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Abstract
The series space |C−1|p has been studied for 1 ≤ p <∞ by Hazar and Sarıgöl in [9]. The main purpose
of this work is to define a new paranormed space |C−1| (p), where p = (pk) is a bounded sequence of
positive real numbers, which generalizes the results of Hazar and Sarıgöl in [9] to paranormed space.
Also, we investigate some topological properties such as the completeness and the isomorphism, and we
determine the α−, β−, and γ duals of this paranormed space. Additionally, we give characterization of
the classes of infinite matrices (|C−1| (p), µ) and (µ, |C−1| (p)), where µ is any given sequence space.
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1. Introduction
Any vector subspace of ω, the space of all complex sequences, is called a sequence space. Let `∞, c and c0 denote

the sets of all bounded, convergent and null sequences, respectively. We write `p =

{
x = (xk) ∈ w :

∑
k

|xk|p <∞
}

for 1 ≤ p <∞. Also, let bs and cs denote the spaces of all bounded and convergent series, respectively.
A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive

function g : X → R such that g (θ) = 0, g (x) = g (−x) and scalar multiplication is continuous, i.e.,

|αn − α| → 0 and g (xn − x)→ 0 imply g (αnxn − αx)→ 0

for all α
′
s in R and all x

′
s in X, where θ is the zero vector in the linear space X.

Throughout paper, (pk) is a bounded sequence of strictly positive real numbers such that H = supk pk and
M = max {1, H} . The linear space ` (p) was defined by Maddox [17, 18] (see also Nakano [22] and Simons [24]) as
follows.

` (p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
, (0 < pk ≤ H <∞) ,

which is the complete paranormed space by

g (x) =

(∑
k

|xk|pk
)1/M

.

Also, we shall assume throughout that p−1k +
(
p

′

k

)−1
= 1 provided 1 < inf pk ≤ H < ∞ and we denote the

collection of all finite subsets of N by F .
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Let X and Y be subspaces of w and A = (anv) be an arbitrary infinite matrix of complex numbers. By Ax =
(An (x)) , we denote the A-transform of the sequence x = (xv), i.e.,

An (x) =

∞∑
v=0

anvxv

provided that the series is convergent for n ≥ 0. Then, we say that A defines a matrix transformation from X into
Y , and denote it by A ∈ (X,Y ) if the sequence Ax = (An(x)) ∈ Y for all sequence x ∈ X . By An = (anν)

∞
ν=0, we

denote the sequence in the n-th row of A.
An infinite matrix T = (tnv) is called a triangle if tnn 6= 0 and tnv = 0 for all n, v with v > n [26].
For an infinite matrix A and a sequence space X, the matrix domain of A, which is denoted by XA, is defined as

XA = {x ∈ w : Ax ∈ X} . (1.1)

Several authors have recently defined new paranormed sequence spaces by using matrix domain. For example,
Başar and Altay have examined the space bs (p), Altay and Başar have studied the sequence spaces rt (p) , rt∞ (p) ,
rtc (p) and rt0 (p) in [4,1,2]. Also, some new paranormed sequence spaces have been employed by Malkowsky [20],
Aydın and Başar [3], Kara and Demiriz [14], Başar et al [5], Yeşilkayagil and Başar [27], Maji and Srivastava [19] and
Gökçe and Sarıgöl [8]. Additionally, Malkowsky and Rakočević [21] have obtained some general results on matrix
domains of arbitrary triangles which is fundamental for our study.

Moreover, some new sequence and series spaces have been examined by various authors in [9-13,15,23,28]. At
this point, space |Cα|p for α > −1 and 1 ≤ p <∞, as the set of all series summable by the method |C,α|p defined
by Flett in [6], has been defined and studied in [23] . However, for α = −1, Thorpe has defined that if the series to
sequence transformation

τn =

n−1∑
ν=0

xν + (n+ 1)xn (1.2)

tends to a finite number s as n tends to infinity, then the series Σxn is summable by Cesàro summability (C,−1) to
the number s [25] .

Later on, Hazar and Sarıgöl [9] have introduced the space |C−1|p as the set of all series summable of the method
|C,−1|p , as follows.

|C−1|p =

{
x = (xn) :

∞∑
n=1

np−1 |τn − τn−1|p <∞

}
,

where (τn) is defined by (1.2) , or

|C−1|p =

{
x = (xn) :

∞∑
n=1

np−1 |(n+ 1)xn − (n− 1)xn−1|p <∞

}
.

