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ABSTRACT. In this paper, we estimate the speed of convergence of the difference L, (fg) — (Ln f) - (Lng) towards
0, where (L) are positive linear operators used in the approximation of continuous functions. We also study in what
conditions the formula L/, (fg) — fL) g — gL}, f — 0 holds true.
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1. INTRODUCTION

In the last period of time, it was investigated the following difference

Lu(f9)(x) = (Lnf)(2) - (Lng)(x),

a generalization to positive linear operators of an expression appearing in the classical inequal-
ities of Chebyshev [15] and Griiss [24]. Starting with the papers [10, 19] and [7, 33], these
celebrated inequalities were extended to the case of positive linear functionals and positive
linear operators. Bounds for this difference were given using different methods (see [22, 20,
21]). Asymptotic results of Voronovskaya type for this Chebyshev-Griiss quantity were ob-
tained in [18, 6, 16, 35, 9, 30] for different operators.

In this paper, we give a quantitative result of Voronovskaya type for the Chebyshev-Griiss
expression for a large class of positive linear operators and for a large class of continuous func-
tions. Our results, presented in Section 3, do not need as in [9, 30] the hypothesis of the exis-
tence of the second derivatives of the functions involved.

In Section 4, we study in what conditions do the differentiation formula L] (fg) — fL],g —
gL!, f converges to zero. We generalize the result of Impens and Gavrea [27], which was given
for Bernstein type operators and for functions defined on a compact interval. Using another
approach, we extend the result to larger class of positive linear operators and to a larger
class of continuous functions, including bounded and unbounded functions. We also give a
Voronovskaya type result for the differential formula just mentioned.

In Section 2, we present a class of positive linear operators which is defined using a Chebyshev-
Griiss expression. This class, which was introduced in [26], contains the Bernstein type oper-
ators [31], but is much larger, including also positive linear operators which do not preserve
linear functions. Some examples are given in the final section of the paper as applications of
the results obtained.
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2. PROPERTIES OF THE OPERATORS DEFINED BY A CHEBYSHEV-GRUSS QUANTITY

For the value of L,, f in x € I, we use the notations

(Lnf)(@) = Ln(f)(z) = Lo (f ) = Ln(f(1), 2)

interchangeably.
Consider a sequence of positive linear operators (L,,) which preserve the constants and
which is defined by the following relation involving a Chebyshev-Griiss type expression

21 b [Ln(tf(t), %) = La(t,x) - Lo (f(t),2)] = b(z) (Laf) (z)

for every z € I, where I C R is an interval, for every n € N and for every f for which L, f
and (L, f)" exist, where b(z) is a positive function which is differentiable on I and (b,) is a
sequence of positive real numbers such that b,, — co. Concerning the domain of definition of
the operators L,,, we will give explanations in the next section.

Remark 2.1. If the operators L,, preserve the linear functions, then the condition (2.1) can be written
bn
b(x)

which is satisfied by the class of so called exponential operators (see [31] and [28]), in particular Bern-
stein polynomials, the operators of Szdsz-Mirakyan, Baskakov, Post-Widder and Gauss-Weierstrass.
Condition (2.1) characterizes a more general class of operators, which do not necessarily preserve linear
functions. Other examples will be given at the end of the paper. A relation equivalent with (2.1) is

bn [Ln((t — @) f(t),2) — Ln(t — 2, 3) - Ly (f(t), )] = b(z) (Lnf)/ (z),

a relation obtained in [36] for a particular kind of operators.

