A Characteristic of Similarities by Use of Steinhaus' Problem on Partition of Triangles

Oğuzhan Demirel*, Leyla Aslan and Damla Topal

Abstract

H. Steinhaus [7] has asked whether inside each acute triangle there is a point from which perpendiculars to the sides divide the triangle into three parts of equal areas. In this paper we present a new characteristic of similarities by use of Steinhaus' Problem on partition of a triangle.

Keywords: Möbius transformation; similarity; Steinhaus' problem.
AMS Subject Classification (2020): Primary: 30C35 ; Secondary: 32A20.
*Corresponding author

1. Introduction

A Möbius transformation $f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ is a mapping of the form $f(z)=(a z+b) /(c z+d)$ satisfying $a d-b c \neq 0$, where $a, b, c, d \in \mathbb{C}$. Notice that

$$
f(\infty)=\lim _{z \rightarrow+\infty} f(z)=\frac{a}{c} \text { and } f\left(-\frac{d}{c}\right)=\infty .
$$

It is well known that the set of all Möbius transformations is a group with respect to the composition and that Möbius transformations have many beautiful properties. Some of these properties are as follows:

- Any Möbius transformation has at most two fixed points in $\mathbb{C} \cup\{\infty\}$.
- The cross-ratio $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$ of any four complex numbers, which is defined by

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{z_{1}-z_{3}}{z_{1}-z_{4}} \cdot \frac{z_{2}-z_{4}}{z_{2}-z_{3}}
$$

is invariant under Möbius transformations, that is

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right]
$$

- Möbius transformations are conformal and continuous.
- Möbius transformations map circles to circles, where straight lines are considered to be circles through ∞.

Translations, rotations about origin, strech transformations (complex dilations), inversions and similarities are most familiar Möbius transformations, which are defined by $f(z)=z+b, g(z)=e^{i \theta} z, h(z)=a z(a \neq 0)$, $j(z)=\frac{1}{z}, m(z)=a z+b$, respectively. It is well known that any Möbius transformation can be written as a composition of translations, complex dilations and inversions. In the literature there are many characterizations of Möbius transformations by use of some geometric objects such as Apollonius points of triangles [2], Apollonius quadrilaterals [3], Apollonius pentagons [1], Apollonius hexagons [4] and others. The aim of this paper is to present

[^0]

Figure 1. If P is a solution of Steinhaus' problem for an acute triangle $A B C$, then there exist corresponding points K, L, M on $A B, B C$ and $C A$, respectively, such that $A B \perp P K, B C \perp P L, C A \perp P M$ satisfying $\operatorname{Area}(A K P M)=\operatorname{Area}(B L P K)=\operatorname{Area}(C M P L)=\frac{\operatorname{Area}(A B C)}{3}$.
a new characterization of similarities by use of Steinhaus' problem on partition of triangles. H. Steinhaus [7] has asked whether inside each acute triangle there is a point from which perpendiculars to the sides decide the triangle into three parts of equal areas, see Fig.1. For the solution of this problem, we refer the reader to [8].
Example 1.1. Let $A B C$ be an arbitrary equilateral triangle in the Euclidean plane and let L be its center. Then

$$
\operatorname{Area}(A E L D)=\operatorname{Area}(B F L E)=\operatorname{Area}(C D L F)=\frac{\operatorname{AreaABC}}{3}
$$

holds, where D, E, F are the midpoints of the sides $A C, A B$ and $B C$, respectively.

2. Main Results

Lemma 2.1. Let $A B C$ be an equilateral triangle in the Euclidean plane and let L be its center. Denote the midpoints of the sides $A C, A B, B C$ by D, E, F respectively. Then $A L \perp D E$.

The proof is clear, so we omit it.
Throughout the paper we denote by X^{\prime} the image of X under f, by $A B$ the geodesic segment between points A and B, by $|A B|$ the distance between points A and B, by $A B C$ the triangle with three ordered vertices A, B and C, and by $\angle B A C$ the angle between $A B$ and $A C$. Unless otherwise stated, we consider $w=f(z)$ as a nonconstant meromorphic function of a complex variable z in the plane $|z|<+\infty$.

Now we consider Property S.

