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An Extended Family of Slant Curves in S—manifolds

Saban Gtiveng

Abstract

In this paper, we define an extended family of slant curves (i.e. 6,—slant curves) in S—manifolds. We
give two examples of such curves in R?""¢(—3s), where we choose n = 1, s = 2. Finally, we study
biharmonicity of these curves in S—space forms.
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1. Introduction

In [6], ]. Eells and L. Maire studied selected topics in harmonic maps. In this paper, they suggested k-harmonic
maps. G. Y. Jiang dealed with the case k¥ = 2 in [11]. He derived the first and second variational formulas for
2-harmonic maps. On the other hand, in [4], B. Y. Chen published a survey article, which is divided into 25 sections.
In one of these sections, he considered a biharmonic submanifold of Euclidean space as AH = 0, where A denotes
the Laplace operator and H denotes the mean curvature vector field. If the ambient space is considered as Euclidean,
then Jiang’s and Chen’s results match.

In [5], ]J. T. Cho, J. Inoguchi and J. E. Lee defined and studied slant curves in Sasakian manifolds. They proved a
theorem, which is similar to the classical theorem of Lancret for curves in Euclidean 3-space. They showed that
a non-geodesic curve in a Sasakian 3-manifold is a slant curve if and only if the ratio of (7 £ 1) and  is constant,
where « and 7 denotes the geodesic curvature and torsion of the curve, respectively. They gave some interesting
examples. Notably, in the Heisenberg group with an appropriate metric, they exhibited slant helices and a slant
curve which is not a helix.

In [8], D. Fetcu and C. Oniciuc obtained a method of producing biharmonic submanifolds in a Sasakian space
form using the flow of characteristic vector field £. They showed that under the flow action of ¢ a biharmonic
integral submanifold is carried to a biharmonic anti-invariant submanifold. Following their idea, the present author
and C. Ozgﬁr considered biharmonic slant curves in S-space forms [9].

It is a natural motivation to generalize the results of slant curves to 6, —slant curves in S—manifolds. In Section
2, we give the fundamental definitions and theorems of S-space forms, biharmonic maps and Frenet curves. In
Section 3, we define an extented family of slant curves, namely 6,—slant curves, in S—manifolds and give two
examples. In Section 4, we obtain the necessary and sufficient conditions for ¢, —slant curves in S—space forms to
be proper biharmonic.
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2. Preliminaries

Let (M, g) be a (2n + s)-dimensional Riemann manifold. M is called a framed metric manifold with a framed metric
structure (f,€a,n%,9), @ € {1, ..., s}, if it satisfies:

f2X =-X+ ZS: U“(X>€a> Ua(f(X)) =0, 77a(§/3) = 60(,3’ f(fa) =0,

a=1

g(X,Y) = g(fX, [Y)+ Y _n™(X)n™(Y), (2.1)

a=1

N (X) =g(X,§), dn*(X,Y)=—-dn*(Y,X)=g(X, fY),

where fisa (1,1)—type tensor field of rank 2n; &, ..., &, are vector fields; n', ..., n® are 1-forms and g is a Riemannian
metricon M; X, Y €e TM and o, 8 € {1, ..., s} (see [13], [15]). (f,&qa,n®, g) is said to be an S-structure, if the Nijenhuis
tensor of f is equal to —2dn® ® &, forall o € {1, ..., s} [1].

If s = 1, a framed metric structure is the same as an almost contact metric structure and an S-structure is the
same as a Sasakian structure. For an S-structure, we have the following equations [1]:

(VxHY =D {g(f X, fY)ea +1° (V) F?X }, (2.2)

a=1

and
Véa=—f, (2.3)

foralla« =1, ..., s. In case of s = 1, (2.3) can be calculated from (2.2).