2. A new paranormed space |C−1| (p)
In this study, we introduce a new paranormed space |C−1| (p) by

|C−1| (p) =

{
x = (xn) :

∞∑
n=1

npn−1 |(n+ 1)xn − (n− 1)xn−1|pn <∞

}
, (0 < pn ≤ H <∞) .

If we define the matrix T (p) = (tnk (p)) by

tnk (p) =

{
n1/p

′
n (n+ 1) , k = n,

−n1/p
′
n (n− 1) , k = n− 1,

(2.1)

then, we can obtain that x = (xn) ∈ |C−1| (p) if and only if T (p)-transform of the sequence x = (xn) is in the space
` (p) . In this way, with the notation of (1.1), we can redefine the space |C−1| (p) as follows:

|C−1| (p) = (` (p))T (p) .
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It is trivial that in the case pn = p for every n ∈ N, the space |C−1| (p) is reduced to the space |C−1|p , 1 ≤ p <∞.
Also, we define the sequence y = (yn) as the T (p)-transform of the sequence x = (xn) by

yn = n1/p
′
n [(n+ 1)xn − (n− 1)xn−1] . (2.2)

In this section, we give some topological results of the newly defined the space |C−1| (p).

Theorem 2.1. The space |C−1| (p) is a complete paranormed space with the paranorm defined by

g̃ (x) =

(∑
n

∣∣∣n1/p′n [(n+ 1)xn − (n− 1)xn−1]
∣∣∣pn)1/M

.

Proof. Let x, z ∈ |C−1| (p). Using Minkowski’s inequality, we have(∑
n

∣∣∣n1/p′n [(n+ 1) (xn + zn)− (n− 1) (xn−1 + zn−1)]
∣∣∣pn)1/M

≤

(∑
n

∣∣∣n1/p′n [(n+ 1)xn − (n− 1)xn−1]
∣∣∣pn)1/M

(2.3)

+

(∑
n

∣∣∣n1/p′n [(n+ 1) zn − (n− 1) zn−1]
∣∣∣pn)1/M

< ∞.

Hence, we get x + z ∈ |C−1| (p). For any α ∈ R, since |α|pn ≤ max
{

1, |α|M
}
, we get g̃ (αx) ≤ max {1, |α|} g̃ (x) .

Thus, αx ∈ |C−1| (p). It is obvious that g̃ (θ) = 0 and g̃ (x) = g̃ (−x) for all x ∈ |C−1| (p) and subadditivity of g̃ is
seen from (2.3).

Now take any sequence ξ = (ξn), where ξn =
(
xnj
)

= (xn0 , x
n
1 , x

n
2 , ...) ∈ |C−1| (p) for each n ∈ N, such that

g̃ (ξn − x)→ 0 as n→∞ and also, let (αn) be any sequence of scalars such that αn → α as n→∞. Then, {g̃ (ξn)}
is bounded, since the inequality

g̃ (ξn) ≤ g̃ (x) + g̃ (x− ξn) .

So, we have

g̃
(
αkξ

k − αx
)

=

(∑
n

∣∣∣n1/p′n [(n+ 1)
(
αkx

k
n − αxn

)
− (n− 1)

(
αkx

k
n−1 − αxn−1

)]∣∣∣pn)1/M

≤ |αk − α| g̃
(
ξk
)

+ |α| g̃
(
ξk − x

)
→ 0 as k →∞.

This implies that scalar multiplication is continuous. Hence, g̃ is a paranorm on the space |C−1| (p).
It remains to prove the completeness of the space |C−1| (p) with respect to the paranorm g̃. Let (xn) be any

Cauchy sequence in the space |C−1| (p). Then, for a given ε > 0 there exists a positive integer n0 such that

g̃
(
xi − xj

)
< ε for all i, j ≥ n0.

By definition of g̃ for each fixed n ∈ N, we have

∣∣Tn (p)
(
xi
)
− Tn (p)

(
xj
)∣∣ ≤ (∑

n

∣∣Tn (p)
(
xi
)
− Tn (p)

(
xj
)∣∣pn)1/M

< ε (2.4)

for all i, j ≥ n0, which leads us to the fact that the
(
Tn (p)

(
xi
))

is a Cauchy sequence of scalars for every fixed n ∈ N
and hence converges for every n ∈ N, since C is complete. So, we write

lim
i→∞

Tn (p)
(
xi
)

= Tn (p) (x) .