Property S: Suppose that $w=f(z)$ is an analytic and a univalent mapping in a nonempty domain R of the complex plane. Let $A B C$ be an arbitrary triangle contained in R. If L is a solution of Steinhaus' problem for $A B C$, (that is there exist corresponding points D, E, F on the sides $A C, A B, B C$ respectively, such that $L D \perp A C, L E \perp A B, L F \perp B C$ satisfying

$$
\left.\operatorname{Area}(A E L D)=\operatorname{Area}(B F L E)=\operatorname{Area}(C D L F)=\frac{\operatorname{Area}(A B C)}{3}\right)
$$

then L^{\prime} is a solution of $A^{\prime} B^{\prime} C^{\prime}$ (that is the points $D^{\prime}, E^{\prime}, F^{\prime}$ are on the sides $A^{\prime} C^{\prime}, A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, respectively, such that $L^{\prime} D^{\prime} \perp A^{\prime} C^{\prime}, L^{\prime} E^{\prime} \perp A^{\prime} B^{\prime}, L^{\prime} F^{\prime} \perp B^{\prime} C^{\prime}$ satisfying

$$
\left.\operatorname{Area}\left(A^{\prime} E^{\prime} L^{\prime} D^{\prime}\right)=\operatorname{Area}\left(B^{\prime} F^{\prime} L^{\prime} E^{\prime}\right)=\operatorname{Area}\left(C^{\prime} D^{\prime} L^{\prime} F^{\prime}\right)=\frac{\operatorname{Area}\left(A^{\prime} B^{\prime} C^{\prime}\right)}{3}\right)
$$

Lemma 2.2. If $w=f(z)$ is analytic and univalent in a nonempty domain R, then $f^{\prime}(z) \neq 0$ in R, see [6].
Lemma 2.3. Let $w=f(z)$ satisfy Property S. If l_{1} and l_{2} are two lines meeting perpendicularly, then $f\left(l_{1}\right)$ meets $f\left(l_{2}\right)$ perpendicularly.

Proof. Let l_{1} and l_{2} be two lines meeting at a point, say B, perpendicularly. Let A be a point on l_{1} and let C be a point on l_{2} such that $\angle A C B=\frac{\pi}{6}, \angle C B A=\frac{\pi}{2}, \angle B A C=\frac{\pi}{3}$. It is enough to prove that $C^{\prime} B^{\prime} \perp A^{\prime} B^{\prime}$. Denote the reflection of C with respect to $A B$ by D and denote the reflection of B with respect to $A C$ by E. Let F be the symmetry of C with respect to E. Hence we construct an equilateral triangle $F C D$. Clearly A is the center of $F C D$. Since A is the solution of Steinhaus' problem for $F C D$, that is

$$
\operatorname{Area}(C B A E)=\operatorname{Area}(B D G A)=\operatorname{Area}(G F E A)=\frac{\operatorname{Area}(F C D)}{3}
$$

where G is the midpoint of the side $D F$. By Property S, we get

$$
\operatorname{Area}\left(C^{\prime} B^{\prime} A^{\prime} E^{\prime}\right)=\operatorname{Area}\left(B^{\prime} D^{\prime} G^{\prime} A^{\prime}\right)=\operatorname{Area}\left(G^{\prime} F^{\prime} E^{\prime} A^{\prime}\right)=\frac{\operatorname{Area}\left(F^{\prime} C^{\prime} D^{\prime}\right)}{3}
$$

which implies that $C^{\prime} B^{\prime} \perp A^{\prime} B^{\prime}$. Therefore $f\left(l_{1}\right)$ meets $f\left(l_{2}\right)$ perpendicularly.
Theorem 2.1. $w=f(z)$ has Property S if and only if $w=f(z)$ is a similarity.
Proof. Let f be a similarity defined by

$$
f(z)=a z+b
$$

satisfying $a, b \in \mathbb{C}, a \neq 0$ and let $A B C$ be an acute angled triangle. Clearly

$$
\left|A^{\prime} B^{\prime}\right|=|a||A B|, \quad\left|A^{\prime} C^{\prime}\right|=|a||A C|, \quad\left|C B^{\prime}\right|=|a||C B|
$$