(Lnf) (z) = Lo((e1 — 2)f, ),

Remark 2.2. If we consider a function f = g(t,x) which depends on x and t and which has a partial
derivative with respect to x in every point (t,x), then, condition (2.1) can be written

b (Ln(t = 2)g(t,2),) = Lult — 2,2) - La(g(t, 2),)
=) | atatts) o)) - L (G0 )}
where the operator L, acts on the variable t. In particular, for f = (t — x)*, k > 1 we obtain
(22) b - [n 1 (%) = pin,1 (@) pin,1e(2)] = 0() 117, (%) + K g1 ()]

where puip, k() = L, ((t—x)*, ) are the central moments of order k for the operator L,,. This recurrence
expresses all the central moments in terms of only one function, namely ji,, 1, since the value of ji,, o is
known: i, o(z) = 1.

Let us suppose that

i

(2.3) lim a, - ——pn,1 (2) = al (@)

n—o00 dzt

is true forevery x € I, and i = 0, 1,2,. .., where a(x) is an infinitely differentiable function on
I and (ay,) is an increasing and unbounded sequence of positive real numbers.
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Lemma 2.1. If the sequence (by,/ay,) converges to the real number ¢ > 0, then for every integer £ > 0
we have

(2.4) Tim B, - i 20() = (b())" - (20— 1)
¢ .

25) i 0 a0 (0) = ) 20103 CE B @) + (o)
1=0

uniformly for x in a compact interval contained in 1. We have used the notations
(20—1)1=1-3...(20—1)and (2001 =2-4---(20), £>1
and for £ = 0 the value is 1.

Proof. The proof will be omitted since it is similar to the one found in Lemma 2 [26]. a

3. QUANTITATIVE VORONOVSKAYA-TYPE RESULT FOR CHEBYSHEV-GRUSS EXPRESSION

In this section, we are concerned with the asymptotic behaviour of the Griiss-Chebyshev
expression, which will be denoted

To(f,9)(x) = La(fg) () = (Lnf)(@) - (Lng)(x).

We will prove that b, - T,,(f, g)(z) — b(z)f'(x)¢'(xz) and we will estimate the speed of this
convergence. We show that such a result is valid for unbounded functions, too. In order to do
this, let us introduce some notations.

Let 6 : [0,00) — R be a uniformly continuous and monotonic function, let I be an interval
I C Rand let & > 0 be a real number. We denote by Cy , the space of continuous functions
f € C(I) with the property that exists M > 0 such that | f(x)| < Me*?UD), for every = € I.
Because of the symmetry and to simplify the notation, we consider in the following that I C
[0, 00). This space Cy,, can be endowed with the norm

1£llg.o =supe™ @ f(x)|.
zel

Lemma 3.2. Consider a sequence of positive linear operators Ly, : Cg o — C(I) such that
(3.6) nl;rréo L (e®®) z) = ¢20(®),
Then, there is a positive function M, (x) not depending on n such that
L, (max <ea‘9(t), eae(w)> 795) < My(x), n>ng.
Proof. For x € I, there is ng such that | L, (e*?®"), z) — e*?(*)| <1 for every n > ng. We obtain
Ly, (max(e®?® 9@ 2) < [, (e29®) 4 0@ g} < 1 4 229

for every n > ny. O

We will use the following weighted modulus

B £() ~ f(x)]
wo,a(f,0) = LS?EPI max (e29(t), ¢2f0(2))”
|t <5

which is suitable for functions from the space Cjy ., (see [25]).
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Theorem 3.1. Let f,g € Cy, be continuously differentiable functions such that f'(x)e=*%®) and
g (2)e=2@) are uniformly continuous on I. Let L, : Cp o — C(I) be a sequence of positive linear
operators preserving constant functions and having the properties (2.1), (2.3) and (3.6). Then, for some
no € N and for every n > ng and x € I, we have

[bn[Ln (f9)(2) = (Lnf) () - (Lng)(2)] = b(z) [ (2)g'(x)]

M (f) [b(2) " (@)g' ()] + M(2) wo,a <f : \/lbj) e <g/’ V1b?>

+31(0) (17 @lena (7= ) + 1 @lona (7 7) ).

where M (x) > 0 does not depend on n and f.

