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1. INTRODUCTION

In the last period of time, it was investigated the following difference

Ln(fg)(x)− (Lnf)(x) · (Lng)(x),

a generalization to positive linear operators of an expression appearing in the classical inequal-
ities of Chebyshev [15] and Grüss [24]. Starting with the papers [10, 19] and [7, 33], these
celebrated inequalities were extended to the case of positive linear functionals and positive
linear operators. Bounds for this difference were given using different methods (see [22, 20,
21]). Asymptotic results of Voronovskaya type for this Chebyshev-Grüss quantity were ob-
tained in [18, 6, 16, 35, 9, 30] for different operators.

In this paper, we give a quantitative result of Voronovskaya type for the Chebyshev-Grüss
expression for a large class of positive linear operators and for a large class of continuous func-
tions. Our results, presented in Section 3, do not need as in [9, 30] the hypothesis of the exis-
tence of the second derivatives of the functions involved.

In Section 4, we study in what conditions do the differentiation formula L′n(fg) − fL′ng −
gL′nf converges to zero. We generalize the result of Impens and Gavrea [27], which was given
for Bernstein type operators and for functions defined on a compact interval. Using another
approach, we extend the result to larger class of positive linear operators and to a larger
class of continuous functions, including bounded and unbounded functions. We also give a
Voronovskaya type result for the differential formula just mentioned.

In Section 2, we present a class of positive linear operators which is defined using a Chebyshev-
Grüss expression. This class, which was introduced in [26], contains the Bernstein type oper-
ators [31], but is much larger, including also positive linear operators which do not preserve
linear functions. Some examples are given in the final section of the paper as applications of
the results obtained.

Received: 12.02.2020; Accepted: 23.03.2020; Published Online: 24.03.2020
*Corresponding author: Adrian Holhoş; Adrian.Holhos@math.utcluj.ro
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2. PROPERTIES OF THE OPERATORS DEFINED BY A CHEBYSHEV-GRÜSS QUANTITY

For the value of Lnf in x ∈ I , we use the notations

(Lnf)(x) = Ln(f)(x) = Ln(f, x) = Ln(f(t), x)

interchangeably.
Consider a sequence of positive linear operators (Ln) which preserve the constants and

which is defined by the following relation involving a Chebyshev-Grüss type expression

bn [Ln(tf(t), x)− Ln(t, x) · Ln(f(t), x)] = b(x) (Lnf)
′
(x)(2.1)

for every x ∈ I , where I ⊂ R is an interval, for every n ∈ N and for every f for which Lnf

and (Lnf)
′ exist, where b(x) is a positive function which is differentiable on I and (bn) is a

sequence of positive real numbers such that bn → ∞. Concerning the domain of definition of
the operators Ln, we will give explanations in the next section.

Remark 2.1. If the operators Ln preserve the linear functions, then the condition (2.1) can be written

(Lnf)
′
(x) =

bn
b(x)

· Ln((e1 − x)f, x),

which is satisfied by the class of so called exponential operators (see [31] and [28]), in particular Bern-
stein polynomials, the operators of Szász-Mirakyan, Baskakov, Post-Widder and Gauss-Weierstrass.
Condition (2.1) characterizes a more general class of operators, which do not necessarily preserve linear
functions. Other examples will be given at the end of the paper. A relation equivalent with (2.1) is

bn [Ln((t− x)f(t), x)− Ln(t− x, x) · Ln(f(t), x)] = b(x) (Lnf)
′
(x),

a relation obtained in [36] for a particular kind of operators.

Remark 2.2. If we consider a function f = g(t, x) which depends on x and t and which has a partial
derivative with respect to x in every point (t, x), then, condition (2.1) can be written

bn [Ln((t− x)g(t, x), x)− Ln(t− x, x) · Ln(g(t, x), x)]

= b(x)

[
(Ln(g(t, x), x))

′ − Ln
(
∂g

∂x
(t, x), x

)]
,

where the operator Ln acts on the variable t. In particular, for f = (t− x)k, k ≥ 1 we obtain

(2.2) bn · [µn,k+1(x)− µn,1(x)µn,k(x)] = b(x)
[
µ′n,k(x) + kµn,k−1(x)

]
,

where µn,k(x) = Ln((t−x)k, x) are the central moments of order k for the operator Ln. This recurrence
expresses all the central moments in terms of only one function, namely µn,1, since the value of µn,0 is
known: µn,0(x) = 1.

