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ABSTRACT 

Galois field, has an important position in cryptology. Advanced Encryption Standard (AES) also used in polynomial 

operations. In this paper, we consider the polynomial operations on the Galois fields, the Fibonacci polynomial sequences. 

Using a certain irreducible polynomial, we redefine the elements of Fibonacci polynomial sequences to use in our 

cryptology algorithm. So, we find the classical AES-like cryptology via the Fibonacci polynomial matrix. Successful 

results were achieved with the method used. 
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1. INTRODUCTION 
 

The Advanced Encryption Standard (AES), also 

known by its original name Rijndael (Daemen and  

Rijmen, 2003), is a specification for the encryption of 

electronic data established by the U.S. National Institute 

of Standards and Technology (NIST) in 2001. The AES 

block encryption algorithm is used for the algorithmic 

part of the developed system. AES is the applicable 

block encryption standard developed by J. Daemen and 

V. Rijmen in 1997 and adopted as a standard in 2000. 

AES is an iterative block cipher based on a design 

principle known as a substitution-permutation network 

(SPN). AES operates on a 4×4 column-major order 

matrix of bytes, called the state. Matrix calculations are 

done in a special finite field. AES supports 128-, 192-, 

256- bit keys. The number of cycles of repetition for 

128-bit, 192-bit, and 256-bit keys are 10, 12, and 14, 

respectively. These stages include key addition, byte 

substitution, ShiftRow, and MixColumn (Avaroğlu, 

Koyuncu, Özer and Türk, 2015). We too created a new 

encryption algorithm (known as AES-like) by using the 

AES algorithm. In AES-like, Galois field arithmetic is 

used in most layers, especially in matrix operations. We 

give an introduction to Galois fields as needed for this 

purpose before we introduced with the algorithm. A 

background on Galois fields is not needed for a basic 

understanding of AES-like. So, we will obtain a basic 

entrance to Galois fields (Paar and Pelzl, 2009; Stewart, 

1990). Information on the following classical cryptology 

benefit in (Klima and Sigmon, 2012). 

 

1.1. Definition :  In (Paar and Pelzl, 2009). A field F is a 

set of elements with the following features: 

1. All elements of F form an additive group with 

the group operation + and the neutral element 

0. 

2. All elements of F except 0 form a 

multiplicative group with the group operation 

× and the neutral element 1. 

3. When the two group operations are mixed, the 

distributive law holds, i.e., for all a,b,c ∈ F :  

 a b c ab ac   . 

In extension fields  2
m

GF elements are not 

represented as integers but as polynomials with 

coefficients in  2GF . However, we take 5m  for 

the next process. In AES-like the finite field contains 32 

elements and is denoted as  5
2GF . In the field, 

 5
2GF , which is used in AES-like, each element 

 5
2A GF  is thus represented as: 

 

     

4 3 2

4 3 2 1 0
,    

2 0,1
i

A x a x a x a x a x a

a GF

    

 
 

Note that there are exactly 
5

32 2 such polynomials. 

The set of these 32 polynomials is the finite field 

 5
2GF . Each elements of this polynomial correspond 

to one letter of the alphabet. 

 

1.2. Definition : (Addition and subtraction in  5
2GF

). In (Paar and Pelzl, 2009). Let 

     5

2,A GFx B x  . The sum and the subtraction 

of the two elements are then computed according to: 

       

     

   

4 3

4 4 3 3

2

2 2 1 1 0 0
                     ,       

mod 2  for  0,1, 2, 3, 4
i i

A x B x a b x a b x

a b x a b x a b

a b i

    

     

 

 

 

1.3. Example:   For     4 2
A x x x x      and 

  4 23
1A x x x x   , the sum    A x B x  of 

two elements from  5
2GF is computed: 

A(x) + B(x) = x3 + x + 1. 

 

1.4. Definition: (Multiplication in  5
2GF ). In (Paar 

and Pelzl, 2009). Let      5

2,A GFx B x  and let 

 

 

2 3 4 5

0 1 2 3 4 5

5

,

2
i

P x p p x p x p x p x p x

p GF

     


 

be an irreducible polynomial. Multiplication of the two 

elements    ,A x B x is performed as 

      mod.A x B x P x . 

 The irreducible polynomials of GF(25) are as follows,  

x5 + x2 + 1, 

x5 + x3 + 1,  

x5 + x3 + x2 + x + 1,  

x5 + x4 + x3 + x + 1, 

x5 + x4 + x3 + x2 + 1,  

x5 + x4 + x2 + x + 1. 
For AES, the irreducible polynomial 

P(x) = x8 + x4 + x3 + x + 1 
is used. It is part of the AES specification. For AES-like, 

we consider the irreducible polynomials as following, 

P(x) = x5 + x2 + 1. 

