

DCXn+1 +DCXn−1 = (Hn+1 +Hn+2i+Hn+3ε+Hn+4iε)
+ (Hn−1 +Hni+Hn+1ε+Hn+3iε)
= (Hn+1 +Hn−1) + (Hn+2 +Hn) i+ (Hn+3 +Hn+1) ε
+ (Hn+4 +Hn+3) iε
= (pLn + qLn−1) + (pLn−1 + qLn) i+ (pLn+2 + qLn+1) ε
+ (qLn+3 + qLn+2) iε
= pDCLn + qDCLn

and
DCXn+2 −DCXn−2 = (Hn+2 +Hn+3i+Hn+4ε+Hn+5iε)

− (Hn−2 +Hn−1i+Hnε+Hn+1iε)
= (Hn+2 −Hn−2) + (Hn+3 −Hn−1) i+ (Hn+4 −Hn) ε
+ (Hn+5 −Hn+1) iε
= (pLn + qLn−1) + (pLn−1 + qLn) i+ (pLn+2 + qLn+1) ε
+ (qLn+3 + qLn+2) iε
= pDCLn + qDCLn.

Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then we get
DCXn+1 +DCXn−1 = DCLn and DCXn+2 −DCXn−2 = DCLn.

Theorem 3.4. The sums of the dual-complex numbers with generalized Fibonacci coefficients satisfy the following relations:

i.
n∑
s=1

DCXs = DCXn+2 −DCX2,
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ii.
p∑
s=0

DCXs+n +DCXx+1 = DCXn+p+2,

iii.
n∑
s=1

DCX2s−1 = DCX2n −DCX0,

iv.
n∑
s=1

DCX2s = DCX2n+1 −DCX1.

Proof. By using the identity
n∑
t=a

Ht = Hn+2 −Ha+1 (see ref. [11]), it can be easily seen that

i.
n∑
s=1

DCXs =
n∑
s=1

Hs + i
n∑
s=1

Hs+1 + ε
n∑
s=1

Hs+2 + iε
n∑
s=1

Hs+3 = DCXn+2 −DCX2.

Proofs of ii, iii, iv are done in a similar manner.
Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then the following
identities are found

i.
n∑
s=1

DCXs = DCFn+2 −DCF2,

ii.
p∑
s=0

DCXs+n +DCXx+1 = DCFn+p+2,

iii.
n∑
s=1

DCX2s−1 = DCF2n −DCF0,

iv.
n∑
s=1

DCX2s = DCF2n+1 −DCF1.

Now, let’s find the correspondence of Binet formula for the dual-complex Fibonacci numbers, which helps to
obtain the golden ratio (which allows to find the n-th term of dual-complex numbers with generalized Fibonacci
coefficients sequence).

Theorem 3.5 (Binet’s Formula). Let DCXn be the dual-complex number with generalized Fibonacci coefficients. For
m,n ≥ 1, Binet’s formula is as follows:

DCXn =
ᾱ αn − β̄ βn

α− β
where

ᾱ = (p− qβ) + [p (1− β) + q] i+ [p (2− β) + q (1− β)] ε+ [p (3− 2β) + q (2− β)] iε

and
β̄ = (p− qα) + [p (1− α) + q] i+ [p (2− α) + q (1− α)] ε+ [p (3− 2α) + q (2− α)] iε,

such that α and β are the roots of the equation t2 − t− 1 = 0.

Proof. If t1 and t2 denote the roots of characteristic equation t2 − t − 1 = 0 associated to the recurrence relation
DCXn + DCXn+1 = DCXn+2. Then, these roots are be found as α = t1 = 1+

√
5

2 and β = t2 = 1−
√
5

2 . Note that,
α + β = 1, α.β = −1 and α − β =

√
5. Therefore, the general term of the dual-complex number sequence with

generalized Fibonacci coefficients may be expressed in the form:

DCXn = Aαn +Bβn

for some coefficients A and B. For n = 0 and n = 1, the following equalities can be written

DCX0 = (q, p, p+ q, 2p+ q)

and
DCX1 = (p, p+ q, 2p+ q, 3p+ 2q) .