Let X € T, M be orthogonal to &, ..., ;. The plane section spanned by {X, fX} is called an f-section in T),M
and its sectional curvature is called an f-sectional curvature. Let (M, f,£.,n", g) be an S-manifold. If M has constant
f-sectional curvature, its curvature tensor R is given by

R(X,Y)Z = Zﬁ {n(XmP(2) Y —n*(Y)n?(2)f2X
~g([X, [ 2y (Y)es + g(FY. 20" (X)€s) (2.4)

+<E32 L g(fY, f2) 2 X + g(f X, f2) f?Y}
S Lg(X, fOVFY — g(Y, FZ) X +29(X, fY)[Z},

for X,Y,Z € TM [3]. In this case, M is called an S-space form and it is denoted by M (c). In case of s = 1, an S-space
form is the same as a Sasakian space form [2].

Let (M, g) and (N, h) be Riemannian manifolds and ¢ : M — N a differentiable map. A harmonic map is a critical
point of the energy functional of ¢, which is defined as

1
B(o) =5 | 16l v,

(see [7]). Furthermore, a biharmonic map is a critical point of the bienergy functional

B == [ (@) v,

where 7(¢) = traceVdy and it is called the first tension field of . Jiang derived the biharmonic map equation [11]
7o) = —J?(7(g)) = —Ar(p) — traceR™ (dg, 7())dip = 0,

where J¥ denotes the Jacobi operator of ¢. It is obvious that harmonic maps are biharmonic. So, non-harmonic
biharmonic maps are called proper biharmonic.

Let~: I — M be a unit-speed curve in an n-dimensional Riemannian manifold (M, g). The curve  is called a
Frenet curve of osculating order r (1 < r < n), if there exists orthonormal vector fields T, Es, ..., E, along the curve
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validating the Frenet equations

T = A9,
VrT = rkiEy,
VrEy = —x11T+ H2E3, (25)
VrE, = 7/€r—1Er—17

where k1, ..., K,_1 are positive functions called the curvatures of 7. If k; = 0, then v is called a geodesic. If x4 is a
non-zero positive constant and r = 2, y is called a circle. If 1, ..., K,_1 are non-zero positive constants, then ~ is
called a helix of order r (r > 3) . If r = 3, it is shortly called a helix.

A submanifold of an S-manifold is said to be an integral submanifold if n*(X) = 0, a« € {1,...,s}, where X
is tangent to the submanifold [12]. A Legendre curve is a 1-dimensional integral submanifold of an S-manifold
(M?nFs | f £,,n%, g). More precisely, a unit-speed curve v : I — M is a Legendre curve if T is g-orthogonal to all &,
(e =1,...s), where T = v/ [14].

3. 0,—Slant Curves in S—manifolds
In this section, we define an extension of slant curves in S-manifolds. Firstly, we give the following definition:

Definition 3.1. Let M = (M?"*5, f,£,,n, g) be an S-manifold and v : I — M a unit-speed curve. v is called a
0o —slant curve, if there exist constant angles 6, (o = 1, ..., s) such that n®(T") = cos 6. Here, we call 6, the contact

angles of .

One can easily see that Definition 3.1 extends the family of slant curves to 6,—slant curves. In particular, a
0,—slant curve is called slant if its all contact angles are equal (see [9]).
For a a 6, —slant curve, if we differentiate n*(7T") = cos 6, along the curve -, we obtain

n*(Ez) =0, 3.1)

forall « = 1, ..., s. From now on, we use the following notations:

A= i:(zos2 0., B = zs: cosb,, V = i: cos 0,8,
a=1 a=1 a=1

The following corollary is directly obtained:
Corollary 3.1. If vy is slant, then
A=35c0s?0,B = scosf,V = cos&Z@“

a=1

where 6 denotes the equal contact angles of .

Let v be a non-geodesic unit-speed 6, —slant curve. Using equation 2.1, we find
g(T, fT)=1-A>0.
If A =1, then we have fT = 0, thatis, 7" = V. Hence, we get
VT =VyV =0,
which means v is a geodesic. As a result, we can give the following proposition:

Proposition 3.1. For a non-geodesic unit-speed 6, —slant curve in an S-manifold,

A:iCOSQHCY < 1.

a=1
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Note that, if v is slant, we obtain Proposition 3.1 in [9].
From equations 2.1 and 2.5, we obtain the following statement:

Proposition 3.2. For a non-geodesic unit-speed 6, —slant curve in an S-manifold (M, f,&.,n%, g), we have
Vo fT = Z bo+B(~T+V)+ ki1 fFEs. (3.2)

Now we give the following examples of non-trivial §,,—slant curves in R*"%(—3s), choosing n = 1, s = 2. For
detailed information on R?"*5(—3s), see [10].