 

1.5. Example: For A(x) = x4 + x2 + 1 and B(x) = x3 + 

x in the field GF(25), the multiplication A(x).B(x) 

according to the irreducible polynomial P(x) = x5 + x2 

+ 1 is 

A(x).B(x) = x7 + x = x2(x2 + 1) + x = x4 + x2 + x. 
Especially, we are concerned with software 

implementations of the Galois fields. Hence, we know 

A(x) = x4 + x2 + 1 = (10101)2 = 2110  

B(x) = x3 + x = (01010)2 = 1010. 
The field elements, are normally stored as bit vectors in 

the computers. If we look at the multiplication from the 

previous example, the following very atypical operation 

is being performed on the bit level: 

A(x).B(x) = (x4 + x2 + 1)(x3 + x) = x4 + x2 + x 

                        (10101)(01010) = (10110) 
This computation is not identical to integer 

arithmetic. The result would have been (01101)2 = 1310, 

which is clearly not the same as the Galois field 
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multiplication product. Inversion in GF(25) is the core 

operation to decrypt of the matrix polynomial. 

 

1.6. Definition: In (Paar and Pelzl, 2009). For a given 

field GF(25) and the corresponding irreducible 

reduction polynomial P(x), the inverse A−1 of a nonzero 

element A ∈ GF(25) is defined as: 

A−1(x)A(x) = 1modP(x). 
 

1.7. Definition: In (Koshy, 2018; 2019). The Fibonacci 

sequence  
0n n

F


is 

0 1 2 1
0,   1  and  .

n n n
F F F F F

 
     

 Here, Fn is the nth Fibonacci number. The first few 

members of this sequence is given as follow; 

    Table 1. A few the Fibonacci numbers 

 

1.8. Definition: In (Koshy, 2018; 2019). The Fibonacci 

Polynomial sequence   
0n n

f x


is 

         
0 1 2 1

0,  1 and  .
n n n

f x f x f x xf x f x
 

     

The first few members of this sequence is given as 

follow; 

  Table 2. A few the Fibonacci polynomial numbers 

n 0 1 2 3 4 5 ... 

fn(x) 0 1 x x2+1 x3+2x x4+3x2 +1 ... 

 

According to irreducible polynomial P(x) the Fibonacci 

polynomials fn(x) are as follows; 

  Table 3. A few the irreducible polynomial numbers 

n fn(x) 
2

  

0 0 mod 2 

1 1 mod 2 

2 x mod 2 

3 x2 + 1 mod 2 

4 x3 mod 2 

5 x4 + x2 + 1 mod 2 

6 x2 + x + 1 mod 2 

7 x4 + x3 + x + 1 mod 2 

8 x4 + x2 mod 2 

9 x4 + x2 + x mod 2 

... ... ... 

 

The following identity is non-zero, which tells us that 

Fibonacci polynomial matrix can be reversed, 

 

1.9. Theorem (Cassini Identity): In (Koshy, 2018; 

2019). Let fn(x) denote the nth Fibonacci polynomial 

sequence. Then, 

       2

1 1
1 ,    1.

n

n n n
f x f x f x n

 
     

1.10. Theorem (Fibonacci Polynomial Matrix): In [3, 

4]. Let, 

 
1

1 0

x
Q x 

 
 
 

 

It then follows by inductive method that, 

 
   

   
1

1

n nn

n n

f x f x
Q x

f x f x






 
 
 

 

 

where n ≥ 1. Qn(x) is called the Fibonacci polynomial 

matrix. 

1.11. Theorem (Inverse of a 2x2 Matrix): Let Qn(x) 

be a Fibonacci Polynomial Matrix. Let Qn(x) be the 

Fibonacci polynomial matrix. Then, the determinant of 

Qn(x) is 

       2

1 1
1n

n n n
Q x f x f x f x

 
   . 

 and inverse of Qn(x) is given by 

 
   

   
1

1

1 n nn

n n

f x f x
Q x

f x f x







 
 
 

 . 

Polynomials of the Galois field are equivalent of each 

alphabet is as following, 

  Table 4.The polynomials are equivalent of each 

alphabet 

No Bit Polynom Alphabet 

0 00000 0 A 

1 00001 1 B 

2 00010 x C 

3 00011 x + 1 Ç 

4 00100 x2  D 

5 00101 x2 +  1 E 

6 00110 x2 + x  F 

7 00111 x2 + x + 1 G 

8 01000 x3 Ğ 

9 01001 x3 + 1 H 

10 01010 x3 + x I 

11 01011 x3 + x + 1 İ 

12 01100 x3 + x2  J 

13 01101 x3 + x2 + 1 K 

14 01110 x3 + x2 + x  L 

15 01111 x3 + x2 + x + 1 M 

16 10000 x4  N 

17 10001 x4 + 1 O 

18 10010 x4 + x Ö 

19 10011 x4 + x + 1 P 

20 10100 x4 + x2 R 

21 10101 x4 + x2 + 1 S 

22 10110 x4 + x2 + x Ş 

n 0 1 2 3 4 5 6 7 8 ... 

