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ABSTRACT 

Terrain models play a key role in many applications, such as hydrological modeling, volume calculation, wire and 

pipeline route planning as well as many engineering applications. While terrain models can be generated from traditional 

data sources, an advanced and recently popular geospatial technology, Light Detection and Ranging (LiDAR) data, is 

also a source for generating high-density terrain models in the last decades. The main advantage of LiDAR technology 

over traditional data sources is that it generates 3D point clouds directly so that the representation of the surfaces is 

obtained fast. On the other hand, before terrain modeling, ground points need to be extracted by point labeling in the 3D 

point cloud. In this study, a new algorithm is proposed for automatic ground point extraction from airborne LiDAR data 

for urban areas. The proposed algorithm is mainly based on height information of the points in the dataset and labels 

ground points comparing height differences in local windows.  The algorithm does not require any user input threshold 

and a neighborhood definition. The proposed ground extraction algorithm was tested with three different urban area 

LiDAR data. The quality control basically performed qualitatively by visual inspection and quantitatively by calculation 

of overall accuracy, which is conduct by comparing the proposed algorithm results with data provider’s ground 

classification and Cloth Simulation Filtering (CSF) algorithm’s results. The overall accuracy of the proposed algorithm is 

found between 95%-98%. The experimental results showed that the algorithm promises reliable results to extract ground 

points from airborne LiDAR data for urban areas. 
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1. INTRODUCTION 
 

LiDAR has been gaining its popularity as a remote 

sensing technique in recent decades in many areas. It has 

become a main data source of many applications in 

many engineering fields, such as machine learning, 

pattern recognition, data mining and knowledge 

extraction. The advantage of LiDAR is that it requires 

less effort to have 3D data with respect to traditional 

data sources. Airborne LiDAR system is generally 

mounted on an aircraft and assisted with Global 

Positioning System (GPS) and Inertial Navigation 

System (INS) systems. 3D dense point cloud data 

accurately collected by basically sending a laser pulse 

from a transmitter and receiving the scattered back 

photons. Using the travel time between signal emission 

and reception 3D point cloud data is created. Airborne 

LiDAR data has been being used by many researchers 

especially for feature extraction and ground modeling & 

DTM generation applications (Liu 2008; Chen et al. 

2017). To extract features such as building, trees etc. 

and/or create ground models firstly separation between 

ground and non-ground has to be implemented. So that, 

extracted ground points can be employed for terrain 

modeling and Digital Elevation Model (DEM) 

generation. DEM studies are also widely used which are 

created using LiDAR data (Büyüksalih and Gazioğlu, 

2019). Particularly, ground extraction and modeling are 

important in terms of usage for model water flow, 

planning applications, classification of objects, volume 

calculation and other applications (Canaz Sevgen, 2019; 

Yılmaz and Uysal, 2017).  

Ground can shortly be described as a solid surface of 

the earth while non-ground represent the objects that do 

not belong to the ground or pertaining to the ground 

surface. Extraction of the ground surface and generating 

a model from LiDAR data with filtering algorithms were 

studied by many researchers (Kraus and Pfeifer 2001; 

Liu and Zhang 2008; Yuan et al. 2009; Wang and Tseng 

2010; Mongus and Zalik 2012, Mongus et al. 2014, 

Uysal and Polat, 2014; Zeybek et al., 2015).  In 

literature, filtering algorithms for ground modeling can 

be classified into groups such as interpolation-based 

(surface-based) filtering algorithms (Kraus and Pfeifer 

1998; Chen et al. 2007; Lee and Younan 2003), Sloped-

Based filtering algorithms (Vosselman 2000; Zhang et 

al., 2003), Morphological Filtering algorithms (Kilian et 

al. 1996; Lohmann et al. 2000; Zakšek and Pfeifer 2006),  

and Segmentation-Based Filters (Filin and Pfeifer 2006; 

Tovari and Pfeifer 2005).  