By the side-side-side theorem, we get

$$
\operatorname{Area}\left(A^{\prime} B^{\prime} C^{\prime}\right)=|a|^{2} \operatorname{Area}(A B C)
$$

Let L be a solution of Steinhaus' problem for $A B C$. Then one can easily see that there exist three points D, E, F on the sides $A C, A B$ and $B C$, respectively such that

$$
\operatorname{Area}(A E L D)=\operatorname{Area}(B F L E)=\operatorname{Area}(F C D L)=\frac{\operatorname{Area}(A B C)}{3}
$$

Since f preserves the measures of the angles of triangles and preserves the collinearity property of points, we get

$$
\begin{aligned}
& \operatorname{Area}(A E L D)=\operatorname{Area}(A L D)+\operatorname{Area}(A L E)=\frac{\operatorname{Area}\left(A^{\prime} L^{\prime} D^{\prime}\right)}{|a|^{2}}+\frac{\operatorname{Area}\left(A^{\prime} L^{\prime} E^{\prime}\right)}{|a|^{2}} \\
& \operatorname{Area}(B F L E)=\operatorname{Area}(B F L)+\operatorname{Area}(B E L)=\frac{\operatorname{Area}\left(B^{\prime} F^{\prime} L^{\prime}\right)}{|a|^{2}}+\frac{\operatorname{Area}\left(B^{\prime} E^{\prime} L^{\prime}\right)}{|a|^{2}} \\
& \operatorname{Area}(F C D L)=\operatorname{Area}(C L F)+\operatorname{Area}(C L D)=\frac{\operatorname{Area}\left(C^{\prime} L^{\prime} F^{\prime}\right)}{|a|^{2}}+\frac{\operatorname{Area}\left(C^{\prime} L^{\prime} D^{\prime}\right)}{|a|^{2}}
\end{aligned}
$$

which implies that f has Property S.
Now assume that $w=f(z)$ has Property S. Because of the fact that $w=f(z)$ is analytic and univalent in the domain R, by Lemma 2.2,

$$
\begin{equation*}
f^{\prime}(z) \neq 0 \tag{2.1}
\end{equation*}
$$

holds in R. If x is an arbitrarily fixed point of R, then by (2.1) we get

$$
\begin{equation*}
f^{\prime}(x) \neq 0 \tag{2.2}
\end{equation*}
$$

Let L be the point represented by x. Because of $L \in R$, there exists a positive real number ϵ such that $V(L, \epsilon)$ is contained in R, where $V(L, \epsilon)$ is ϵ-closed circular neighborhood of L. Throughout the proof let $A B C$ denote an arbitrary equilateral triangle which is contained in $V(L, \epsilon)$ and whose center is at L. Since $A B C$ is an equilateral triangle contained in $V(L, \epsilon)$, we can represent the points A, B, C by complex numbers

$$
A=x+y, \quad B=x+w y, \quad C=x+w^{2} y
$$

where $w=\frac{-1+\sqrt{3} i}{2}$ and $|y| \leq \epsilon$. Then the midpoints of the sides $A C, A B$ and $B C$ are

$$
D=x+\frac{w^{2}+1}{2} y, \quad E=x+\frac{w+1}{2} y, \quad F=x+\frac{w^{2}+w}{2} y
$$

respectively. Since $w=f(z)$ is univalent in R, the points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}, L^{\prime}$ are different points. Clearly, there exists some sufficiently small $\delta \in \mathbb{R}^{+}$satisfying $\delta \leq \epsilon$ such that $A^{\prime}, B^{\prime}, C^{\prime}$ are not collinear on the w-plane for all y satisfying $0<|y| \leq \epsilon$ by (2.2) and by the property of analytic functions, see [5]. By hypothesis, $A^{\prime}, B^{\prime}, C^{\prime}$ are not collinear and L^{\prime} is a solution of Steinhaus' Problem for $A^{\prime} B^{\prime} C^{\prime}$, that is

$$
\operatorname{Area}\left(A^{\prime} E^{\prime} L^{\prime} D^{\prime}\right)=\operatorname{Area}\left(B^{\prime} F^{\prime} L^{\prime} E^{\prime}\right)=\operatorname{Area}\left(F^{\prime} C^{\prime} D^{\prime} L^{\prime}\right)=\frac{\operatorname{Area}\left(A^{\prime} B^{\prime} C^{\prime}\right)}{3}
$$