Fn 0 1 1 2 3 5 8 13 21 ... 
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23 10111 x4 + x2 + x + 1 T 

24 11000 x4 + x3 U 

25 11001 x4 + x3 + 1 Ü 

26 11010 x4 + x3 + x  V 

27 11011 x4 + x3 + x + 1 W 

28 11100 x4 + x3 + x2  X 

29 11101 x4 + x3 + x2 + 1 Y 

30 11110 x4 + x3 + x2 + x Z 

31 11111 x4 + x3 + x2 + x + 1 Q 

 

2. MAIN RESULTS  

 
In the present work, we consider a message text in ns 

lengths (called the n-letter). Then, this messaging creates 

a cryptology algorithm using certain mathematical rules 

(Fibonacci polynomial matrix ). We obtain a decryption 

algorithm by applying inversely of the stated 

mathematical rules. Similar investigations on the 

following algorithm were given in (Uçar, Taş, and 

Özgür, 2017). 

 

2.1. The Fibonacci Blocking Algorithm: The 

Coding Algorithm  

 

Step 1. Consider a text of length n and assume that each 

letter represents one length. 

 

Step 2. Divide the text into 2s blocks and transform it 

into 2×1 matrices. 2×1  matrices are multiplied by the n-

th Fibonacci polynomial matrix in 2×2 . If there is an 

ascending letter in the text that is converted into 2s 

block, its letters are multiplied fn(x). 
Step 3. Divide the latest created text into 3s blocks and 

transform it into 3×1 matrices. 3×1  matrices are 

multiplied by the key matrix in 3×3 : 

1 1 2

Key matrix 3 5 8

13 5 30

B B C

Ç E Ğ

K E Y

 

   
   
   
   
   

 

If there is an ascending 2 letter in the text that is 

converted into 3s block, it letters is multiplied by 2.key 

matrix in 2×2 : 

5 0
2.Key Matrix

17 4

E A

O D
 
   
   
   

 

If there is an ascending letter in the text that is converted 

into 3-block, its letters are multiplied by polynomial 

”F”. 
 

Step 4. New text created in step 3 is addition by 

Fibonacci polynomial numbers  
1

n

i

i

f x


  respectively 

by starting from the left. 

         
1 2 3

1

...
n

i n

i

f x f x f x f x f x


     . 

 

The Decoding Algorithm  
 

Step 1. Consider encrypted a text of length n and 

assume that each letter represents one length. 

 

Step 2. Encrypted   text   is   addition   by   Fibonacci 

polynomial numbers  
1

n

i

i

f x


 respectively by starting 

from the left: 

         
1 2 3

1

...
n

i n

i

f x f x f x f x f x


     . 

 

Step 3. Divide the encrypted text into 3s blocks and 

transform it into 3×1 matrices. 3×1 matrices are 

multiplied by the inverse of the key matrix in 3×3 : 

6 3 30

Inverse Key matrix 22 8 16

26 23 7

F Ç Z

S Ğ N

V T G

 

   
   
      
   

  

If there is an ascending 2 letter in the encrypted text that 

is converted into 3s block, its letters are multiplied by 

the inverse of the 2.Key Matrix. 

23 0
Inverse 2.Key Matrix

8 9

T A

Ğ H
 
   
   
   

. 

If there is an ascending letter in the encrypted text that is 

converted into 3s block, its letters are multiplied by ”L” 
polynomial. 

 

Step 4. Divide the encrypted text into 2s blocks and 

transform it into 2×1 matrices. 2×1 matrices are 

multiplied by the nth inverse of the Fibonacci 

polynomial matrix. If there is an ascending letter in the 

encrypted text that is converted into 2s block, it letters is 

multiplied the inverse of fn(x). 
 

2.2. Example of the Fibonacci Blocking 

Algorithm: 

 

 Consider the following message text in 5s lengths 

(called the 5-letter): 

”HELLO” 

 

The Application of  The Coding Algorithm 

 

Step 1. HELLO is 5-letter that means n=5. 
 

Step 2. 