Example 3.1. v : I — R*(=6), v(t) = (t,0,¢,v/2t) is a §,—slant curve with the contact angles §; = %, 0, = Z.In

fact, v is a #,—slant circle with x; = @

Example 3.2. Let ¢; be arbitrary constants (i = 1, ...,4), to € I, §; and 05 constants such that A = cos? 1 +cos? 02 < 1.
Let us consider a smooth function v : I — R and define; : I - R (i =1,...,4) as

mt)=c+2vV1-A /cos ))dp,

Yo(t) =ca+2V1—A /Sm ))dp,
= c3 + 2t cos b
t
+2M/COS co+2v1— /sm ))dp | dq,
to
= ¢4 + 2t cos by
+2ﬁ/ cos(u co +2vV1 — /sm )dp | dq.
Then v : I — RY(=6), v(t) = (y1(t), 2(t), 4(t)) is a 6, —slant curve with the contact angles 6; and 6.
4. Biharmonic ¢, —Slant Curves in S—Space Forms

In this section, we consider proper biharmonic ¢, —slant curves in S-space forms. Let  be a unit-speed 6, —slant
curve in an S-space form (M, f,&,,n%, g). Then, we have

3 _
R(T,VT)T = —ky {32 + Ctl a —A)} By — 3k, g (fT, B2) fT,
n(y) = VrVeVeT — R(T,VrT)T
= 3xK)T
+ (H’l'—/fi”—wf%m {B” Ak (1—A)DE2 41)

+ (267 ko + K1Ky) B3 + K1kakz By

13k S 2 g (FT, B fT.

As a result, we can state the following theorem:



An Extended Family of Slant Curves in .S—manifolds 73

Theorem 4.1. vy is a proper-biharmonic 0, —slant curve in an S-space form (M, f, &4, n%, g) ifand only if k1 = constant > 0

and

c— S c+ 3s

3 g(fT,Ey) fT = |k} + k3 — B% — (1— A)| By — k5 E3 — Kak3Ey. 4.2)
Proof. Let y be a proper-biharmonic 6, —slant curve. Then x; > 0 and 7 (7) = 0. If we take the inner-product of
both sides with T', we find k1 = constant > 0. Hence, from equation (4.1), we obtain equation (4.2). Conversely, if

k1 = constant > 0 and equation (4.2) is satisfied, we find 7 (y) = 0, which completes the proof. O

We will consider equation (4.2) from all points of view. Our discussions are based on the question: "When do
the coefficients of f7" vanish?". First discussion is for the absence of the term with f7 in equation (4.2). Second
discussion is for the non-vanishing coefficients.

First Discussion: The term with f7 vanishes.

)ec=s.

In this case, equation (4.2) becomes

0= [k} + K3 —B?—s(1—A)] B> — khE3 — kaksEy. (4.3)
As a result, we give the following Theorem:

Theorem 4.2. Under the assumption c = s; vy is a proper-biharmonic 0, —slant curve in (M, f, &, m®, g) if and only if either
v is a circle with k1 = /B2 + s(1 — A) or a helix with k% + k3 = B% + s(1 — A).

Proof. From equation (4.3), since { E2, E3, E4} is g—orthonormal, the proof is clear. O
ii) c # sand fT L Fs.

Under these assumptions, equation (4.2) gives us

0= |k} + K2 B*— (1— A)| By — kyFE3 — koks Ey. (4.4)

c+ 3s
4

Firstly, we need to prove the following Lemma:

Lemma 4.1. Let v be a 0,—slant curve of order r = 3 in an S-space form (M, f,&o,n%,g) and fT L E,. Then,
{T,Es,Es, fT,VrfT,&1,...,&} is linearly independent.