Point-cloud data also can be generated from 

photographs (Akçay et al., 2017). In recent years, some 

researchers also studies ground extraction to create 

digital terrain models from point clouds generated from 

photogrammetric aerial photographs instead of using 

LiDAR data. For instance, Yilmaz et al. (2018) 

investigates the performances of seven widely used 

ground filtering algorithms from commercial and non-

commercial software’s on UAV-based point clouds. 

Wallace et al. (2016) another example of UAV-based 

point cloud filtering algorithm investigation study. 

Zeybek and Şanlıoğlu (2019) filtered UAV-based 3D 

raw point cloud data and compared four different 

filtering algorithms; curvature based (Multiscale 

Curvature Classification-MCC), surface-based filtering 

(FUSION), progressive TIN based (LasTool-LasGround 

module-commercial) and physical simulation processing 

(Cloth Simulation Filtering-CSF). Wang et al. (2014) 

also filtered Point Cloud Extracted from UAV Images. 

Point clouds generated from aerial photographs are 

dense comparing with LiDAR data; however, in some 

cases it is not possible to create point clouds from 

photograph since creating point clouds needs 

overlapping images. More specifically, in contrast to 

laser scanning, 3D data can be only derived from 

overlapping imagery whenever conjugate features have 

been identified and the intersection of the respective 

spatial rays is mathematically described (Canaz and 

Habib 2013).  Therefore, in this study source of the data 

was chosen as LiDAR. 

On the other hand, some researchers created ground 

filtering algorithms by focusing on ground extraction 

from LiDAR data on urban areas. Urban areas are 

abundant on non-ground objects, which means that 

sudden height differences occur in these areas such as 

ground to building facades, or roof of buildings and cars. 

In view of the fact that urban areas have more non-

ground object compared with the bare territory, many 

researchers developed algorithms to extract ground on 

urban areas. For instance, Shan and Sampath (2005) 

extracted ground for urban areas performing a forward 

and backward labeling algorithm, which uses slope and 

elevation difference, and they created DEM for urban 

areas from airborne LiDAR data. Wang and Zhang 

(2016) extracted ground points by utilizing the scan line 

information in LiDAR data and using similarity 

measurement. Furthermore, a combination of slope 

based method and region growing was studied for 

ground extraction from LiDAR data in urban areas by 

Feng et al. 2009. Three windows with different sizes; 

small, average and large are created and a height 

difference threshold, was used for separating ground and 

non-ground points in each local window by Rashidi and 

Rastiveis (2017). Meanwhile, the best threshold values 

for the size of windows are considered based on physical 

characteristics of the ground surface and size of objects. 

In this study, the algorithm is proposed to not have any 

threshold entered by users. Hence, the proposed 

algorithm does not require any user input threshold to 

label and extract ground points. 

Recently, a Cloth Simulation Filter (CSF) algorithm 

was developed by Zhang et al. (2016) for generating 

DTM from point cloud data. The authors firstly turning 

point cloud upside to down, and then rigid cloth is used 

to cover the inverted surface.  Their algorithm analyzes 

the cloth nodes and the corresponding LiDAR points` 

intersection. Finally, the generated surface are compared 

with the original surface for extracting the ground points 

from the LiDAR point cloud. In this study, the proposed 

algorithm’s ground extraction result was compared with 

the CSF algorithm results. 

An elevation based algorithm for separation of 

ground and non-ground points for urban areas from 

airborne LiDAR data was proposed in this study. The 

algorithm cuts the large area of LiDAR data to into 

small windows size and then height difference for each 

point to randomly selected points were calculated. The 

number of below and upper points label the point as 

ground or non-ground. The algorithm based on that 

ground points generally do not have lower points from 

them. Most advantageous part of the proposed algorithm 

is that it does not require any threshold entered by the 
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users, and separate ground and non-ground points 

without any user interference. The proposed algorithm 

was tested with three different datasets, which differ 

from each other in point density, vegetation density, and 

building data type, The result of the proposed algorithm 

was compared with data provider’s ground classification, 

which was performed by LAStools and TerraScan 

LiDAR processing software package, and the CSF 

algorithm (Zhang et al. 2016) ground extraction results. 