Let us suppose that

lim
n→∞

an ·
di

dxi
µn,1(x) = a(i)(x)(2.3)

is true for every x ∈ I , and i = 0, 1, 2, . . . , where a(x) is an infinitely differentiable function on
I and (an) is an increasing and unbounded sequence of positive real numbers.
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Lemma 2.1. If the sequence (bn/an) converges to the real number c ≥ 0, then for every integer ` ≥ 0
we have

lim
n→∞

b`n · µn,2`(x) = (b(x))
` · (2`− 1)!!(2.4)

lim
n→∞

b`+1
n · µn,2`+1(x) = (b(x))

`
(2`)!!

∑̀
i=0

(2i− 1)!!

(2i)!!
[ib′(x) + c · a(x)](2.5)

uniformly for x in a compact interval contained in I . We have used the notations

(2`− 1)!! = 1 · 3 . . . (2`− 1) and (2`)!! = 2 · 4 · · · (2`), ` ≥ 1

and for ` = 0 the value is 1.

Proof. The proof will be omitted since it is similar to the one found in Lemma 2 [26]. �

3. QUANTITATIVE VORONOVSKAYA-TYPE RESULT FOR CHEBYSHEV-GRÜSS EXPRESSION

In this section, we are concerned with the asymptotic behaviour of the Grüss-Chebyshev
expression, which will be denoted

Tn(f, g)(x) = Ln(fg)(x)− (Lnf)(x) · (Lng)(x).

We will prove that bn · Tn(f, g)(x) → b(x)f ′(x)g′(x) and we will estimate the speed of this
convergence. We show that such a result is valid for unbounded functions, too. In order to do
this, let us introduce some notations.

Let θ : [0,∞) → R be a uniformly continuous and monotonic function, let I be an interval
I ⊂ R and let α ≥ 0 be a real number. We denote by Cθ,α the space of continuous functions
f ∈ C(I) with the property that exists M > 0 such that |f(x)| ≤ Meαθ(|x|), for every x ∈ I .
Because of the symmetry and to simplify the notation, we consider in the following that I ⊂
[0,∞). This space Cθ,α can be endowed with the norm

‖f‖θ,α = sup
x∈I

e−αθ(x)|f(x)|.

Lemma 3.2. Consider a sequence of positive linear operators Ln : Cθ,α → C(I) such that

(3.6) lim
n→∞

Ln(eαθ(t), x) = eαθ(x).

Then, there is a positive function Mα(x) not depending on n such that

Ln

(
max

(
eαθ(t), eαθ(x)

)
, x
)
≤Mα(x), n ≥ n0.

Proof. For x ∈ I , there is n0 such that
∣∣Ln(eαθ(t), x)− eαθ(x)

∣∣ ≤ 1 for every n ≥ n0. We obtain

Ln(max(eαθ(t), eαθ(x)), x) ≤ Ln(eαθ(t) + eαθ(x), x) ≤ 1 + 2eαθ(x),

for every n ≥ n0. �

We will use the following weighted modulus

ωθ,α(f, δ) = sup
x,t∈I
|t−x|≤δ

|f(t)− f(x)|
max

(
eαθ(t), eαθ(x)

) ,
which is suitable for functions from the space Cθ,α (see [25]).