Proof. Letr =3 and fT L Es. Letus denote S1 = {7, Es, Es, fT, V1 fT,&1,...,&}. In view of equations (2.5), (3.1)
and (3.2), we have

9(Ea, T) = g(Es, E3) = g(Es, fT) = g(E2, Vr fT)
= g(EQafa):Ov

for all &« = 1,...,s. Thus, S; is linearly independent if and only if S = {T, E3, fT,VrfT,&,...,&} is linearly
independent. From the assumption, we have fT 1 Es. If we differentiate g(f7, E;) = 0, we find g(fT, E3) = 0.
Since g (fT, fT) =1 — A > 0is a constant, we obtain g (fT,VrfT) = 0. f is skew-symmetric, so g (fT,T) = 0.
From equation (2.1), we also have g (fT,&,) =0, for all @« = 1, ..., s. Then, omitting T, we get that S is linearly
independent if and only if S5 = {T', E3, V1 fT,&1, ...,&} is linearly independent. Now, let us investigate whether 7'
is linearly dependent with other vector fields in S3. From Frenet equations, ¢(7', E3) = 0. Equation (3.2) gives us
g(T,VrfT)=0. Assume that T € sp {1, ...,&s}. If we differentiate

T= i cos6,&,,
a=1

along the curve v, we get k1 = 0, which is a contradiction. As a result, T' ¢ sp{&,....{s}. Hence, Ss is linearly
independent if and only if Sy = {Es5, V7 fT, &1, ..., &} is linearly independent. If we differentiate g(fT, E5) = 0, we
find g(VrfT, E3) = 0. Now, let us assume E3 € sp {&1, ..., & . If we differentiate

By =Y 1*(Es)a,
a=1
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we obtain

—raBy =Y {Vr [1"(Es)] o — 1 (Es) [T} .

If we take the inner-product of both sides with E5, we find ko = 0, which contradicts = 3. Then, E5 ¢ sp{&1, ..., &}
So, Sy is linearly independent if and only if S5 = {Vr fT, &1, ..., & } is linearly independent. Equation (3.2) can be

rewritten as
S

VrfT =Y [(1—A)+ BcosOs]ée — BT + k1 fEa.

a=1
Since fT L E; and f is skew-symmetric, we have fE; L T. As a result, the term (—BT + k1 f E2) does not vanish,
thatis, Vo fT ¢ sp{1, ..., & }. Consequently, Ss is linearly independent and the proof is complete. O

In view of Lemma 4.1, we can state the following theorem:

Theorem 4.3. Under the assumptions ¢ # s and fT L Es; vy is a proper-biharmonic 6, —slant curve in (M, f,&,n%, g) if
and only if either

a) dim(M) > 4 + s and v is a circle with K, = $\/4B? + (c+ 3s)(1 — A), where {T, Ea, fT,V 1 fT, &1, ..., &} is
linearly independent; or

b) dim(M) > 5+ s and ~ is a helix with 3 + k3 = B? + <25(1 — A), where {T, E3, Es, fT,Vr [T, &1, ..., &} is
linearly independent.

Proof. If we consider Lemma 4.1 and equation (4.4) together, the proof is directly obtained. O

Second Discussion: The term with f7T does not vanish.
1) c#sand fT | Es.
In this case, since g (fT, fT) =1 — Aand fT || E3, we can write

JT =ev1— AE,, (4.5)
where € = sgn(g(fT, E2)). Then, equation (4.2) becomes
¢c—s 2,2 2 Ct3s /
3 (1 - A)EQ = |kK1 + Ry — B® — T (1 - A) E2 - H2E3 - H253E4. (46)

Firstly, we can state the following Lemma:

Lemma 4.2. Let y be a non-geodesic 0,,—slant curve in an S-space form (M, f,€q,n%, g) and fT || Es. If k1 is a constant,
then = is either a circle or a helix.

