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Abstract
In an earlier work, it is proven that the category of crossed modules in a modified category of interest
(MCI crossed modules) is finitely complete with a certain condition, in which all codomains are fixed. In
this paper, we prove that this is also true without any restriction.
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1. Introduction

The notion of category of interest is introduced to unify various properties of algebraic structures. The main idea
is due to Higgins [12], and the definition is improved by Orzech [14]. Many well-known algebraic categories are the
examples of category of interest except the categories of cat1-objects of Lie (associative, Leibniz, etc.) algebras. Then,
to overcome this problem, the authors of [4] introduced a new type of this notion, called modified category of interest
that satisfies all axioms of the former notion except one, which is replaced by a new and modified condition.

A crossed module of groups is a group homomorphism ∂ : E → G, together with a group action B of G on E,
satisfying the following relations (for all e, f ∈ E and g ∈ G):

∂(g B e) = g ∂(e) g−1, ∂(e) B f = e f e−1.

Crossed modules are introduced by Whitehead [16] as a model of homotopy 2-types and used to classify higher
dimensional cohomology groups. See [5] for more details on crossed modules. Afterwards, crossed modules are
also studied for various algebraic structures such as in the categories of (commutative) algebras, dialgebras, Lie and
Leibniz algebras, etc. [6]. However, the current definition of crossed modules in modified categories of interest
[4] unifies all of these definitions. Furthermore, there also exist some other generalizations of crossed modules of
groups such as [13, 15, 17].

It is already proven that the category of crossed modules in a modified category of interest (MCI crossed modules)
is finitely complete with a certain condition - i.e. all codomains are fixed [8]. Furthermore, the cocompleteness
has been studied in [3]. In this paper, we prove that we also have the same completeness property without any
restriction neither on domains nor on codomains. In conclusion, one can adapt this property to many different
algebraic categories such as crossed modules of Lie algebras, Leibniz algebras, dialgebras, etc. and say that these
categories are also finitely complete.

2. Preliminaries

In this section, we recall some notions from [4, 8] based on the modified category of interest.
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2.1 Modified Category of Interest

Definition 2.1. Let C be a category of groups with a set of operations Ω and with a set of identities E, such that E
includes the group identities and the following conditions hold.

If Ωi is the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;

(b) the group operations (written additively : 0,−,+) are elements of Ω0, Ω1 and Ω2 respectively. Let Ω′2 = Ω2\{+},
Ω′1 = Ω1 \ {−}. Assume that if ∗ ∈ Ω2, then Ω′2 contains ∗◦ defined by x ∗◦ y = y ∗ x and assume Ω0 = {0};

(c) for each ∗ ∈ Ω′2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for each ω ∈ Ω′1 and ∗ ∈ Ω′2, E includes the identities ω(x + y) = ω(x) + ω(y) and either the identity
ω(x ∗ y) = ω(x) ∗ ω(y) or the identity ω(x ∗ y) = ω(x) ∗ y.

Denote by Ω′1S the subset of those elements in Ω′1, which satisfy the identity ω(x ∗ y) = ω(x) ∗ y, and by Ω′′1 all
other unary operations, i.e. those which satisfy the first identity from (d).

Let C be an object of C and x1, x2, x3 ∈ C:

(e) x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1, for each ∗ ∈ Ω′2.

(f) For each ordered pair (∗, ∗) ∈ Ω′2 × Ω′2 there is a word W such that:

(x1 ∗ x2) ∗ x3 = W
(
x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2
)
,

where each juxtaposition represents an operation in Ω′2.

A category of groups with operations C satisfying conditions (a)-(f) is called a “modified category of interest", or
“MCI" for short.

As indicated in [4], the difference between this definition and that of the original “category of interest" is the
modification of the second identity in (d). According to this definition every category of interest is also a modified
category of interest.