The Product of Two Functions Using Positive Linear Operators 67

Theorem 3.1. Let f, g ∈ Cθ,α be continuously differentiable functions such that f ′(x)e−αθ(x) and
g′(x)e−αθ(x) are uniformly continuous on I . Let Ln : Cθ,α → C1(I) be a sequence of positive linear
operators preserving constant functions and having the properties (2.1), (2.3) and (3.6). Then, for some
n0 ∈ N and for every n ≥ n0 and x ∈ I , we have

|bn[Ln(fg)(x)− (Lnf)(x) · (Lng)(x)]− b(x)f ′(x)g′(x)|

≤ M(x)

an
|b(x)f ′(x)g′(x)|+M(x) ωθ,α

(
f ′,

1√
bn

)
ωθ,α

(
g′,

1√
bn

)
+M(x)

(
|f ′(x)|ωθ,α

(
g′,

1√
bn

)
+ |g′(x)|ωθ,α

(
f ′,

1√
bn

))
,

where M(x) > 0 does not depend on n and f .

Proof. Using the Taylor formula of the first order with Lagrange remainder, we obtain

f(t) = f(x) + f ′(x) · (t− x) +Rf , Rf = (f ′(c1)− f ′(x)) · (t− x)

g(t) = g(x) + g′(x) · (t− x) +Rg, Rg = (g′(c2)− g′(x)) · (t− x),

with c1, c2 between t and x. We multiply the relations and we apply the operators Ln. We get

Ln(fg)(x) = f(x)g(x)µn,0(x) + [f(x)g′(x) + g(x)f ′(x)]µn,1(x) + Ln(RfRg)(x)

+ f ′(x)g′(x)µn,2(x) + f(x)Ln(Rg)(x) + g(x)Ln(Rf )(x)

+ f ′(x)Ln((e1 − xe0)Rg)(x) + g′(x)Ln((e1 − xe0)Rf )(x).

We also have

Lnf(x) = f(x)µn,0(x) + f ′(x)µn,1(x) + Ln(Rf )(x),

Lng(x) = g(x)µn,0(x) + g′(x)µn,1(x) + Ln(Rg)(x).

We get

Ln(fg)(x)− (Lnf)(x) · (Lng)(x) = f ′(x)g′(x)[µn,2(x)− µ2
n,1(x)]

+ f ′(x)[Ln((t− x)Rg)(x)− µn,1(x)Ln(Rg)(x)]

+ g′(x)[Ln((t− x)Rf )(x)− µn,1(x)Ln(Rf )(x)]

+ Ln(RfRg)(x)− Ln(Rf )(x) · Ln(Rg)(x).

Because bn[µn,2(x)− µ2
n,1(x)] = b(x)[1 + µ′n,1(x)], we have∣∣bn[µn,2(x)− µ2

n,1(x)]− b(x)
∣∣ =

∣∣b(x)µ′n,1(x)
∣∣ =

∣∣b(x)anµ
′
n,1(x)

∣∣
an

.

We evaluate now the remainder from the Taylor formula using the modulus of continuity ωθ,α.
From

|Rf | = |t− x| · |f ′(c1)− f ′(x)|

≤ max(eαθ(t), eαθ(x)) |t− x|
(

1 +
|t− x|
δ

)
ωθ,α(f ′, δ),

we obtain

|(LnRf )(x)| ≤
(
An,1(x) +

√
bnAn,2(x)

)
ωθ,α

(
f ′,

1√
bn

)
,

where

(3.7) An,k(x) = Ln
(
max

(
eαt, eαx

)
|t− x|k, x

)
.
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Because Ln(eαθ(t), x) converges pointwise to eαθ(x) we have

Ln

(
max

(
eαθ(t), eαθ(x)

)
, x
)
≤Mα(x), n ≥ n0.

From Lemma 2.1, we have

Ln
(
|t− x|2k, x

)
=

1

bkn
· bknµn,2k(x) ≤ Ck(x)

bkn
, n ≥ n0.

Using the Cauchy-Schwarz inequality for positive linear operators we obtain for k = 1, 2

An,k(x) ≤
√
Ln (max (e2αt, e2αx) , x) ·

√
Ln (|t− x|2k, x) ≤

√
M2α(x)Ck(x)√

bkn
.

In conclusion,

|(LnRf )(x)| ≤ M0,2(x)√
bn

· ωθ,α
(
f ′,

1√
bn

)
.

Similarly,

|Ln((e1 − xe0)Rf , x)| ≤ Ln (|t− x| |Rf | , x) ≤ M0,3(x)

bn
· ωθ,α

(
f ′,

1√
bn

)
.