<

Proof. Using the Taylor formula of the first order with Lagrange remainder, we obtain
f&) = f(@) + /() (t—2) + Ry, By = (f'(cr) = f'(@)) - (t = @)
9(t) = 9(x) + ¢'(x) - (t —2) + Ry, Ry =(g'(c2) =) - (t — ),
with ¢, ¢ between ¢t and z. We multiply the relations and we apply the operators L,,. We get
La(f9)(@) = F(@)g(@)no(x) + [f()g(2) + g(2)f (@)]1in1 () + La(Ry Ry)(2)
+ 1(@)g (@)pna(@) + F(@)La(Ry)(@) + 9(@) Lu(Rp) (@)
+ F/(2)Lu((e1 — 2e0) Ry)(@) + g (¢)Lu((e1 — we0) Ry) (a).
We also have
Lnf(z) = f(@)uno(x) + (@) in1 () + Ln(Ry) (@),

We get
Ln(f9)(x) = (Lnf)(@) - (Lng)(x) = ['(2)g (2)[pn2(2) — pih 1 (2)]
+ f/(@)[Ln((t — 2)Ry) (@) — pin,1(2) Ln(Ry)(2)]
+9' (@) [Ln((t = 2)Ry) (@) = pn1 (x) L (Rp) ()]
(

Because by [jin 2(x) — pa 1 ()] = b(x)[1 + ), , (2)], we have
o)ty ()]

Qn

|bnlbn,2(x) = 415, 1 (2)] = ()| = [b(a)py 1 ()| =

We evaluate now the remainder from the Taylor formula using the modulus of continuity wy .
From

[Ryl = [t — [ |f'(c1) = f'(2)]
|t — |

< max(eo‘e(t)7 60‘9(””)) [t — x| (1 + 5 > wo,a(f',9),

we obtain

(LR < (Ana@) + Vordna(o) o (=)

where
(3.7) A, k() = Ly, (max (e*,e*) |t — z|", 7).
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(=) we have

Because L, () z) converges pointwise to e*
L, (max (eaa(t), e“e(”“')> 733) < My(z), n>ng.

From Lemma 2.1, we have

1 )
Ly (Jt — 2" z) = W OF i 2k (z) <
n

Using the Cauchy-Schwarz inequality for positive linear operators we obtain for k = 1,2

Api(x) < /Ly, (max (20, e202) ) - \/ L, (|t — z|2*,z) < M

by
In conclusion,
MO 2(1’) < / 1 )
LnR S — a ) .
(EuRp) )] < T2 (1 7
Similarly,
M0’3(.’L')

Laller = wen)y.a)| < Lo (e —al IRyl ) < 2020 o, (1)
So, using |(in,1(2)| < /tin2(x) < \/Ca2(x)/v/bn, we obtain
|Ln((ex — zeo) Ry )(x) = pin,1(x) L (Ry) ()]
< |Ln((er — weo) Ry, )| + |1 (2)] - |(LnRy) (2))|

< S5 (1)

Let us notice that if we replace f with g in the previous inequalities they hold true, too.
To evaluate the term L,,(R;R,)(z) — L, (Rs)(z) - L,(Ry)(z), let us observe that

|Ln(RyRg)(x)| < Ln(|Ry||Rgl, )

2
t —
< Ln <62amax(0(t),0(z)) |t _ l‘|2 (1 + | $|> ,J}) . UJO,Q(f/,(Sn) . Wa,a(g/a(sn)

On

< 2 [Ana(2) + buApa(2)] - wom <f¢}) W (g', 1b >

M075(I‘) ’ 1 ’ 1
< S (7 75 e (7 32).
We have used the inequality (1 + u)? < 2(1 + u?). We obtain
| Ln (R Rg)(2) = Ln(Ry)(2) - Ln(Rg)(2)]
< |Ln(RpRy) (@) + [ Ln(Ry) ()] - [Ln(Rg)(2)]

My s(x) + M2, (x 1 1
< 0,5( ) 0,2( ) CWha <f/7 >W07a <g/’ ) )

b, Vb Vbn
Choosing an appropriate expression M (z) > 0 not depending on n and f the proof is complete.