Definition 2.2. Let A,B be two objects of C. A map f : A→ B is called a morphism of C if it satisfies:

f(a+ a′) = f(a) + f(a′),

f(a ∗ a′) = f(a) ∗ f(a′),

for all a, a′ ∈ A, ∗ ∈ Ω′2 and also commutes with all w ∈ Ω′1.

Example 2.1. The categories of groups, algebras, commutative algebras, Lie algebras, Leibniz algebras, dialgebras
are all (modified) categories of interest.

Example 2.2. The categories Cat1Ass, Cat1Lie, Cat1Leibniz, i.e. the categories of cat1-associative algebras, cat1-Lie
algebras and cat1-Leibniz algebras are the examples of modified categories of interest, which are not categories of
interest (see [4] for details).

Notation. From now on, C will denote an arbitrary but fixed modified category of interest.

Definition 2.3. Let A,B ∈ C. An extension of B by A is a sequence:

0 // A
i // E

p // B // 0 (2.1)

where p is surjective and i is the kernel of p. We say that an extension is split if there exists a morphism s : B → E
such that ps = 1B .
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Definition 2.4. The split extension (2.1) induces an action of B on A corresponding to the operations of C with:

b · a = s(b) + a− s(b),
b ∗ a = s(b) ∗ a,

for all b ∈ B, a ∈ A and ∗ ∈ Ω′2.

Actions defined by the previous equations are called derived actions of B on A. Remark that we use the notation
"∗" to denote both the star operation and the star action.

Given an action of B on A, a semi-direct product AoB is a universal algebra, whose underlying set is A×B
and the operations are defined by:

ω(a, b) = (ω (a) , ω (b)),

(a′, b′) + (a, b) = (a′ + b′ · a, b′ + b),

(a′, b′) ∗ (a, b) = (a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b),

for all a, a′ ∈ A, b, b′ ∈ B, ∗ ∈ Ω′2. An action of B on A is a derived action if and only if AoB is an object of C.

Denote a general category of groups with operations of a modified category of interest C by CG. A set of actions
of B on A in CG is a set of derived actions if and only if it satisfies the following conditions:

1. 0 · a = a,

2. b · (a1 + a2) = b · a1 + b · a2,

3. (b1 + b2) · a = b1 · (b2 · a),

4. b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,

5. (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,

6. (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2,

7. (b1 ∗ b2) · (a ∗ b) = a ∗ b,

8. a1 ∗ (b · a2) = a1 ∗ a2,

9. b ∗ (b1 · a) = b ∗ a,

10. ω(b · a) = ω(b) · ω(a),

11. ω(a ∗ b) = ω(a) ∗ b = a ∗ ω(b) for any ω ∈ Ω′1S , and ω(a ∗ b) = ω(a) ∗ ω(b) for any ω ∈ Ω′′1 ,

12. x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′1, ∗ ∈ Ω′2, b, b1, b2 ∈ B, a, a1, a2 ∈ A; and for x, y, z, t ∈ A ∪ B whenever both sides of the last
condition are defined.

2.2 Limits in MCI

The usual cartesian product P×R is the product object of P andR in C, with the projection morphisms satisfying
the universal property.

Suppose that α : P → S and β : R→ S are two morphisms in C. Then the subobject of the cartesian product:

P ×S R = {(p, r) | α (p) = β (r)} , (2.2)

called fiber product, defines the pullback of α, β.

Therefore a modified category of interest C has products and pullbacks which guarantees the existence of
equalizer objects. Briefly, suppose that we have two parallel morphisms f, g : P → R. Their equalizer is defined as
Eq(f, g) = {x ∈ P | f(x) = g(x)}.

Consequently, we can say that C has all finite limits since it has both products and equalizers. Thus, C is finitely
complete.
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2.3 Crossed Modules

Definition 2.5. A crossed module (C1, C0, ∂) in C is (namely a MCI crossed module) is given by a morphism
∂ : C1 → C0 with a derived action of C0 on C1 such that:

XM1) ∂(c0 · c1) = c0 + ∂(c1)− c0
∂(c0 ∗ c1) = c0 ∗ ∂(c1)

XM2) ∂(c1) · c′1 = c1 + c′1 − c1
∂(c1) ∗ c′1 = c1 ∗ c′1

for all c0 ∈ C0, c1, c′1 ∈ C1, ∗ ∈ Ω′2.