Using these infinitely many limits, we may write the sequence {T1 (p) (x) , T2 (p) (x) , ...} .
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We have from (2.4) with j →∞,(∑
n

∣∣Tn (p)
(
xi
)
− Tn (p) (x)

∣∣pn)1/M

< ε

for all i ≥ n0. Thus,
(
xi
)

converges to x in |C−1| (p).
To show x ∈ |C−1| (p), using Minkowski’s inequality, we have(∑

n

∣∣∣n1/p′n [(n+ 1)xn − (n− 1)xn−1]
∣∣∣pn)1/M

≤

(∑
n

∣∣∣n1/p′n [(n+ 1)
(
xn − xin

)
− (n− 1)

(
xn−1 − xin−1

)]∣∣∣pn)1/M

+

(∑
n

∣∣∣n1/p′n [(n+ 1)xin − (n− 1)xin−1
]∣∣∣pn)1/M

= g̃
(
x− xi

)
+ g̃

(
xi
)
<∞.

This shows that x ∈ |C−1| (p). Therefore, we have shown that |C−1| (p) is complete.

Theorem 2.2. The space |C−1| (p) is linearly isomorphic to the space ` (p) , i.e.,

|C−1| (p) ∼= ` (p) ,

where 0 < pn ≤ H <∞ for all n ∈ N.

Proof. We should show that there exists a bijective linear map from |C−1| (p) to ` (p) . With (2.1), we define a map

T (p) : |C−1| (p)→ ` (p)

by T (p) (x) = y, where y = (yn) is as in (2.2). Then, it is clear that T (p) is linear operator. Also, T (p) (x) = θ
implies x = θ, thus T (p) is injective. Let y ∈ ` (p) , take the sequence x = (xn) by

x0 = y0 and xn =

n∑
v=1

v1/pv

n (n+ 1)
yv.

Then,

g̃ (x) =

(∑
n

|Tn (p) (x)|pn
)1/M

= g̃1 (y) <∞,

where g̃1 is the usual paranorm on ` (p) . Thus, we have that x ∈ |C−1| (p), and so T (p) is surjective and is paranorm
preserving. Hence, T (p) is a linear bijection and the spaces |C−1| (p) and ` (p) are linearly isomorphic, which
completes the proof.

A sequence (bk) of the elements of X is called a basis for a sequence space X paranormed by g if and only if, for
each x ∈ X, there exists a unique sequence (λn) of scalars such that

g

(
x−

n∑
k=0

λkbk

)
→ 0 as n→∞,

and in this case we write x =
∞∑
k=0

λkbk.

Since |C−1| (p) ∼= ` (p) , the inverse image of the basis of the space ` (p) is the basis for our new space |C−1| (p).
So we have the following theorem.
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Theorem 2.3. Let µk = (T (p)x)k , for all k ∈ N. Define the sequence b(v) =
(
b
(v)
n

)
as

b(v)n =

 v1/pv

n (n+ 1)
, 1 ≤ v ≤ n

0, v > n.

The sequence b(v) is a basis for the space |C−1| (p) and any x ∈ |C−1| (p) has a unique representation of the form

x =

∞∑
v=0

µvb
(v).

3. Dual spaces and matrix transformations

In this section, we state and prove the theorems determining the alpha, beta and gamma duals of the space
|C−1| (p) and also characterize the classes of infinite matrices (|C−1| (p), µ) and (µ, |C−1| (p)), where µ is any given
sequence space.

We start with the definition of the α−, β−, and γ duals.
For the sequence spaces X and Y define the set S (X,Y ) by

S (X,Y ) = {a = (ak) ∈ w : xa = (xkak) ∈ Y for all x ∈ X} .

Then, the sets
Xα = S (X, `1) , Xβ = S (X, cs) and Xγ = S (X, bs)

are called the α−, β− and γ− duals of the sequence space X, respectively.
Let B ∈ {n ∈ N : n ≥ 2} and define the sets E1 (p) , E2 (p) , E3 (p) , E4 (p) and E5 (p) as follows:

E1 (p) =

{
a = (ak) ∈ w : sup

N∈F
sup
k∈N

∣∣∣∣∣∑
n∈N

k1/pkan
n (n+ 1)

∣∣∣∣∣
pk

<∞

}
,

E2 (p) = ∪B>1

a = (ak) ∈ w : sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

k1/pkan
n (n+ 1)

B−1

∣∣∣∣∣
p
′
k

<∞

 ,

E3 (p) =

{
a = (ak) ∈ w : sup

n,k∈N

∣∣∣∣∣
n∑
r=k

k1/pkar
r (r + 1)

∣∣∣∣∣
pk

<∞

}
,

E4 (p) = ∪B>1

a = (ak) ∈ w : sup
n∈N

n∑
k=1

∣∣∣∣∣
n∑
r=k

k1/pkar
r (r + 1)

B−1

∣∣∣∣∣
p
′
k

<∞

 ,

E5 (p) =

{
a = (ak) ∈ w :

∞∑
r=k

k1/pkar
r (r + 1)

<∞, for all k ∈ N

}
.