Also, if we consider the values n = 0 and n = 1, we get

DCX0 = A+B
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and
DCX1 = αA+ βB.

Then, solving these system of linear equations, we have

A = DCX1−βDCX0

α−β and B = αDCX0−DCX1

α−β ,

where the coefficients ᾱ and β̄ are

ᾱ = (p− qβ) + [p (1− β) + q] i+ [p (2− β) + q (1− β)] ε+ [p (3− 2β) + q (2− β)] iε

and
β̄ = (p− qα) + [p (1− α) + q] i+ [p (2− α) + q (1− α)] ε+ [p (3− 2α) + q (2− α)] iε.

Now, let’s find the generating function for the dual-complex numbers with generalized coefficients which allows us
to obtain the Binet formula.

Theorem 3.6 (Generating Function). Generating function for dual-complex numbers with generalized Fibonacci coefficients
is given by

g (x) =
1

1− x− x2
3∑
s=0

(DCXs +DCXs−1x)es.

Proof. The ordinary generating function associated with dual-complex numbers with generalized Fibonacci coeffi-
cients is defined by

g (x) =

∞∑
n=0

Pnx
n,

where Pn = (DCXn, DCXn+1, DCXn+2 , DCXn+3) . Multiplying by x and x2 on both sides of the above equation
respectively, we get

xg (x) = P0x+ P1x
2 + ...+ Pn−1x

n + ...
x2g (x) = P0x

2 + P1x
3 + ...+ Pn−2x

n + ... .

Substracting the above equations from g (x) and rearranging, we obtain

(
1− x− x2

)
g (x) =

3∑
s=0

(P0 + (P1 − P0)x).

Finally, the generating function of dual-complex numbers with generalized Fibonacci coefficients can be written as

g (x) =
1

1− x− x2
3∑
s=0

(P0 + (P1 − P0)x).

Thus, the proof is completed.

Now, let’s write the Binet formula in terms of the generating function by using the generating function which
has been obtained in Theorem 3.6.

Theorem 3.7. Binet formula for the dual-complex numbers with generalized Fibonacci coefficients is

Pn = P1Hn + P0Hn−1.

Proof. Since the equation t2 − t− 1 = 0 has two distinct roots which are denoted by α and β, then the sequence

Pn = Aαn +Bβn

is the solution of the equation recurrence relation DCXn +DCXn+1 = DCXn+2. For the values n = 0 and n = 1, if
we take

A =
P1 − βP0

α− β
and B =

αP0 − P1

α− β
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therefore, the following equation can be written

Pn =
1

α− β
[(P1 − βP0)αn + (αP0 − P1)βn] .

Then, writing the correspondences of P0 and P1 which have been obtained in Theorem 3.6 and rearranging the
equation

Pn =

(
αn − βn

α− β

) 3∑
s=0

DCXs+1es +

(
αn−1 − βn−1

α− β

) 3∑
s=0

DCXses

is found.
Finally, we have

Pn = P1Hn + P0Hn−1.

Let’s express the Catalan identity which is well-known identity for Fibonacci numbers.

Theorem 3.8 (Catalan’s Identity). For r ≤ n, Catalan identity the dual-complex numbers with generalized Fibonacci
coefficients is

DCX2
n −DCXn+r ×DCXn−r = (−1)

n−r
Fr [2eFr + µFri+ 3Fr (2ε+ iε)µ] .

Proof. From the identity Hm+kHn−k −HmHn = (−1)
n−k+1

µFkFm+k−n (see ref. [6]), one can write

DCX2
n = H2

n −H2
n+1 + 2HnHn+1 i+ 2 (HnHn+2 −Hn+1Hn+3) ε+ 2 (Hn+1Hn+2 +HnHn+3) iε

and
DCXn+r ×DCXn−r = Hn+rHn−r −Hn+r+1Hn−r+1 + (Hn+r+1Hn−r +Hn+rHn−r+1) i

+ (Hn+r Hn−r+2 −Hn+r+1Hn−r+3 +Hn−r+2Hn−r −Hn−r+3Hn−r+1) ε

+ (Hn+r+1 Hn−r+2 +Hn+r Hn−r+3 +Hn+r+3 Hn−r +Hn+r+2 Hn−r+1 ) iε.