O

Remark 3.3. Because 1/a,, and 1/+/b,, converge to zero when n tends to infinity and f'(x)e=*?®) and
g’ (2)e=*%®) are uniformly continuous on I, we have

(3.8) Jim b [Ln(f9) (@) = (Lnf)(@) - (Lng) ()] = b(2) f'(2)g'(2).
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Similar results were obtained in [18, 6, 16, 35, 9, 30] for functions for which the second derivative exists.
But, there is no need to suppose the existence of the second derivative of f and g.

Remark 3.4. Theorem 3.1 is true even for operators L, for which (2.1) cannot be proved. Indeed, it is
only necessary that the following limits exist for a fixed x

nhﬁn;o an (bn[,un,g(a:) — uil(x)} — b(:c)) and nhﬁn;o bfl “tnoe(z), £=1,2,3,4,

where b(x) is the limit of by, - pin, 2().
For example, let us consider the Jain operators [29]

oo

Pin(f2) = Z nx(nx + kﬂn)k—le_nz—kﬁn f <k> 7

k! n
k=0

where (58,,) is a sequence of positive real numbers from [0, 1) converging to zero. It is known [17] that

r __ a
1- Bn e 1- Bn,
so we choose a,, = 1/(3,, and condition (2.3) is satisfied with a(x) = x. We also have

x?p32 T
(1= 8n)? " n(l— B,)%

Choosing b,, = n and supposing that b, /a,, = nf, is convergent to the real number ¢ > 0, we obtain

b(z) = lim nP ((t —z)? z) = .
n—oo

an(tfxvx) =

Pﬁ"((t —z)%z) =

After some computations, we obtain

lima, (baljin 2(x) — 22,1 (2)] — b(z)) = .

n—oo

The central moment of order 4 is (see [17])
454 623 32
Pho((t —x)t x) = > Bn + u
(( ) ) (1 _ ﬁn)4 ’I’L(l _ 571)5
L 22485 +128,, + 485) — 2857 + 48, + 3)
n?(1 — f3,)8
N z(10565 — 1484 — 23 + 1282 + 86, + 1)
n3(1 — B,)7 '
We obtain n?PP»((t — xz)*, ) — 3z2. For the central moments of order 6 and 8, we consider the
significant terms from the formulas given in [23] and obtain

lim n3PP ((t — x)%, 2) = 152% and lim n*PP((t — x)%, ) = 10522,
n—oo

n—oo

The result of Theorem 3.1 is valid for PP~ in polynomial weighted space Cy o, with 0(z) = Inz, x €
I =(0,00) (see [2]).

4. VORONOVSKAYA-TYPE RESULT FOR A DIFFERENTIATION FORMULA FOR POSITIVE LINEAR
OPERATORS

In [27], it is proved that the expression L/, (fg) — fL},g— gL., f converges to zero for exponen-
tial type operators under suitable conditions for the functions f and g. The result was proved
for those operators L,, : C(I) — C(J), where I, J are compact intervals. We extend the result
to noncompact intervals and to unbounded functions.
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Theorem 4.2. Let f, g € Cy o such that
(4.9) wo,a(f;0) - wp,a(g,6) =0(8) (6 = 0+).

Let Ly, : Cy,o — C(I) be a sequence of positive linear operators preserving constant functions and
having the properties (2.1), (2.3) and (3.6). Then, for every x € T

L(f9)(@) = f(@)(Lng) (x) — g(@)(Ln f) () = 0
Proof. Let us denote

An(z) = Ly, (f9)(@) = f(2)(Lng) () = g(x)(Ln f)'(2).