Lemma 3.1. (see, [7]) (i) Let 1 < pν ≤ H < ∞ for all ν ∈ N. Then, A ∈ (` (p) , `1) if and only if there exists an integer
B > 1 such that

sup
N∈F

∑
ν

∣∣∣∣∣∑
n∈N

anνB
−1

∣∣∣∣∣
p
′
ν

<∞.

(ii) Let 0 < pν ≤ 1 for all ν ∈ N. Then, A ∈ (` (p) , `1) if and only if

sup
N∈F

sup
ν∈N

∣∣∣∣∣∑
n∈N

anν

∣∣∣∣∣
pν

<∞.
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We may state the following theorem which computes the α−dual of the space |C−1| (p).

Theorem 3.1. (i) Let 0 < pν ≤ 1 for all ν ∈ N. Then,

{|C−1| (p)}α = E1 (p) .

(ii) Let 1 < pν ≤ H <∞ for all ν ∈ N.Then,

{|C−1| (p)}α = E2 (p) .

Proof. Since the case (i) may be proved by analogy, we prove only case (ii).
Let pν > 1, take any a = (an) ∈ w and x ∈ |C−1| (p). Then, we easily derive that

anxn = an

n∑
v=1

v1/pv

n (n+ 1)
yv =

n∑
v=1

anv
1/pv

n (n+ 1)
yv = δn (y) , (n ∈ N)

where δn = (δnv) is defined by

δnv =

 anv
1/pv

n (n+ 1)
, 1 ≤ v ≤ n,

0, v > n.

Thus, we can see that ax = (anxn) ∈ `1 whenever x ∈ |C−1| (p) if and only if δy ∈ `1whenever y ∈ ` (p) . This
means that a = (an) ∈ {|C−1| (p)}α if and only if δ ∈ (` (p) , `1) . By using Lemma 3.1. (i), we have {|C−1| (p)}α =
E2 (p) .

Lemma 3.2. (see, [16]) (i) Let 1 < pν ≤ H <∞ for all ν ∈ N. Then, A ∈ (` (p) , `∞) if and only if there exists an integer
B > 1 such that

sup
n∈N

∑
ν

∣∣anνB−1∣∣p′ν <∞. (3.1)

(ii) Let 0 < pν ≤ 1 for all ν ∈ N. Then, A ∈ (` (p) , `∞) if and only if

sup
n,ν∈N

|anν |pν <∞. (3.2)

In the following theorem, we characterize the γ−dual of the space |C−1| (p).

Theorem 3.2. (i) Let 0 < pν ≤ 1 for all ν ∈ N. Then,

{|C−1| (p)}γ = E3 (p) .

(ii) Let 1 < pν ≤ H <∞ for all ν ∈ N.Then,

{|C−1| (p)}γ = E4 (p) .

Proof. Again, we prove only case (ii). Let pν > 1, take any a = (an) ∈ w and x ∈ |C−1| (p). Consider the equation

n∑
k=1

akxk =

n∑
k=1

ak

k∑
v=1

v1/pv

k (k + 1)
yv =

n∑
v=1

n∑
k=v

akv
1/pv

k (k + 1)
yv = D̄n(y) (3.3)

where D̄ =
(
d̄nv
)

is defined by

d̄nv =


n∑
k=v

akv
1/pv

k (k + 1)
, 1 ≤ v ≤ n,

0, v > n.

(3.4)

Thus, we deduce from Lemma 3.2 (i) with (3.3) that ax = (akxk) ∈ bs whenever x ∈ |C−1| (p) if and only if D̄y ∈ `∞
whenever y ∈ ` (p) . This means that a = (an) ∈ {|C−1| (p)}γ if and only if D̄ ∈ (` (p) , `∞) . Therefore, we obtain
from Lemma 3.2(i) that {|C−1| (p)}γ = E4 (p) .
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Lemma 3.3. (see, [16]) Let 0 < pν ≤ H <∞ for all ν ∈ N. Then, A ∈ (` (p) , c) if and only if (3.1) , (3.2) hold, and

lim
n→∞

anν = ξν, (ν ∈ N)

also holds.

Now, we characterize the β−dual of the space |C−1| (p).