So, using |µn,1(x)| ≤
√
µn,2(x) ≤

√
C2(x)/

√
bn, we obtain

|Ln((e1 − xe0)Rf )(x)− µn,1(x)Ln(Rf )(x)|
≤ |Ln((e1 − xe0)Rf , x)|+ |µn,1(x)| · |(LnRf )(x)|

≤ M0,4(x)

bn
· ωθ,α

(
f ′,

1√
bn

)
.

Let us notice that if we replace f with g in the previous inequalities they hold true, too.
To evaluate the term Ln(RfRg)(x)− Ln(Rf )(x) · Ln(Rg)(x), let us observe that

|Ln(RfRg)(x)| ≤ Ln(|Rf | |Rg| , x)

≤ Ln

(
e2αmax(θ(t),θ(x)) |t− x|2

(
1 +
|t− x|
δn

)2

, x

)
· ωθ,α(f ′, δn) · ωθ,α(g′, δn)

≤ 2 [An,2(x) + bnAn,4(x)] · ωθ,α
(
f ′,

1√
bn

)
ωθ,α

(
g′,

1√
bn

)
≤ M0,5(x)

bn
· ωθ,α

(
f ′,

1√
bn

)
ωθ,α

(
g′,

1√
bn

)
.

We have used the inequality (1 + u)2 ≤ 2(1 + u2). We obtain

|Ln(RfRg)(x)− Ln(Rf )(x) · Ln(Rg)(x)|
≤ |Ln(RfRg)(x)|+ |Ln(Rf )(x)| · |Ln(Rg)(x)|

≤
M0,5(x) +M2

0,2(x)

bn
· ωθ,α

(
f ′,

1√
bn

)
ωθ,α

(
g′,

1√
bn

)
.

Choosing an appropriate expressionM(x) > 0 not depending on n and f the proof is complete.
�

Remark 3.3. Because 1/an and 1/
√
bn converge to zero when n tends to infinity and f ′(x)e−αθ(x) and

g′(x)e−αθ(x) are uniformly continuous on I , we have

lim
n→∞

bn[Ln(fg)(x)− (Lnf)(x) · (Lng)(x)] = b(x)f ′(x)g′(x).(3.8)
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Similar results were obtained in [18, 6, 16, 35, 9, 30] for functions for which the second derivative exists.
But, there is no need to suppose the existence of the second derivative of f and g.

Remark 3.4. Theorem 3.1 is true even for operators Ln for which (2.1) cannot be proved. Indeed, it is
only necessary that the following limits exist for a fixed x

lim
n→∞

an
(
bn[µn,2(x)− µ2

n,1(x)]− b(x)
)

and lim
n→∞

b`n · µn,2`(x), ` = 1, 2, 3, 4,

where b(x) is the limit of bn · µn,2(x).
For example, let us consider the Jain operators [29]

P βnn (f, x) =
∞∑
k=0

nx(nx+ kβn)k−1

k!
e−nx−kβn · f

(
k

n

)
,

where (βn) is a sequence of positive real numbers from [0, 1) converging to zero. It is known [17] that

P βnn (t− x, x) =
x

1− βn
− x =

xβn
1− βn

,

so we choose an = 1/βn and condition (2.3) is satisfied with a(x) = x. We also have

P βnn ((t− x)2, x) =
x2β2

n

(1− βn)2
+

x

n(1− βn)3
.

Choosing bn = n and supposing that bn/an = nβn is convergent to the real number c ≥ 0, we obtain

b(x) = lim
n→∞

nP βnn ((t− x)2, x) = x.

After some computations, we obtain

lim
n→∞

an
(
bn[µn,2(x)− µ2

n,1(x)]− b(x)
)

= x.

The central moment of order 4 is (see [17])

P βnn ((t− x)4, x) =
x4β4

n

(1− βn)4
+

6x3β2
n

n(1− βn)5

+
x2(−24β5

n + 12βn + 48β3
n − 28β2

n + 4βn + 3)

n2(1− βn)6

+
x(105β5

n − 14β4
n − 2β3

n + 12β2
n + 8βn + 1)

n3(1− βn)7
.