A morphism between two crossed modules (C1, C0, ∂)→ (C ′1, C
′
0, ∂
′) is a pair (µ1, µ0) of morphisms µ0 : C0 →

C ′0, µ1 : C1 → C ′1, such that the diagram

C1
∂ //

µ1

��

C0

µ0

��
C ′1

∂′
// C ′0

commutes and

µ1(c0 · c1) = µ0(c0) · µ1(c1) ,

µ1(c0 ∗ c1) = µ0(c0) ∗ µ1(c1) ,

for all c0 ∈ C0, c1 ∈ C1 and ∗ ∈ Ω′2.

Thus, crossed modules and their morphisms form a category in C.

Remark 2.1. The following well-known definitions are the examples of MCI crossed modules.

Example 2.3. A crossed module of groups [10] is given by a group homomorphism ∂ : E → G, together with an
action . of G on E such that (for all e, f ∈ E and g ∈ G):

• ∂(g . e) = g ∂(e) g−1,

• ∂(e) . f = e f e−1.

Example 2.4. A crossed module of Lie algebras [2] is given by a Lie algebra homomorphism ∂ : e → g, together
with an action . of g on e such that (for all e, f ∈ e and g ∈ g):

• ∂(g . e) = [g, ∂(e)],

• ∂(e) . f = [e, f ].

Note that . denotes the group action and the Lie algebra action respectively in the previous examples.

Notation. From now on, any crossed module in a modified category of interest C will be shortly called “MCI
crossed module" for the sake of simplicity.

3. The Completeness

In this section, we deal with limits in the category of MCI crossed modules – without any restriction.
Remark 3.1. Consider we have two MCI crossed modules (C1, P1, ∂1) and (C2, P2, ∂2). There exists an action of
P1 × P2 on C1 × C2 which is

(p1, p2) · (c1, c2) = (p1 · c1, p2 · c2),

(p1, p2) ∗ (c1, c2) = (p1 ∗ c1, p2 ∗ c2).

for all (p1, p2) ∈ P1 × P2 and (c1, c2) ∈ C1 × C2.
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Lemma 3.1. Considering two crossed modules given above, we obtain a MCI crossed module structure

(C1 × C2, P1 × P2, ∂) , (3.1)

given by

∂(c1, c2) =
(
∂1(c1), ∂2(c2)

)
, (3.2)

for all (c1, c2) ∈ C1 × C2.

Proof. Crossed module conditions are satisfied since

XM1)

∂
(
(p1, p2) · (c1, c2)

)
= ∂(p1 · c1, p2 · c2)

=
(
∂1(p1 · c1), ∂2(p2 · c2)

)
=

(
p1 + ∂1 (c1)− p1 , p2 + ∂2 (c2)− p2

)
= (p1, p2) +

(
∂1(c1), ∂2(c2)

)
− (p1, p2)

= (p1, p2) + ∂(c1, c2)− (p1, p2) ,

and

∂
(
(p1, p2) ∗ (c1, c2)

)
= ∂(p1 ∗ c1, p2 ∗ c2)

=
(
∂1(p1 ∗ c1), ∂2(p2 ∗ c2)

)
=

(
p1 ∗ ∂1 (c1) , p2 ∗ ∂2 (c2)

)
= (p1, p2) ∗

(
∂1(c1), ∂2(c2)

)
= (p1, p2) ∗ ∂(c1, c2),

XM2)

∂ (c1, c2) · (c′1, c′2) =
(
∂1(c1), ∂2(c2)

)
· (c′1, c′2)

=
(
∂1(c1) · c′1, ∂2(c2) · c′2

)
=

(
c1 + c′1 − c1 , c2 + c′2 − c2

)
=

(
c1, c2

)
+
(
c′1, c

′
2

)
−

(
c1, c2

)
,

and

∂ (c1, c2) ∗ (c′1, c
′
2) =

(
∂1(c1), ∂2(c2)

)
∗ (c′1, c

′
2)

=
(
∂1(c1) ∗ c′1 , ∂2(c2) ∗ c′2

)
=

(
c1 ∗ c′1 , c2 ∗ c′2

)
=

(
c1, c2

)
∗
(
c′1, c

′
2

)
,

for all (c1, c2), (c′1, c
′
2) ∈ C1 × C2 and (p1, p2) ∈ (P1, P2).