The proposed algorithm gives reliable results for 

extracting ground points from LiDAR data for urban 

areas according to the comparison result. 

 

2. METHODOLOGY 

 
Urban areas generally have dense non-ground 

objects such as trees, buildings, cars etc. For these areas, 

airborne LiDAR data consist of points which are 

scattered back from both ground points and any points 

which belong to non-ground points. Starting from this 

point, the proposed algorithm was developed to extract 

ground points from LiDAR data automatically for urban 

areas by simply using ground points and non-ground 

points height differences. The details of the 

methodology are explained in next sections.     

To extract ground points from raw LiDAR data of an 

urban area, an algorithm was proposed, and a stepwise 

approach was followed. The proposed algorithm firstly 

start with creating n number of m by m meters sized 

windows of LiDAR data. In this study, 30 meters 

windows were chosen since mainly in urban areas 900 

m2 are enough to present non-ground points of objects 

and ground points. If there are no non-ground points (i.e. 

cars, trees, buildings) in the window area, the algorithm 

assigns all the points as ground points by simply 

checking height differences in the current window. The 

proposed algorithm firstly performs windows creation, 

and using points in the windows, classification of non-

ground and ground points from LiDAR data was 

performed. The algorithm firstly, creates n number of 

30×30 meters windows in XY planimetric space. 

The proposed algorithm mainly have one condition. 

The condition is that non-ground points in the current 

window area higher than ground points. To calculate 

heights differences, firstly for each point to randomly 

selected points, distances are calculated in the Z axis. 

The points are randomly selected to prevent compare 

height distance from only same classes (ground/non 

ground) then, a number of height distances less than zero 

and more than 1 meters is counted. In other words, a 

number of positive and negative distances are counted 

for each point. Since LiDAR data standard deviation in 

Z axis generally changes 10 cm to 1 meter (Liu, 2011), 1 

meter is intentionally chosen to prevent counting points 

which are in the same class and very close to each other. 

For instance, in LiDAR data points which are on the 

ground have generally 10 cm to 1 meters height 

differences even if they are in the same plane, and this is 

occurring because of LiDAR data nature. So that, to not 

count these point for positive distance 1 meter was 

intentionally chosen. After that, minimum height in the 

current window is found and used to check labeled 

ground points if they are too high than the local height, 

the point checked again if it is non-ground points by 

using the other labeled ground points.  

The proposed algorithm lay on a logic, if a positive 

number of distance points more than the negative 

number of distance points, then the point is assigned as 

non-ground points. Since non-ground points are higher 

than ground points in the window size area (Fig. 1). 

 

 
 

Fig. 1. Flowchart of the proposed methodology 
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The logic behind the proposed algorithm is 

illustrated in Fig. 2. In the figure red point is the selected 

as a sample point. Blue points represent non-ground 

points, while ground points are displayed as green. For 

the red point, if distance higher than 0 and less than 1 

meter is calculated with randomly selected points, there 

will be more number of points that are higher than red 

points. Therefore, the red point will be assigned as 

ground point. 

 

 

 
 

Fig. 2. Illustration of the condition for the proposed algorithm 

 

After the proposed algorithm assigns ground and 

non-ground points, a quick quality control was 

employed to check the points labeled correctly. The 

control starts with a calculating distance of each 

assigned ground point to other ground points. If the 

distance from a ground point to other ground points have 

much distance in Z, the ground point is assigned as non-

ground points and it will be removed from ground point 

class. The logic behind this calculation is that in the 

window size data, ground points should not have such a 

huge height difference even in the sloped areas. 

For the final analysis of the results, quality controls 

were applied. Firstly visual inspection was carried out. 

The visual quality control is simply performed by 

plotting and comparing the classified ground and non-

ground points with the plotted reference. Reference 

ground extraction was employed by data provider which 

conducted by using LAStools and TerraScan LiDAR 

processing software package and the CSF algorithm. 

LAStools classify ground basically using Adaptive 

Triangulated Irregular Network (ATIN) algorithm 

(Axelsson, 2000). A search windows are created and 

angle criteria was used to classify ground points in 

LAStools. According to visual inspection, the proposed 

algorithm gives reliable results, which can be seen in the 

results section in the figure of results. 