We obtain n2P βnn ((t − x)4, x) → 3x2. For the central moments of order 6 and 8, we consider the
significant terms from the formulas given in [23] and obtain

lim
n→∞

n3P βnn ((t− x)6, x) = 15x3 and lim
n→∞

n4P βnn ((t− x)8, x) = 105x4.

The result of Theorem 3.1 is valid for P βnn in polynomial weighted space Cθ,α with θ(x) = lnx, x ∈
I = (0,∞) (see [2]).

4. VORONOVSKAYA-TYPE RESULT FOR A DIFFERENTIATION FORMULA FOR POSITIVE LINEAR
OPERATORS

In [27], it is proved that the expression L′n(fg)−fL′ng−gL′nf converges to zero for exponen-
tial type operators under suitable conditions for the functions f and g. The result was proved
for those operators Ln : C(I) → C(J), where I, J are compact intervals. We extend the result
to noncompact intervals and to unbounded functions.
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Theorem 4.2. Let f, g ∈ Cθ,α such that

(4.9) ωθ,α(f, δ) · ωθ,α(g, δ) = o(δ) (δ → 0+).

Let Ln : Cθ,α → C1(I) be a sequence of positive linear operators preserving constant functions and
having the properties (2.1), (2.3) and (3.6). Then, for every x ∈ I

L′n(fg)(x)− f(x)(Lng)′(x)− g(x)(Lnf)′(x)→ 0.

Proof. Let us denote

∆n(x) = L′n(fg)(x)− f(x)(Lng)′(x)− g(x)(Lnf)′(x).

Using (2.1), we obtain the following relation

∆n(x) =
bn
b(x)

· Ln((t− x)(f(t)− f(x))(g(t)− g(x)), x)(4.10)

− bn
b(x)

· Ln(t− x, x) · Ln((f(t)− f(x))(g(t)− g(x)), x).

As in the proof of Theorem 3.1, because

|f(t)− f(x)| ≤ max
(
eαθ(t), eαθ(x)

)(
1 +
|t− x|
δ

)
ωθ,α(f, δ)

|g(t)− g(x)| ≤ max
(
eαθ(t), eαθ(x)

)(
1 +
|t− x|
δ

)
ωθ,α(g, δ),

we have

|Ln((t− x)(f(t)− f(x))(g(t)− g(x)), x)|

≤ 2 (An,1(x) + bnAn,3(x))ωθ,α

(
f,

1√
bn

)
ωθ,α

(
g,

1√
bn

)
≤ M1,1(x)√

bn
· ωθ,α

(
f,

1√
bn

)
ωθ,α

(
g,

1√
bn

)
and

|Ln((f(t)− f(x))(g(t)− g(x)), x)|

≤ 2 (An,0(x) + bnAn,2(x))ωθ,α

(
f,

1√
bn

)
ωθ,α

(
g,

1√
bn

)
≤M1,2(x) · ωθ,α

(
f,

1√
bn

)
ωθ,α

(
g,

1√
bn

)
.

Because Ln(t− x, x) ≤
√
µn,2(x) ≤

√
C2(x)√
bn

, we finally obtain

|∆n(x)| ≤M(x)
√
bn · ωθ,α

(
f,

1√
bn

)
ωθ,α

(
g,

1√
bn

)
, n ≥ n0,

for someM(x) not depending on n and f . The condition (4.9) proves that ∆n converges to zero
for every x ∈ I . �

Remark 4.5. We have the following evaluation of the modulus ωθ,α (see relation (1) from [25])

ωθ,α(f, δ) ≤ (1− e−αω(θ,δ)) ‖f‖θ,α + ω(f/w, δ) ≤ αω(θ, δ) ‖f‖θ,α + ω(f/w, δ),

where w(x) = eαθ(x) and ω is the usual modulus of continuity (the modulus ωθ,α for α = 0).
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If θ ∈ Lipa(I), f/w ∈ Lipb(I) and g/w ∈ Lipc(I) then, (4.9) is true if and only if

a+ a > 1, a+ b > 1, a+ c > 1 and b+ c > 1.