The proof is completed by addition of the two equations. If the values p = 1 and q = 0 is taken into the Catalan
identity which has been obtained for generalized dual-complex numbers with Fibonacci coefficients, then we find
the Catalan identity for dual-complex numbers. Namely,

DCX2
n −DCXn+r ×DCXn−r = (−1)

n−r
F 2
r (2 + i+ 6ε+ 3iε) .

Let’s give the identity of Cassini for generalized dual-complex numbers which is a special form of Catalan
identity.

Theorem 3.9 (Cassini’s Identity). For 1 ≤ n, Cassini identity for the dual-complex numbers with generalized Fibonacci
coefficients is

DCX2
n − (DCXn+1 ×DCXn−1) = (−1)

n−1
e (2 + i+ 6ε+ 3iε) .

Proof. In the particular case when r = 1, Catalan identity which has been proved in Theorem 3.8 turns into Cassini
identity for the dual-complex numbers with generalized Fibonacci coefficients.

If the values p = 1 and q = 0 is taken into the Cassini identity which is obtained for generalized dual-complex
numbers with Fibonacci coefficients, then we find the Cassini identity for dual-complex numbers.

Theorem 3.10 (Honsberger Identity). For 0 ≤ k, n, Honsberger Identity for the dual-complex numbers with generalized
Fibonacci coefficients DCXn and DCXk is given by

(DCXk−1 ×DCXn) + (DCXk ×DCXn+1) = − [(2p− q)Hk+n+1 − eFk+n+1]
+ 2i [(2p− q)Hk+n+1 − eFk+n+1]
− 2ε [(2p− q)Hk+n+3 − eFk+n+3]
+ 4iε [(2p− q)Hk+n+3 − eFk+n+3] .
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Proof. By using identity HnHm +Hn+1Hm+1 = (2p− q)Hm+n+1 − eFm+n+1 (see ref. [5]) and equations (3.2), (3.3)
the proof can be easily seen.
Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then the following
identity is obtained

(DCXk−1 ×DCXn) + (DCXk ×DCXn+1) = −2 (Fk+n+1) + 4i (Fk+n+1)− 4ε (Fk+n+3) + 8iε (Fk+n+3) .

Theorem 3.11 (Tagiuri Identity). Between the dual-complex numbers with generalized Fibonacci coefficients and the
Fibonacci numbers it is verified

(DCXm+k ×DCXn−k)− (DCXm ×DCXn) = µFk(−1)n−k+1Fm+k−n (2 + i+ 6ε+ 3iε) .

Proof. From the identity Hm+kHn−k −HmHn = (−1)
n−k+1

µFkFm+k−n (see ref. [6]) and equations (3.2), (3.3) the
proof can be clearly seen.
Specially, if we substitute the values p = 1 and q = 0 into the generalized Fibonacci number Hn, then this yields to

(DCXm+k ×DCXn−k)− (DCXm ×DCXn) = Fk(−1)
n−k+1

Fm+k−n (2 + i+ 6ε+ 3iε) .

Theorem 3.12 (d’Ocagne’s Identity). Let DCXn be a dual-complex number with generalized Fibonacci coefficients. If n is
a non-negative integer number and m any natural number for m > n, the relation

(DCXm ×DCXn+1)− (DCXn ×DCXm+1) = µFm−n(−1)
n

(2 + i+ 6ε+ 3iε)

is verified.

Proof. If we take into consider the equations (3.2), (3.3) and use the identityHm+kHn−k−HmHn = (−1)n−k+1µFkFm+k−n

(see ref. [6]), we complete the proof. Specially, if we substitute the values p = 1 and q = 0 into the generalized
Fibonacci number Hn, then the d’Ocagne’s Identity which is found for the dual-complex numbers with generalized
Fibonacci coefficients becomes

(DCXm ×DCXn+1)− (DCXn ×DCXm+1) = Fm−n(−1)
n

(2 + i+ 6ε+ 3iε) .