On the other hand, quantitative quality control was 

performed by comparing each point’s classes with 

reference classes. The proposed algorithm labels points 

0 and 1 as non-ground and ground points, respectively. 

After sorting reference and the proposed algorithm result 

and reference classes according to X, Y and Z axes, the 

classified points and reference point’s classes (i.e. the 

CSF algorithm’s results) were compared one by one. For 

the quantitative quality control, error matrices were 

created and overall and producers’ accuracy were 

calculated. The details of the quality control are 

discussed in the results section in details. 

 

3. RESULTS AND DISCUSSION 
 

The proposed ground extraction algorithm was 

tested with three different dataset which contain only 

urban areas. The first data set is downloaded from a 

package of a LiDAR processing tool LAStools (2017) 

and the data is called as Fusa in this study 

( https://rapidlasso.com/lastools/). Reference Ground 

Classification of Fusa data set was already conducted by 

Lastools software package. The data contains 

approximately 277K points. The total area of the data is 

0.06 km2. The second data used in this study is from 

Istanbul (Bimtaş Co., Istanbul) and named as Istanbul 

hereafter. The area of Istanbul data is 0.37 km2 and total 

number of points is 1.8M. The third data is from 

California U.S. (obtained from Digital Mapping, Inc. 

(DMI), U.S.) It has 1M points and its area is 5.23 km2 

(Table 1). Reference Ground Classification of Istanbul 

and California was employed by data provider using 

TerraScan software. The details of the data can be seen 

in Table 1. California data set’s area is bigger than Fusa 

and Istanbul data area, while these two data sets are 

denser compared with California data set. Furthermore, 

Istanbul data sets have taller buildings comparing with 

California and Fusa data sets, while Istanbul has less 

tree in contrast to the two other data sets. 

Aforementioned proposed algorithm partitions the data 

into 30×30 meters window in XY plane, and a total 

number of windows for each dataset is given in Table 1. 
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Table 1. LiDAR data sets’ details 

 
Data Name Number of 

Points 

Ave. 

Point 

Density 

Dimensions 

(m) 

Area 

(km2) 

# of 

Window

s (30×30 

m) 

Fusa 277,354 4.44 249X249 0.06 81 

Istanbul  1,845,761 4.93 534X700 0.37 432 

California  1,023,432 0.19 2729X1918 5.23 5,824 

 

Ground/non-ground classification points in the Fusa data 

set’s result is shown in Fig. 3. Fig. 3a is the classified 

reference data set by LAStools software package, Fig. 

3b is the proposed algorithm’s classification results, Fig. 

3c is the CSF algorithm result. The green area of the 

figure represent the ground points, while red points are 

non-ground points (buildings, cars, trees etc.) 

 

 
 

Fig. 3. Ground extraction result for Fusa data sets. (a) data provider classification result (Lastools), (b) the proposed 

algorithm result, (c) the CSF algorithm result. 

 
To evaluate result visually, the study area for the 

Fusa data set given in the below (Fig. 4).  According to 

the below images, and the results above, it can be said 

that all the classification results are correctly labeled by 

comparing the images and the results. 

 

 
 

Fig. 4. Ortophoto images for Fusa data sets (Source: 

Google web services) 

 

To examine result visually, randomly selected part 

of the areas from the result was zoomed and showed in 

Fig. 5 for Fusa data set. Fig. 5 has also 3D view of the 

closer examined results. Left columns are 2D views of 

the selected parts (XY plane), and right columns are 

their 3D representation. Upper selected part of the result 

has both trees and houses as non-ground objects, while 

bottom part includes only trees as non-ground objects. 

According to visual inspection of the result, it can be 

easily observed that the algorithm worked very well, and 

ground points are successfully extracted. 