Theorem 3.1. We have the product object (3.1), in the category of MCI crossed modules.

Proof. We only need to prove the universal property. Let (T, S, δ) be our test object, i.e. a MCI crossed module with
two crossed module morphisms

(α, α′) : (T, S, δ)→ (C1, P1, ∂1) ,

(β, β′) : (T, S, δ)→ (C2, P2, ∂2) .

Then there must be a unique crossed module morphism

(ϕ,ϕ′) : (T, S, δ)→ (C1 × C2, P1 × P2, ∂) ,
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such that the following diagram commutes:

(T, S, δ)

(α,α′)

xx

(β,β′)

''

(ϕ,ϕ′)

��
(C1, P1, ∂1) (C1 × C2, P1 × P2, ∂)

(π1,π1)
oo

(π2,π2)
// (C2, P2, ∂2) .

(3.3)

Remark that, the tuple of projections (πi, πi) define crossed module morphisms. So let us define

ϕ (t) = (α (t) , β (t)) ,

ϕ′ (s) = (α′ (s) , β′ (s)) ,

for each t ∈ T and s ∈ S.

(ϕ,ϕ′) defines a crossed module morphism with the following diagram

T

ϕ

��

δ // S

ϕ′

��
C1 × C2,

∂
// P1 × P2

since we have

ϕ(s · t) =
(
α (s · t) , β (s · t)

)
=

(
α′(s) · α(t), β′(s) · β(t)

)
=

(
α′(s), β′(s)

)
·
(
α(t), β(t)

)
= ϕ′(s) · ϕ(t),

ϕ(s ∗ t) =
(
α (s ∗ t) , β (s ∗ t)

)
=

(
α′(s) ∗ α(t), β′(s) ∗ β(t)

)
=

(
α′(s), β′(s)

)
∗
(
α(t), β(t)

)
= ϕ′(s) ∗ ϕ(t),

and

∂ ϕ (t) = ∂ (α (t) , β (t))

=
(
∂1 α(t), ∂2 β(t)

)
=

(
α′ δ(t), β′ δ(t)

)
= ϕ′ δ (t) ,

for all t ∈ T and s ∈ S.

On the other hand, we can easily get

(π1, π1) (ϕ,ϕ′) = (α, α′),

(π2, π2) (ϕ,ϕ′) = (β, β′),

and prove that the diagram (3.3) commutes.
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Finally, consider (ν, ν′) be a crossed module morphism with the same property as (ϕ,ϕ′). Define (c1, c2) ∈ C1×C2

by ν (t) = (c1, c2), and also (p1, p2) ∈ P1 × P2 by ν′ (s) = (p1, p2) Then we obtain

π1 ν (t) = α (t)⇔ π1 (c1, c2) = α (t)⇔ c1 = α (t) ,

π1 ν
′ (s) = α′ (s)⇔ π1 (p1, p2) = α′ (s)⇔ p1 = α′ (s) ,

and also

π2 ν (t) = β (t)⇔ π2 (c1, c2) = β (t)⇔ c2 = β (t) ,

π2 ν
′ (s) = β′ (s)⇔ π2 (p1, p2) = β′ (s)⇔ p2 = β′ (s) ,

for all t ∈ T, s ∈ S that proves the uniquness of (ϕ,ϕ′) by

ν (t) = (c1, c2) = (α (t) , β (t)) = ϕ (t) ,

ν′ (s) = (p1, p2) = (α′ (s) , β′ (s)) = ϕ′ (s) .