4. Conclusions
This study fills a gap regarding dual-complex numbers with generalized Fibonacci and Lucas coefficients in the

literature by using the definitions of dual-complex Fibonacci and Lucas numbers. For this purpose, the generating
function of dual-complex numbers with generalized Fibonacci coefficients have been firstly found. Then, Binet’s
formula has been given with the help of this generating function. Binet’s formula has been also proved in a second
way by using the roots of the characteristic equation. However, Cassini, Catalan, d’Ocagne’s, Honsberger, Tagiuri
and other identities have been proved for this new number system and it is seen that these identities correspond
to the theorems in the article [2] for the values p = 1 and q = 0. In addition, it is seen that dual-complex number
system with generalized Fibonacci and Lucas coefficient has an algebraic structure according to the multiplication
process. Hence, there are five different conjugates for these numbers. Thus, in addition to the identities related to
the conjugates which has been obtained in Theorem 3.1, the following identities are given:(
DCXn ×DCX

†2
n

)
+

(
DCXn−1 ×DCX

†2
n−1

)
= (−1 + 2i) [(2p− q)H2n − eF2n] ,(

DCXn ×DCX
†3
n

)
+

(
DCXn−1 ×DCX

†3
n−1

)
= (2p− q) [H2n−1 +H2n+1]− e [F2n−1 + F2n+1] ,(

DCXn ×DCX
†4
n

)
+

(
DCXn−1 ×DCX

†4
n−1

)
= (2p− q) [H2n+1 +H2n−1]− e [F2n+1 + F2n−1] ,(

DCXn ×DCX
†5
n

)
+

(
DCXn−1 ×DCX

†5
n−1

)
= (2p− q) [H2n+2 (1 + 2i) +H2n+1 (−ε+ 2iε)]

− e [F2n+2 (1 + 2i) + F2n+1 (−ε+ 2iε)] ,
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DCX2
n = 2HnDCXn −DCXn ×DCX

†2
n + 2Hn+1 (−Hn+1 +Hni−Hn+3ε+Hn+2iε) ,

DCX2
n = 2HnDCXn −DCXn ×DCX

†3
n + 2Hn+3 (−Hn+1ε+Hniε) ,

DCX2
n = 2HnDCXn −DCXn ×DCX

†4
n + 2Hn+1 (−Hn+3ε+Hn+2iε) ,

DCX2
n = 2HnDCXn −DCXn ×DCX

†5
n +

(
HnHn+2 −Hn+1Hn+3 −H2

n −H2
n+1

)
+ (Hn+1Hn+2 +HnHn+3) i

+ (Hn−1Hn+2 −Hn+1Hn+3 −Hn+1Hn+5) ε+ 2
(
Hn+3Hn+2 +H2

n+1

)
iε,

DCX2
n +DCX2

n−1 = 2 (2p− q)DCX2n−1 −DCXn ×DCX
†2
n −DCXn−1 ×DCX

†2
n−1

+(2p− q) (−2H2n+1 + 2H2ni− 2H2n+2ε+ 2H2n+2iε)
−e (−2F2n + 4F2ni− 2 (F2n+2 + F2n) ε+ 4F2n+2iε) ,

DCX2
n +DCX2

n−1 = 2 (2p− q)DCX2n−1 −DCXn ×DCX
†3
n −DCXn−1 ×DCX

†3
n−1

+(2p− q) (−2H2n+2ε+ 2H2n+2iε)
−e (F2n−1 + 2F2ni− 2 (F2n+2 + F2n) ε+ 4F2n+2iε) ,

DCX2
n +DCX2

n−1 = 2 (2p− q)DCX2n−1 −DCXn ×DCX
†4
n −DCXn−1 ×DCX

†4
n−1

+(2p− q) (−2H2n+2ε+ 2H2n+2iε)
−e (F2n−1 + 2F2ni− 2 (F2n+2 + F2n) ε+ 4F2n+2iε) ,

DCX2
n +DCX2

n−1 = 2 (2p− q)DCX2n−1 −DCXn ×DCX
†5
n −DCXn−1 ×DCX

†5
n−1

+(2p− q) (H2n−2 + 2H2n+2i−H2n+4ε+ 2H2n+3iε)
−e (F2n+1 + 2 (F2n+2 + F2n) i+ (2 (F2n−1 − F2n+3)− F2n+1) ε+ 6F2n+2iε) .
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