Proof. Let k1 = constant > 0. From equations (2.5), (3.2) and (4.5), after some calculations, we get
KotV — AEs = (1- A) > &o— (B+eAD)T + (B +¢eD)V, (4.7)
a=1

where we denote D = k;/v/1 — A. Note that

g(T,T) =1, g(T, Z&a) =B, g(T,V) = A4,

a=1
g(zgav Zéo‘) =5
a=1 a=1

90> & V) =B, g(V,V) = A.
a=1

As a result, if we denote the norm of the right-hand side of equation (4.7) by C, we have

C =+1—A\AD? — As + B2+ 2eBD + s,
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which gives us

ko = \/AD? — As + B? + 2:BD +s.
So, kg is a constant. If ko = 0, then v is a circle. If ko # 0, equation (4.7) gives us
E3 = agT + a1&1 + .. + asés,
for some constants ay, ..., as. If we differentiate this last equation, we obtain
— KkoFo + k3FEy = agk1Es —ay fT — ... —as fT. (4.8)

If we take the inner-product of equation (4.8) with E4, considering the fact that f7' || E2, we find k3 = 0. In this
case, v is a helix. 0

In view of Lemma 4.2, we have the following result:

Theorem 4.4. Under the assumptions c # s and fT || Ey; vy is a proper-biharmonic 0, —slant curve in (M, f,&q,n%, g) if
and only if either
a) it is a circle with k1 = \/B? + ¢ (1 — A) with the Frenet frame field

A
) 1 — A b)
where B2 + ¢ (1 — A) > 0; or
b) it is a helix with k1 = /1 — AD, kg = VAD? — As + B2 + 2e BD + s with the Frenet frame field

eflT €
T7 ) W ?
V1—A"\/1—AJAD? — As+ B2+ 2¢BD +s

where AD? — As + B? +2eBD + s > 0, D > 0 is a constant satisfying
D(2eB+D)=(1-A4)(c—s) 4.9)
and W denotes .
W= (1-A)) & —(B+eAD)T + (B+eD)V.
a=1

Proof. Let v be proper-biharmonic. Then, x; = constant > 0 and equation (4.6) must be satisfied. If we take the
inner-product of equation (4.6) with Es, E53 and E,, we get

KT+ K3 =DB>+c(l—A), (4.10)

Ko = constant, k3 = 0,

respectively. From the proof of Lemma 4.2, using equation (4.10), we obtain the curvatures and the Frenet frame

field of . Furthermore, if v is a helix, if we replace x; and k2 in equation (4.10), we find equation (4.9).
Conversely, let v be a one of the curves given in a) or b). Then, one can easily show that equation (4.4) is verified.

So, v is proper-biharmonic. O

ii) c # sand g(fT, F2) # 0,1, —1.
Since the equality cases are previously investigated, we complete our discussions under the assumptions c # s
and g(fT, E2) # 0,1, —1. Let us consider a smooth function m(t¢) such that

g(fT,Es) =1 — Acosm(t). (4.11)
Differentiating this equation, we have
kog(fT, E3) = —V1 — Am/(t) sinm(t). (4.12)
If we take the inner-product of equation (4.2) with Es, E3 and E,, we find
=By T304y 379 g2 (4.13)

4 4
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3(c—s)

ry + 9(fT,B2) g (fT,Es) =0, (4.14)
Rarg + (04_ %) g (FT, 2) g (JT, Es) = 0, (4.15)
respectively. If we multiply equation (4.14) with 2«5, equations (4.11) and (4.12), we have
2Kakh + (1 — A) 3(c=9) [—2m/(t) sinm(t) cosm(t)] = 0.
If we integrate the last equation, we get
k3= —(1—A) 5 (04_ s) cos? m(t) + ho, (4.16)

where hy is an arbitrary constant. If we write equation (4.16) in (4.13), we obtain m(t) is constant. As a result, we
can write

fT =+v1— A(cosmE, +sinmkEy) ,
where m € (0,27) — {%,0, 22 }. Now, we can give the following theorem:

Theorem 4.5. Under the assumptions ¢ # s and g(fT, E2) # 0,1,—1; ~ is a proper-biharmonic 0,—slant curve in
(M, f,&a,n", g) if and only if k1, k2 and k3 are constants such that

H%—Flﬁ%:BQ—FC—ZBS 3(c—s) o

(1-A4)+ cos“ m,

Koks + (1 —-A)sin2m =0,

3(c—s)
8
where fT = /1 — A(cosmE; +sinmEy) and m € (0,2r) — {%,0,2F
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