 

 
 

Fig. 5. Closer examination of ground/non-ground 

classification result of Fusa data set by proposed 

algorithm 

 

Istanbul data set classified ground and the non-

ground result is illustrated in Fig. 6. Fig. 6a shows 

classified ground and non-ground points in reference 
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data, whereas Fig. 6b is the result of the proposed 

algorithm, and Fig. 6c is the CSF algorithm result. It can 

be easily observed that the proposed algorithm gives 

very reliable results, by comparing Fig. 6a, 6b, and 6c. 

Ground points are successfully extracted from the whole 

Istanbul LiDAR data set. 

 

 
 

Fig. 6. Istanbul data set results; (a) data provider classification result (by TerraScan), (b) the proposed algorithm result, 

(c) the CSF algorithm result. 

 

Orthophoto imagery of the Istanbul data set area is 

shown in Fig. 7, the buildings can be easily seen in the 

image, and these buildings and non-ground area were 

successfully classified by the proposed algorithm (Fig. 

6b) 

 

 
 

Fig. 7. Orthophoto images for İstanbul data sets 

 

For qualitative quality control, randomly chosen 

areas are zoomed and shown in Fig. 8 from Istanbul data 

set result. Here again, left columns are selected areas 

from the result in 2D coordinates system (XY axes), 

right columns are their 3D view. Istanbul data has very 

tall building and it is observed that the proposed 

algorithm work very well with data sets that have tall 

non-ground objects. 

 

 

 
 

Fig. 8.  Closer examination of ground- non-ground 

classification result of Istanbul data set  

 

Finally, the result for the California data set can be 

seen in the below (Fig. 9). As mentioned before, red 

areas represent non-ground points of the data. The area 

is large and has very big size houses in contrast to two 

previous data sets. The result for the proposed algorithm 

represented in Fig. 9b. 
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Fig. 9. California data set results; (a) data provider classification result (by TerraScan), (b) the proposed algorithm result, 

(c) the CSF algorithm result.

 

The study are for the California data set shown in the 

below orthophoto image, as it can be seen in the image, 

the area has so many houses, and the area is slightly 

complex. However, overall it can be observed that the 

proposed algorithm was extracted ground reliable by 

comparing the Fig. 10 and Fig 9b. 

 

 
 

Fig. 10. Ortophoto images for California data sets 

(Source: Google web services) 

 

Fig. 11 is an example of closer examination from 

results in California data set and it shows how the 

proposed algorithm gives reliable results. Upper left 

figure includes results of non-ground points (houses) 

and big size ground part, and its 3D view can be seen on 

the right upper part in the figure. On the other side, 

bottom figure is an example of non-ground that includes 

tree and houses. According to visual closer quality 

control. Only a few points were wrongly labeled in these 

randomly selected part of the result. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11.  Closer examination of ground- non-ground 

classification of California data set result 

 

The results from the proposed algorithm were 

compared with reference result qualitatively and 

quantitatively. Qualitative evaluation is carried out by 

visual interpretations of the results. Nevertheless, a 

quantitative evaluation is conducted by calculating 

overall accuracy and producer’s accuracy. To conduct 

quantitative quality control, error matrix is created. 

Table 2 shows the error matrices and total accuracy as 

well producer’s accuracy (1) and (2). 

 

𝑶𝒗𝒆𝒓𝒂𝒍𝒍𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
 𝑬𝒙𝒓𝒂𝒄𝒕𝒆𝒅 (𝑮𝒓𝒐𝒖𝒏𝒅+ 𝑵𝒐𝒏−𝒈𝒓𝒐𝒖𝒏𝒅)

𝑻𝒐𝒕𝒂𝒍 𝒑𝒐𝒊𝒏𝒕𝒔
𝒙𝟏𝟎𝟎        (1)  

 

𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒓′𝒔𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅 𝑮𝒓𝒐𝒖𝒏𝒅 𝒐𝒓 𝑵𝒐𝒏−𝑮 𝑷𝒐𝒊𝒏𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝑮𝒓𝒐𝒖𝒏𝒅 𝒐𝒓 𝑵𝒐𝒏−𝒈𝒓𝒐𝒖𝒏𝒅 𝑷𝒐𝒊𝒏𝒕𝒔
𝒙𝟏𝟎𝟎         (2) 
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Table 2 Error matrices for the proposed ground extraction algorithm versus reference result 