where

$$
\begin{gathered}
A^{\prime}=f(x+y), \quad B^{\prime}=f(x+w y), \quad C^{\prime}=f\left(x+w^{2} y\right) \\
D^{\prime}=f\left(x+\frac{w^{2}+1}{2} y\right), \quad E^{\prime}=f\left(x+\frac{w+1}{2} y\right), \quad F^{\prime}=f\left(x+\frac{w^{2}+w}{2} y\right) .
\end{gathered}
$$

Since

$$
\operatorname{Area}\left(A^{\prime} E^{\prime} L^{\prime} D^{\prime}\right)=\operatorname{Area}\left(B^{\prime} F^{\prime} L^{\prime} E^{\prime}\right)
$$

it follows that

$$
\begin{equation*}
\frac{1}{2}\left|A^{\prime} L^{\prime}\right|\left|D^{\prime} E^{\prime}\right| \sin \alpha=\frac{1}{2}\left|B^{\prime} L^{\prime}\right|\left|F^{\prime} E^{\prime}\right| \sin \beta \tag{2.3}
\end{equation*}
$$

by the area formula, where α is the measure of the angle between $A^{\prime} L^{\prime}$ and $D^{\prime} E^{\prime}$, and β is the measure of the angle between $B^{\prime} L^{\prime}$ and $F^{\prime} E^{\prime}$. By Lemma 2.1, we get that $A L \perp D E$ and $B L \perp E F$. Since f preserves right angles by Lemma 2.3, we get $\alpha=\beta=\frac{\pi}{2}$. Then by (2.2), we obtain

$$
\left|A^{\prime} L^{\prime}\right|\left|D^{\prime} E^{\prime}\right|=\left|B^{\prime} L^{\prime}\right|\left|F^{\prime} E^{\prime}\right|
$$

which implies

$$
\left|(f(x+y)-f(x))\left(f\left(x+\frac{w+1}{2} y\right)-f\left(x+\frac{w^{2}+1}{2} y\right)\right)\right|=\left|(f(x+w y)-f(x))\left(f\left(x+\frac{w^{2}+w}{2} y\right)-f\left(x+\frac{w+1}{2} y\right)\right)\right|
$$

and this yields

$$
\left|\frac{(f(x+y)-f(x))\left(f\left(x+\frac{w+1}{2} y\right)-f\left(x+\frac{w^{2}+1}{2} y\right)\right)}{(f(x+w y)-f(x))\left(f\left(x+\frac{w^{2}+w}{2} y\right)-f\left(x+\frac{w+1}{2} y\right)\right)}\right|=1 .
$$

If we set

$$
g(y)=\frac{(f(x+y)-f(x))\left(f\left(x+\frac{w+1}{2} y\right)-f\left(x+\frac{w^{2}+1}{2} y\right)\right)}{(f(x+w y)-f(x))\left(f\left(x+\frac{w^{2}+w}{2} y\right)-f\left(x+\frac{w+1}{2} y\right)\right)}
$$

then we get $|g(y)|=1$ in the punctured closed disk $0<|y| \leq \delta$. Since the numerator and the denominator of $g(y)$ are analytic functions for all y satisfying $0<|y| \leq \delta$ and since, by the fact that $w=f(z)$ is univalent in R, the denominator of $g(y)$ never vanishes in $0<|y| \leq \delta, g(y)$ is analytic in $0<|y| \leq \delta$. Next we prove that $g(y)$ is also analytic at $y=0$. As $y \rightarrow 0$, by L'Hopital's rule and by the fact that $f^{\prime}(x) \neq 0$, we obtain

$$
\frac{f(x+y)-f(x}{f(x+w y)-f(x)} \rightarrow \frac{f^{\prime}(x)}{w f^{\prime}(x)}=\frac{1}{w}
$$

and

$$
\frac{f\left(x+\frac{w+1}{2} y\right)-f\left(x+\frac{w^{2}+1}{2} y\right)}{f\left(x+\frac{w^{2}+w}{2} y\right)-f\left(x+\frac{w+1}{2} y\right)} \rightarrow \frac{-w}{1+w}
$$