 
   

   

2 4 2

6 55

4 2 3

5 4

1 1

1

f x f x x x x x
Q x

f x f x x x x

   
 

 

  
  

   
 

It is known that 

 

 

 

 

3

2

3 2

4

9 01001 1

5 00101 1

14 01110

17 10001 1

x H

x E

x x x L

x O

   

   

    

   

 

So, It is 
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   

   

   

   

2 4 2 3

6 5

4 2 3 2

5 4

4

2 4 2 3 2

6 5

4 2 3 3 2

5 4

1 1 1

1 1

1
,

1

1 1

1

                                  

f x f x H x x x x x

f x f x E x x x x

Ox

B

f x f x L x x x x x x x

f x f x L x x x x x x

    


  


 

     


   

    
    

     

   
   

  

    
    

     
2

4 2

1
 

1
                                 

Gx x

Tx x x

 
 

  

   
   

  

 

 

And 

      4 4 2 4

5
1 1 1 .f x x x x x x C        

It results HELLO→OBGTC. 

 

Step 3. Turn into blocks of 3s and multiply with the key 

matrix, 
4

2 3

3 2 2 4 3 2 2

1 1 1

1 1 1

1 1 1 1

B B C O x x

Ç E Ğ B x x x

K E Y G x x x x x x x x



  

       

     
     
     

     
     

 

4 3 2

3 2

4 3 2
1

x x x x Z

x x x L

x x x x Q

  

   

   

   
   
   

  
  

 

If there is an ascending 2 letter in the text that is 

converted into 3s block, it letters is multiplied by 2.key 

matrix in 2×2 . 
2 4 3 2

4 2

3 2

1 0 1

1

1
                       .

1

E A T x x x x x

O D C x x x

B

x x K

    




 
 

    
    

     

   
   
   

 

It results OBGTC→ZLQBK 

 

Step 4. 

Z + f1(x) = x4 + x3 + x2 + x + 1 = Q 

L + f2(x) = x3 + x2 + x + x = x3 + x2 = J 

Q + f3(x) = x4 + x3 + x2 + x + 1 + x2 + 1 

               = x4 + x3 + x = V 

Z + f4(x) = 1 + x3 = x3 + 1 = H 

K + f5(x) = x3 + x2 + x + 1 + x4 + x2 + 1 

               = x4 + x3 = U  
It results ZLQBK → QJVHU. 

 

The Application of  The Decoding Algorithm: 

 

Step 1. 

Q + f1(x) = x4 + x3 + x2 + x + 1 + 1 

               = x4 + x3 + x2 + x = Z  

J + f2(x)  = x3 + x2 + x = L 

V + f3(x) = x4 + x3 + x + x2 + 1 

               = x4 + x3 + x2 + x + 1 = Q 

H + f4(x) = x3 + 1 + x3 = 1 = B 

U + f5(x) = x4 + x3 + x4 + x2 + 1 = x3 + x2 + 1 = K  
It results QJVHU → ZLQBK . 

 

Step 2. Divide encrypted text into 3s blocks and 

transform it into 3×1 matrices. 3×1 matrices are 

multiplied by inverse of the key matrix in 3×3 : 

F Ç Z

S Ğ N

V T G

Z O

L B

Q G



    
    
        

    

 

If there is an ascending 2 letter in the encrypted text that 

is converted into 3s block, its letters are multiplied by 

the inverse of the 2.key matrix: 

T A B T

Ğ H K C


    
    
    

 

It results ZLQBK → OBGTC. 

 

Step 3. Divide the encrypted text into 2s blocks and 

transform it into 2×1 matrices. 2×1 matrices are 

multiplied by the nth inverse of the Fibonacci 

polynomial matrix in 2 . If there is an ascending letter in 

the encrypted text that is converted into 2s block, its 

letters are multiplied the inverse of fn(x). 

 
3 4 2

5

4 2 2

1 1

1 1

x x x
Q x

x x x x

  


   

 
 
 

 

and 
4 2

4 2

1 1
,    

1 1

O Gx x x

B Tx x x

  
 

  

      
      

      
 

It is know that, 
3 4 2 4 3

4 2 2 2

3 4 2 2 3 2

4 2 2 4 2 3 2

1 1 1

1 1 1 1

1 1

1 1 1

,
Hx x x x x

Ex x x x x

Lx x x x x x x x

Lx x x x x x x x x x

   
 

    

     
 

        

      
      

     

      
      

     

and let’s  f−1(x) = x4 + x3 + x. 
So, It is 

f−1(x).C = (x4 + x3 + x)(x) = x4 + 1 = O. 
It results OBGTC→HELLO. 

 

3. CONCLUSION 

 
Rijndael found the AES (Advanced Encryption 

Standard) with the help of polynomials in Galois fields. 

We too created a new encryption algorithm with the help 

of Fibonacci polynomials and polynomials in Galois 

_elds and this algorithm is called Classical AES-like 

Cryptology via Fibonacci Polynomial Matrix. First, we 

present the mathematical basis necessary for 

understanding the specifications followed by the design 

rationale and the description itself. Subsequently, the 

implementation aspects of the cipher and its inverse are 

treated. 
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