Indeed, a function h belongs to Lipα(I) if and only if there is a constant Ch > 0 such that ω(f, δ) ≤
Chδ

α. So,

ωθ,α(f, δ) · ωθ,α(g, δ) ≤ (C1δ
a + C2δ

b)(C1δ
a + C3δ

c) = o(δ) (δ → 0+).

Remark 4.6. Theorem 4.2 remains true even if Ln does not satisfy a condition like (2.1). We only need
that the sequence of functions b`n · µn,2`(x) converges pointwise for ` = 1, 2 and 3.

Theorem 4.3. Let f, g ∈ Cθ,α be two twice differentiable functions such that f ′′(x)e−αθ(x) and
g′′(x)e−αθ(x) are uniformly continuous on I . We suppose that (bn/an) is convergent to c ≥ 0. Let
Ln : Cθ,α → C1(I) be a sequence of positive linear operators preserving constant functions and having
the properties (2.1), (2.3) and (3.6). Then, for every x ∈ I

lim
n→∞

bn [L′n(fg)(x)− f(x)(Lng)′(x)− g(x)(Lnf)′(x)]

= [b′(x) + 2c a(x)]f ′(x)g′(x) +
3b(x)

2
[f ′(x)g′′(x) + f ′′(x)g′(x)].

Proof. We use Taylor’s formula

h(t) = h(x) + h′(x) · (t− x) +
h′′(x)

2
· (t− x)2 +Rh,

for the functions f and g, where Rh = (h′′(c) − h′′(x)) · (t − x)2/2, with some c between t
and x. We replace these formulas in the expression of ∆n (see relation (4.10)) and after some
computations, we obtain

bn∆n(x) = f ′(x)g′(x)
b2n
b(x)

[µn,3(x)− µn,1(x)µn,2(x)]

+ [f ′(x)g′′(x) + f ′′(x)g′(x)] · b2n
2b(x)

[µn,4(x)− µn,1(x)µn,3(x)] +
b2nR

b(x)
,

where

R =
1

4
f ′′(x)g′′(x)[µn,5(x)− µn,1(x)µn,5(x)]

+ f ′(x) · En,1(g) +
1

2
f ′′(x) · En,2(g) + g′(x) · En,1(f) +

1

2
g′′(x) · En,2(f)

+ Ln(Rf ·Rg · (t− x), x)− µn,1(x) · Ln(Rf ·Rg, x)

and
En,k(f) = Ln(Rf · (t− x)k+1, x)− µn,1(x) · Ln(Rf · (t− x)k, x).

We have
b2n
b(x)

[µn,3(x)− µn,1(x)µn,2(x)] = bnµ
′
n,2(x) + 2bnµn,1(x)→ b′(x) + 2ca(x)

and
b2n

2b(x)
[µn,4(x)− µn,1(x)µn,3(x)] =

bn
2
µ′n,3(x) +

3bn
2
µn,2(x)→ 0 +

3b(x)

2
.

We also have b2nR→ 0, but since the computations are similar to those in the proof of Theorem
3.1, we omit the details. �
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Remark 4.7. Let f, g ∈ Cθ,α be two twice differentiable functions such that f ′′(x)e−αθ(x) and g′′(x)e−αθ(x)

are uniformly continuous on I . It can be proved in a similar way that

lim
n→∞

bn [L′n(fg)(x)− (Lnf)(x)(Lng)′(x)− (Lng)(x)(Lnf)′(x)]

= b′(x)f ′(x)g′(x) + b(x)[f ′(x)g′′(x) + f ′′(x)g′(x)].

This is just relation (3.8), where both terms have been differentiated.

5. APPLICATIONS

We give a couple of examples of applications.