Theorem 3.3. (i) Let 0 < pν ≤ 1 for all ν ∈ N. Then,

{|C−1| (p)}β = E3 (p) ∩ E5 (p) ,

(ii) Let 1 < pν ≤ H <∞ for all ν ∈ N. Then,

{|C−1| (p)}β = E4 (p) ∩ E5 (p) .

Proof. We observe from Lemma 3.3 with (3.3) that ax = (akxk) ∈ cs whenever x ∈ |C−1| (p) if and only if D̄y ∈ c
whenever y ∈ ` (p) . This means that a = (an) ∈ {|C−1| (p)}β if and only if D̄ ∈ (` (p) , c) , where D̄ =

(
d̄nv
)

is
defined by (3.4) . Therefore we derive from Lemma 3.3 that

sup
n∈N

n∑
k=1

∣∣∣∣∣
n∑
r=k

k1/pkar
r (r + 1)

B−1

∣∣∣∣∣
p
′
k

<∞ and lim
m→∞

m∑
r=k

k1/pkar
r (r + 1)

<∞,

which shows that {|C−1| (p)}β = E4 (p) ∩ E5 (p) .

After this step, we give two theorems characterizing the classes of infinite matrices (|C−1| (p), µ) and (µ, |C−1| (p))
where µ is any given sequence space.

Theorem 3.4. Let µ be any given sequence space. Then, A = (ank) ∈ (|C−1| (p), µ) if and only if An ∈ {|C−1| (p)}β for all
n ∈ N and R ∈ (` (p) , µ), where R = (rnk) is defined by

rnk =

∞∑
j=k

anjk
1/pk

j (j + 1)
.

Proof. We prove this theorem in a way similar to that in Yeşilkayagil and Başar [27]. Assume that µ is any given
sequence space and take into account that the spaces |C−1| (p) and ` (p) are linearly isomorphic. LetA ∈ (|C−1| (p), µ)
and y ∈ ` (p) .

(RT (p))nk =

∞∑
j=k

rnjtjk = rnktkk + rn,k+1tk+1,k

=

∞∑
j=k

anjk
1/pk

j (j + 1)
k1/p

′
k (k + 1)−

∞∑
j=k+1

anj (k + 1)
1/pk+1

j (j + 1)
(k + 1)

1/p
′
k+1 k = ank.

Then, RT (p) exists and An ∈ {|C−1| (p)}β , which yields that Rn ∈ {` (p)}β for each n ∈ N. Thus, Ry exists for each
y ∈ ` (p) and

m∑
k=1

r
(m)
nk yk =

m∑
k=1

m∑
j=k

anjk
1/pk

j (j + 1)

(
k1/p

′
k [(k + 1)xk − (k − 1)xk−1]

)
(3.5)

=

m∑
j=1

anj
j (j + 1)

j∑
k=1

k [(k + 1)xk − (k − 1)xk−1] =

m∑
k=1

ankxk

where r(m)
nk =

m∑
j=k

anjk
1/pk

j (j + 1)
for all n ∈ N. So, by letting m → ∞ in the equality (3.5), we have Ry = Ax and this

leads us to R ∈ (` (p) , µ).
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Conversely, let An ∈ {|C−1| (p)}β for all n ∈ N , R ∈ (` (p) , µ) and x ∈ |C−1| (p). Then Ax exists. So, we deduce
from the equality

m∑
k=1

ankxk =

m∑
k=1

ank

k∑
v=1

v1/pv

k (k + 1)
yv =

m∑
k=1

r
(m)
nk yk

as m→∞ that Ax = Ry and this gives us that A ∈ (|C−1| (p), µ). This completes the proof.

Theorem 3.5. Let µ be any given sequence space. Then, A ∈ (µ, |C−1| (p)) if and only if F ∈ (µ, ` (p)), where F = (fnk) is
defined by

fnk = n1/p
′
n ((n+ 1) ank − (n− 1) an−1,k) .

Proof. Let z ∈ µ and consider the following equality

m∑
k=1

fnkzk =

m∑
k=1

n1/p
′
n ((n+ 1) ank − (n− 1) an−1,k) zk. (3.6)

Then, as m→∞ in (3.6) we obtain that (Fz)n = (T (p) (Az))n . So, one can observe that Az ∈ |C−1| (p) whenever
z ∈ µ if and only if Fz ∈ ` (p) whenever z ∈ µ. This step concludes the proof.
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[3] Aydın, C., Başar, F.: Some generalizations of the sequence space. Iranian Journal of Science and Technology,
Transaction A: Science. 30, No.A2 (2006).
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