holds. Hence, for $y \rightarrow 0$, we immediately get

$$
g(y) \rightarrow \frac{1}{w} \cdot \frac{-w}{1+w}=\frac{-1}{w+1}
$$

If we define

$$
g(0)=\frac{-1}{w+1}
$$

and by Riemann's theorem on removable singularities, the function $g(y)$ is analytic at $y=0$. Furthermore, since $g(0)=\frac{-1}{w+1}$ holds, the equality $|g(y)|=1$ still holds at $y=0$. Therefore $g(y)$ is analytic in the closed disk $|y| \leq \delta$ and that $|g(y)|=1$ holds for all y with $|y| \leq \delta$. By the maximum modulus principle for analytic functions we obtain

$$
g(y)=K
$$

in $|y| \leq \delta$, where K is a complex constant with modulus 1 . Setting $y=0$ in $g(y)=K$ and using $g(0)=\frac{-1}{w+1}$, we get

$$
K=\frac{-1}{w+1} .
$$

Thus we get
$(w+1)(f(x+y)-f(x))\left(f\left(x+\frac{w+1}{2} y\right)-f\left(x+\frac{w^{2}+1}{2} y\right)\right)+(f(x+w y)-f(x))\left(f\left(x+\frac{w^{2}+w}{2} y\right)-f\left(x+\frac{w+1}{2} y\right)\right)=0$
Differentiating both sides of (2.4) three times with respect to y and setting $y=0$, we get

$$
f^{\prime}(x) f^{\prime \prime}(x)=0 .
$$

Since $f^{\prime}(x) \neq 0$, we obtain that

$$
f^{\prime \prime}(x)=0,
$$

which implies that f must be a similarity, that is it must be of the form

$$
f(z)=a z+b
$$

for some $a, b \in \mathbb{C}$ with $a \neq 0$.
Acknowledgement. The authors would like to thank the anonymous reviewers for the constructive and insightful comments in relation to this work.

References

[1] Bulut, S., Özgür, N.Y.: A new characteristic of Möbius transformations by use of Apollonius points of pentagons. Turkish J. Math. 28 (3) 299-305 (2004).
[2] Haruki, H., Rassias, T.M.: A new characteristic of Möbius transformations by use of Apollonius points of triangles. J. Math. Anal. Appl. 197 (1) 14-22 (1996).
[3] Haruki, H., Rassias, T.M.: A new characteristic of Möbius transformations by use of Apollonius quadrilaterals. Proc. Amer. Math. Soc. 126 (10) 2857-2861 (1998).
[4] Haruki, H., Rassias, T.M.: A new characterization of Möbius transformations by use of Apollonius hexagons. Proc. Amer. Math. Soc. 128 (7) 2105-2109 (2000).
[5] Nevanlinna, R., Paatero, V.: Introduction to Complex Analysis, Addison-Wesley, New York (1964).
[6] Pennisi, L.L., Gordon, L.I., Lasher, S.: Elements of Complex Variables, Holt, Rinehart-Winston, New York (1963).
[7] Steinhaus, H.: Problem No. 779 (in Polish). Matematyka. 19 (92) (1966).
[8] Tyszka, A.: Steinhaus' problem on partition of a triangle. Forum Geom. 7 181-185 (2007).

Affiliations

OĞUZHAN Demirel
Address: Afyon Kocatepe University, Dept. of Mathematics, 03200, Afyonkarahisar-Turkey. E-MAIL: odemirel@aku.edu.tr ORCID ID:0000-0001-8948-1549

Leyla Aslan
Address: Afyon Kocatepe University, Dept. of Mathematics, 03200, Afyonkarahisar-Turkey. E-MAIL: leylaaslan3356@gmail.com
ORCID ID:0000-0002-6385-5757

Damla Topal
Address: Afyon Kocatepe University, Dept. of Mathematics, 03200, Afyonkarahisar-Turkey.
E-MAIL: damla.1tpl@gmail.com
ORCID ID:0000-0002-3568-3804

[^0]: Received : 04-09-2019, Accepted : 05-03-2020

