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Abstract
In this article, we establish sharp trigonometric-polynomial bounds for unnormalized sinc function.
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1. Introduction
The unnormalized sinc function is defined as

sincx =
sinx

x
;x 6= 0.

It finds applications in many branches of applied science, such as difference equations, approximation theory etc.
We may refer the reader to [1], and the references therein. Many important quantities involving the unnormalized
sinc function have no closed form and require a numerical evaluation. Hence, tractable and sharp bounds of them
can be useful to determine their possible values and can help to understand the features of the related phenomena.
For these reasons, the inequalities involving unnormalized sinc function have attracted attention of many searchers.
One of the most remarkable inequality involving the unnormalized sinc function is given by

sinx

x
<

2 + cosx

3
;x ∈ (0, π/2). (1.1)

This inequality is known as Cusa-Huygen’s inequality [2–6, 8, 9] in the literature. The inequality (1.1) has been
sharpened and extended in many ways (see e.g. [2–10] and the references therein) by searchers. In particular, the
following sharp inequalities were established in [5].

Statement 1. [5, Theorem 2] For every x ∈ (0, π/2) we have

2 + cosx

3
− x4

180
<

sinx

x
<

2 + cosx

3
− x4

180
+

x6

3780
. (1.2)

The inequalities (1.2) were extended and sharpened in [4] as follows.

Statement 2. [4, Theorem 2] For every x ∈ (0, π/2) and n ∈ N, the set of all natural numbers, we have
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2 + cosx

3
+

2n∑
k=2

(−1)k+1B(k)x2k <
sinx

x

<
2 + cosx

3
+

2n+1∑
k=2

(−1)k+1B(k)x2k, (1.3)

where B(k) = 2(k − 1)/[3(2k + 1)!].

Recently in [3] the inequalities (1.3) have been sharpened further. These new sharpened inequalities are cited in
the statement below.

Statement 3. [3, Theorem 8] If m = 2n− 1 where n ∈ N and x ∈ (0, π), then we have

F (x) <
sinx

x
< G(x), (1.4)

where

F (x) =
2m+ cosx

2m+ 1
+

2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k

and

G(x) =
(2m+ 2) + cosx

2m+ 3
+

2

2m+ 3

m+2∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k.

In this paper, we aim to refine all the inequalities mentioned above. To achieve our main results, we need
following power series expansions.

sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1; x ∈ R (1.5)

and

cosx =

∞∑
k=0

(−1)k

(2k)!
x2k; x ∈ R. (1.6)

2. Main Results
First, we refine the lower bound of (1.2) in our first result.

Theorem 2.1. If x ∈ (0, π) then we have

4 + cosx

5
− x2

15
<

sinx

x
. (2.1)

Proof. Let us set

f(x) = 5 sinx+
x3

3
− 4x− x cosx.

Then we have
f ′(x) = x2 + x sinx+ 4 cosx− 4

and
f ′′(x) = 2x− 3 sinx+ x cosx.

By the inequality (1.1), we have f ′′(x) > 0, implying that f ′(x) > f ′(0) = 0, so f(x) > f(0) = 0, which gives the
desired inequality.
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The proof of Theorem 2.1 can also be given by showing f(x) positive by using algorithm presented in [11, 12].
Our first result in Theorem 2.1 motivated us to further refine inequalities (1.3) and (1.4). We give this refinement

in the next theorem.

Theorem 2.2. If m = 2n− 1 where n ∈ N and x ∈ (0, π), then we have

Φ(x) <
sinx

x
< Ψ(x), (2.2)

where

Φ(x) =
(2m+ 2) + cosx

2m+ 3
+

2

2m+ 3

m+1∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k

and

Ψ(x) =
(2m+ 4) + cosx

2m+ 5
+

2

2m+ 5

m+2∑
k=1

k −m− 2

(2k + 1)!
(−1)k+1x2k.