Using (2.1), we obtain the following relation

(4.10) An() = b?x) Lot = 2)(F(H) = F@)(9(t) — 9(a)), )
- bl(’;;) La(t = 2,2) - Lo((F() = f(@)(g(t) = 9(@)), ).

As in the proof of Theorem 3.1, because

0 = o)) < e (200, e200) (14 L5 ) w10

9(0) gt < max (e, e (14 12 0,0,

we have
|Ln ((t—2)(f(t) = f(2))(g(t) — g(x)), x)|
<2 (o) + bl wn (1. Y ()
< M\l/’%x) (Wo.a (f’ ¢1b;> Woe (9’ ¢1177>
and

[Ln((F(t) = f(2))(9(t) — g()), )]
S 2 (An,O(-r) + bnAn,2(x))w9,a (fa \/1b>> W, o (97 \/lbi)

1 1
<M ! a I « LAl B
<t ate)on (1. =Yoo o 7
Because L, (t — z,z) < \/tin2(z v CZ( , we finally obtain

nan

An(a)] < M(z) /by - wm(f, ﬁ)we,a (”H

for some M (z) not depending on n and f. The condition (4.9) proves that A,, converges to zero
forevery x € I. O

Remark 4.5. We have the following evaluation of the modulus wy o, (see relation (1) from [25])
wo.a(f,8) < (1= e )| fllg o +w(f/w,6) < aw(,0) £y, +w(f/w,0),

where w(z) = e**®) and w is the usual modulus of continuity (the modulus wg ., for o = 0).



The Product of Two Functions Using Positive Linear Operators 71

If6 € Lip,(I), f/w € Lipy(I) and g/w € Lip.(I) then, (4.9) is true if and only if
a+a>1, a+b>1, a+c>1 and b+c>1.

Indeed, a function h belongs to Lip,, (I) if and only if there is a constant C, > 0 such that w(f,d) <
Cro®. So,

Wo.o(f,0) - wo.u(g,8) < (C16% + C26°)(C16% + C36°) = 0(8) (8 — 0+).

Remark 4.6. Theorem 4.2 remains true even if L,, does not satisfy a condition like (2.1). We only need
that the sequence of functions b%, - pun, 20(z) converges pointwise for £ = 1,2 and 3.

Theorem 4.3. Let f,g € Cy, be two twice differentiable functions such that f"(x)e= %) and
g" (2)e=2%@) are uniformly continuous on I. We suppose that (b, /a,) is convergent to ¢ > 0. Let

Ly, : Cy,o — C*(I) be a sequence of positive linear operators preserving constant functions and having
the properties (2.1), (2.3) and (3.6). Then, for every x € I

lim by [L,(£9) () — f(2)(Lng) (x) — gx) (L)' ()]

= () + 2ca()] 7 @)/ @)+ 2D @) @)+ @) @)
Proof. We use Taylor’s formula
h(t) = h(z) + B (z) - (t — ) + h/’2($) -(t — ) + R,

for the functions f and g, where R;, = (h"'(c) — h"'(x)) - (t — z)?/2, with some ¢ between ¢
and x. We replace these formulas in the expression of A,, (see relation (4.10)) and after some
computations, we obtain

bnAn(I) - f’(i)g/@)blgg)[ﬂnﬁ(ﬂ?) - ,un,l(x):un,Q('r)]
/ " 17 / b72’7, b72’LR
@) @)+ @) @] sl ae) = s @ )] +
where
R = 17" (2)9" (@)l @) — ton1 (0)in 5(2)]
FF@) Baa(9) + 57" @) Baale) + 6/(2) - Bua () + 36" (2) - B ()
+ L,(Rf-Ry-(t—x),2) — pina1(x) - Ln(Rf - Ry, x)
and
Enk(f) = Ln(Rf : (t - x)kJrlvx) - ,u'n,l(m) . Ln(Rf . (t - ‘r)kv‘r)'
We have
2
%[ﬂnﬁ(x) - /ln,l(x)/inﬂ(m)} = bnu;g(x) + 20 pin,1 () = b/(x) + 2ca(w)
and ,
s i a0) = s (O a(o)] = o) + 25 ale) 0+ 24