Corollary 3.1. Consider two MCI crossed module morphisms

(f1, g1) : (C1, P1, ∂1)→ (C3, P3, ∂3),

(f2, g2) : (C2, P2, ∂2)→ (C3, P3, ∂3).

Recalling (2.2), define the fiber products C1 ×C3
C2 and P1 ×P3

P2 which are categorically pullbacks of (f1, g1) and (f2, g2),
respectively.

Then we obtain a MCI crossed module
(
C1 ×C3

C2 , P1 ×P3
P2, ∂

′
)

namely

∂′ : C1 ×C3 C2 → P1 ×P3 P2, (3.4)

where ∂′ is the restriction of ∂ given in (3.2).

Theorem 3.2. We have the pullback object (3.4), in the category of MCI crossed modules.

Proof. We only need to check the universal property. For this aim, let (T, S, δ) be the test object with the following
crossed module morphisms

(α, α′) : (T, S, δ)→ (C1, P1, ∂1) ,

(β, β′) : (T, S, δ)→ (C2, P2, ∂2) ,

such that the following diagram commutes:

(T, S, δ)

(α,α′)

$$

(β,β′)

**
(C2, P2, ∂2)

(g1,g2)

��
(C1, P1, ∂1)

(f1,f2)
// (C3, P3, ∂3) .

Then there must be a unique crossed module morphism

(ϕ,ϕ′) : (T, S, δ)→ (C1 ×C3
C2, P1 ×P3

P2, ∂
′) ,
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such that the following diagram commutes.

(T, S, δ)

(α,α′)

  

(β,β′)

))

(ϕ,ϕ′)

&&
(C1 ×C3

C2, P1 ×P3
P2, ∂

′)

(π1,π1)

��

(π2,π2)
// (C2, P2, ∂2)

(g1,g2)

��
(C1, P1, ∂1 )

(f1,f2)
// (C3, P3, ∂3) .

(3.5)

Define

ϕ (t) = (α (t) , β (t)) ,

ϕ′ (s) = (α′ (s) , β′ (s)) ,

for all t ∈ T and s ∈ S.

A direct calculation shows that (ϕ,ϕ′) is a crossed module morphism. Furthermore, we get

(π1, π1) (ϕ,ϕ′) = (α, α′), (π2, π2) (ϕ,ϕ′) = (β, β′)

which proves the commutativity of diagram (3.5). The uniqueness of (ϕ,ϕ′) can be shown analogous to the previous
proof.

Corollary 3.2. Consequently, one can obtain equalizer object through product and pullback objects in the category of MCI
crossed modules. More clearly, the equalizer of two parallel morphisms f, g : A→ B is the pullback of (1A, f) : A→ A×B
and (1A, g) : A→ A×B.

Remark 3.2. Furthermore, the category of MCI crossed modules has the zero object (0, 0, id) where 0 denotes the
zero object (trivial object with a single element) in a modified category of interest.

Theorem 3.3. The category of MCI crossed modules is finitely complete.

Proof. Follows directly from Theorem 3.1, Theorem 3.2 and Corollary 3.2.

4. Conclusion
As we mentioned in the preliminaries section, the categories of crossed modules of groups, of (commutative)

algebras, of Lie (and Leibniz) algebras, etc are particular examples of MCI crossed modules. Correspondingly, we
have the following corollary of Theorem 3.3, as an application of modified categories of interest.

Corollary 4.1. The categories of crossed modules of,

• groups

• (associative) algebras

• commutative algebras

• Lie algebras

• Leibniz algebras

• dialgebras

are finitely complete.

Remark 4.1. However, there exist some other crossed module structures which are MCI crossed modules, such
as crossed modules of racks [7], of Hopf algebras [10], of polygroups [1]. Therefore, such structures can not be
included in the above theorem. In fact, some of them are already studied – for instance, see [9, 11] for the case of
racks.
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