Proof. Let us set

f1(x) =
sinx

x
− Φ(x)

=
sinx

x
− 2m+ 2

2m+ 3
− 1

2m+ 3
cosx− 2

2m+ 3

m+1∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k.

Utilizing (1.5) and (1.6), after some calculations, we get

f1(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k − 2m+ 2

2m+ 3
− 1

2m+ 3

∞∑
k=0

(−1)k

(2k)!
x2k

− 2

2m+ 3

m+1∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k

= −2m+ 2

2m+ 3
+

2

2m+ 3

∞∑
k=0

k −m− 1

(2k + 1)!
(−1)k+1x2k

− 2

2m+ 3

m+1∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k

=
2

2m+ 3

∞∑
k=m+2

k −m− 1

(2k + 1)!
(−1)k+1x2k

=
2

2m+ 3
x2m+2T,

where

T =

∞∑
k=1

k

(2k + 2m+ 3)!
(−1)k+1x2k.

Then, T is an alternating series which is clearly convergent by Leibnitz rule and hence T > 0. Thus, we have
f1(x) > 0 and

Φ(x) <
sinx

x
. (2.3)

Similarly, by setting

f2(x) = Ψ(x)− sinx

x
,

with the same arguments as in case of f1(x), we conclude that f2(x) > 0, i.e.,

sinx

x
< Ψ(x). (2.4)

The proof follows from (2.3) and (2.4).
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Some particular cases of Theorem 2.2 for x ∈ (0, π/2) are given below.
By putting n = 1 (so m = 1) in (2.2), we get

4 + cosx

5
− x2

15
<

sinx

x
<

6 + cosx

7
− 2x2

21
+

x4

420
. (2.5)

By putting n = 2 (so m = 3) in (2.2), we get

8 + cosx

9
− x2

9
+

x4

270
− x6

22680
<

sinx

x

<
10 + cosx

11
− 4x2

33
+

x4

220
− x6

13860
+

x8

1995840
. (2.6)

By putting n = 3 (so m = 5) in (2.2), we get

12 + cosx

13
− 5x2

39
+

x4

195
− x6

10920
+

x8

1179360
− x10

259459200
<

sinx

x

<
14 + cosx

15
− 2x2

15
+

x4

180
− x6

9450
+

x8

907200
− x10

149688000

+
x12

46702656000
. (2.7)

In the following theorem we prove that the new bounds in Theorem 2.2 are finer than the corresponding bounds
in Statement 3.

Theorem 2.3. If m = 2n− 1 where n ∈ N and x ∈ (0, π) then we have

F (x) < Φ(x); Ψ(x) < G(x), (2.8)

where F (x), G(x),Φ(x) and Ψ(x) are defined as in Statement 3 and Theorem 2.2.

Proof. Let us prove the first inequality of (2.8). The proof of the second inequality follows a similar line. Let us set

g(x) = Φ(x)− F (x)

=
2− 2 cosx

(2m+ 1)(2m+ 3)
+

2

(2m+ 1)(2m+ 3)

m+1∑
k=1

1

(2k)!
(−1)kx2k.

Utilizing (1.6), we get

g(x) =
2

(2m+ 1)(2m+ 3)
S,

where

S =

∞∑
k=m+2

(−1)k+1

(2k)!
x2k.

Now S can be viewed as a rest of the alternating series

S∗ =

∞∑
k=1

(−1)k+1

(2k)!
x2k

which is clearly convergent. Hence g(x) > 0 which proves the result.

3. Conclusion
We established very sharp trigonometric-polynomial bounds of sinc function. New inequalities are refinements

of those in (1.2), (1.3) and (1.4). Again by comparing the particular cases of Theorem 2.2 with the corresponding
particular cases of Statement 3, it is clear that the polynomial parts in bounds of (2.2) have degrees less than the
degrees of corresponding polynomial parts in bounds of (1.4). So the new proposed bounds are not only sharper
but also better. These sharp estimates may be used in approximation theory.

Acknowledgments. We thank the two reviewers for their careful reading of the manuscript and their construc-
tive remarks.
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