 

Fusa Ground Points Non-ground Points Total reference 

Ground Points 191475 6785 198260 

Non-ground Points 1000 78094 79094 

Total Proposed Algorithm 192475 84879 277354 

Producer's Accuracy (%) 96.58 98.74 Overall Accuracy=  97% 

Istanbul Area Ground Points Non-ground Points Total reference 

Ground Points 681405 25894 707299 

Non-ground Points 194 1138268 1138462 

Total Proposed Algorithm 681599 1164162 1845761 

Producer's Accuracy (%) 96.33 99.98 Overall Accuracy=  98% 

California Ground Points Non-ground Points Total reference 

Ground Points 471448 6374 477822 

Non-ground Points 44769 500841 545610 

Total Proposed Algorithm 516217 507215 1023432 

Producer's Accuracy (%) 98.66 91.79 Overall Accuracy=  95% 

 

According to the quantitative quality control for the 

proposed ground extraction algorithm, overall accuracy 

is calculated 95%, 97%, 98% for California, Fusa and 

Istanbul, respectively. According to quantitative quality 

control, it can be said that the algorithm gives reliable 

results for extraction of the ground points automatically 

in urban areas.  

Finally, the proposed algorithm ground/non-ground 

extraction was compared with the CSF algorithm result. 

The overall accuracy was observed between 95-97%. 

Producer’s accuracy was found between 90-99%. 

 

 

 

Table 3 Error matrices for the proposed ground extraction algorithm versus CSF Results 

 

Fusa Ground Points Non-ground Points Total CSF 

Ground Points 183495 183 183678 

Non-ground Points 8980 84696 93676 

Total Proposed Algorithm 192475 84879 277354 

Producer's Accuracy (%) 99.99 90.41 Overall Accuracy=  97% 

Istanbul Area Ground Points Non-ground Points Total CSF 

Ground Points 587186 7076 594262 

Non-ground Points 94413 1157086 1251499 

Total Proposed Algorithm 681599 1164162 1845761 

Producer's Accuracy (%) 98.80 92.45 Overall Accuracy=  95% 

California Ground Points Non-ground Points Total CSF 

Ground Points 465816 5502 471318 

Non-ground Points 50401 501713 552114 

Total Proposed Algorithm 516217 507215 1023432 

Producer's Accuracy (%) 98.83 90.87 Overall Accuracy=  95% 

 

4. CONCLUSIONS 
 

In conclusion, terrain modeling and creating DEM 

have vital importance in the usage of hydrological 

modeling, telecommunication industry etc. 3D data is 

necessary to create terrain modeling. LiDAR technology 

have the ability to collect 3D data fast and directly using 

laser pulses. Since LiDAR advantage of the dense 3D 

data set, it was chosen as the main dataset for this study. 

An algorithm was proposed to extract ground and non-

ground points from LiDAR data in the urban areas. In  

 

the literature there are many algorithms that extracts 

ground points, while automatically study of extraction of 

the ground points are limited for the urban areas. The 

most advantageous of the proposed algorithm is that it 

does not require any threshold input and extract the 

ground/non-ground points automatically using the height 

difference of the point with the randomly selected other 

points in urban areas.  The algorithm was tested with 

three different LiDAR data sets, and the results were 

compared with the data provider reference ground points 

and the CSF algorithm result. Error matrices were 
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created overall accuracy is calculated between 95-98%, 

while producer’s accuracy calculated as 86-99%. 

Furthermore, qualitative quality control carried out 

simply plotting inspecting the reference data and the 

proposed algorithm results visually. According to both 

qualitative and quantitative quality control, it is observed 

that the proposed algorithm gives reliable result in urban 

areas. Consequently, the algorithms extract ground 

points in the urban area from LiDAR data set 

automatically. The most advantage part of the proposed 

algorithm is that it is fully automated. For the future 

work, the algorithm will be developed for the areas that 

does not only include urban areas. 
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