We also have b2 R — 0, but since the computations are similar to those in the proof of Theorem
3.1, we omit the details. O
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Remark 4.7. Let f, g € Cy,,, be two twice differentiable functions such that f" (z)e=*%®) and g (z)e~*0)
are uniformly continuous on I. It can be proved in a similar way that

Jim by, [L5,(f9) (@) = (Lo f)(2)(Lng) " (x) = (Lng) (@) (Lnf) (2)]
= V(@) [ (2)g () + b(x)[["(x)g" (x) + ["(x)g' (x)].
This is just relation (3.8), where both terms have been differentiated.
5. APPLICATIONS
We give a couple of examples of applications.

Example 5.1. Consider the following Baskakov operators of Stancu type
« c - C k + «
(L)) = b1 (E25), nza

— n+ g

where o and (B are real numbers such that 0 < o < 8 and

Pk = 0t (T )@k e T e

V

—~

k
nm) P

0
prx(@) = lim pl (o) = S=oer,
where z: € [0,00) for ¢ > 0and x € [0, —1/¢| for ¢ < 0.
These operators are a particular example of the more general operators considered in [11]. For o =
B = 0, some properties of the operators were given in [1, 14] (see also [5, 32] and the references therein).
These operators preserve the constants and

a.B.c kJroz neroz

We deduce that
(n+5)- (Lwd (ta)~v) =a-pr,
which proves (2.3) for a,, = n+ fand a(x) = o — fz.
We also have
d g k—nz _ n+f g ko s
Multiplying this equality with f ((k + )/ (n + B)) and summing up for k from 0 to infinity, we obtain
d n+p

(1B —
S NE = s

which is (2.1) for b, = n + B and b(x) = x(1 + cx).
The results of Theorems 1,2 and 3 are valid for functions in the exponential space Cy , for 6(x) = z,
because

|:L1[,LOL,B,C] (tf(t),x) _ Lgla,ﬁ,c] (t, J;) . Lglaﬁ,c](fv -13)} )

Lgf’ﬁ’c](eo‘t,x) _ (1 +er — cxe%) © e (n = o0).
Example 5.2. Consider the Baldsz operators

Ralh.) = e 2 (1) o £ (55) 2

0

introduced in [12] and studied in [13, 34, 4, 8, 3] for some particular cases of the sequences () and
(Bn) of positive real numbers.
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The operators R,, preserve the constants and

na,T no,T + n2a%x2

Bn(1+ ayx) B2(1 + ayx)?

We must have R,,(t,x) — x and R, (t*,z) — 2, so we choose () and (B,) such that o, — 0 and
the sequence (8y,) such that 8,, — oo and noy, /B, — 1. The central moment of order 1 is

R,(t,x) = and R, (t*,x) =

) = (no, — Bn)x — O‘nﬂn$2
Bn(l+ apx)
We further impose that no,, — B, — 0and o, 8, — ¢, ¢ > 0. With these conditions, we can choose

a, = B, and obtain B, R, (t — x,x) = —cz?.
Let us prove that R,, satisfy (2.1). Because

<<1(fﬁ>n>l - (1(1“’;?;” | (k - ﬁm) ’

(Rulf,2)) = i;(Z)M (%) ()
B

— R, ((t = Ra(t,2))f(t), 2),

which proves (2.1) with b, = B, and b(x) = x
We take I = (0, 00) and 0(x) = x. The results of Theorem 1, 2 and 3 are valid for the operators R,
in the exponential weighted space Cy o, because for a fixed x > 0

R, (t—x,x

we obtain

o n

1+ a,xesn

R,(e® 2) = [ ——— — "
1+ a,x
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