Example 5.1. Consider the following Baskakov operators of Stancu type

(L[α,β,c]
n f)(x) =

∞∑
k=0

p
[c]
n,k(x) · f

(
k + α

n+ β

)
, n ≥ 1

where α and β are real numbers such that 0 ≤ α ≤ β and

p
[c]
n,k(x) = (−1)k

(
−n/c
k

)
(cx)k(1 + cx)−

n
c−k, c 6= 0

p
[0]
n,k(x) = lim

c→0
p
[c]
n,k(x) =

(nx)k

k!
e−nx,

where x ∈ [0,∞) for c ≥ 0 and x ∈ [0,−1/c] for c < 0.
These operators are a particular example of the more general operators considered in [11]. For α =

β = 0, some properties of the operators were given in [1, 14] (see also [5, 32] and the references therein).
These operators preserve the constants and

L[α,β,c]
n (t, x) =

∞∑
k=0

p
[c]
n,k(x) · k + α

n+ β
=
nx+ α

n+ β
.

We deduce that
(n+ β) ·

(
L[α,β,c]
n (t, x)− x

)
= α− βx,

which proves (2.3) for an = n+ β and a(x) = α− βx.
We also have

d

dx
p
[c]
n,k(x) = p

[c]
n,k(x) · k − nx

x(1 + cx)
=

n+ β

x(1 + cx)
p
[c]
n,k(x) ·

(
k + α

n+ β
− L[α,β,c]

n (t, x)

)
.

Multiplying this equality with f((k + α)/(n+ β)) and summing up for k from 0 to infinity, we obtain
d

dx
(L[α,β,c]

n f)(x) =
n+ β

x(1 + cx)

[
L[α,β,c]
n (tf(t), x)− L[α,β,c]

n (t, x) · L[α,β,c]
n (f, x)

]
,

which is (2.1) for bn = n+ β and b(x) = x(1 + cx).
The results of Theorems 1,2 and 3 are valid for functions in the exponential space Cθ,α for θ(x) = x,

because
L[α,β,c]
n (eαt, x) =

(
1 + cx− cxeαn

)−nc → eαx (n→∞).

Example 5.2. Consider the Balász operators

Rn(f, x) =
1

(1 + αnx)n

n∑
k=0

(
n

k

)
(αnx)k · f

(
k

βn

)
, n ≥ 1

introduced in [12] and studied in [13, 34, 4, 8, 3] for some particular cases of the sequences (αn) and
(βn) of positive real numbers.
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The operators Rn preserve the constants and

Rn(t, x) =
nαnx

βn(1 + αnx)
and Rn(t2, x) =

nαnx+ n2α2
nx

2

β2
n(1 + αnx)2

.

We must have Rn(t, x) → x and Rn(t2, x) → x2, so we choose (αn) and (βn) such that αn → 0 and
the sequence (βn) such that βn →∞ and nαn/βn → 1. The central moment of order 1 is

Rn(t− x, x) =
(nαn − βn)x− αnβnx2

βn(1 + αnx)
.

We further impose that nαn − βn → 0 and αnβn → c, c ≥ 0. With these conditions, we can choose
an = βn and obtain βnRn(t− x, x) = −cx2.

Let us prove that Rn satisfy (2.1). Because(
(αnx)k

(1 + αnx)n

)′
=

(αnx)k

(1 + αnx)n
·
(
k

x
− nαn

1 + αnx

)
,

we obtain

(Rn(f, x))
′

=
βn
x

n∑
k=0

(
n

k

)
(αnx)k

(1 + αnx)n
·
(
k

βn
− nαnx

βn(1 + αnx)

)
· f
(
k

βn

)
=
βn
x
Rn((t−Rn(t, x))f(t), x),

which proves (2.1) with bn = βn and b(x) = x.
We take I = (0,∞) and θ(x) = x. The results of Theorem 1, 2 and 3 are valid for the operators Rn

in the exponential weighted space Cθ,α, because for a fixed x ≥ 0

Rn(eαt, x) =

(
1 + αnxe

α
βn

1 + αnx

)n
→ eαx.
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[18] S. G. Gal, H. Gonska: Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and

complex variables. Jaen J. Approx. 7 (2015), 97–122.
[19] B. Gavrea, I. Gavrea: Ostrowski type inequalities from a linear functional point of view. J. Inequal. Pure Appl. Math. 1

(2000), Article 11.
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