Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators

Gülsüm Ulusoy Ada ${ }^{1}$

Article History

Received: 27.12.2019
Accepted: 08.03.2020
Published: 23.03.2020
Original Article

Abstract

In this paper, we define a new genuine Baskakov-Durrmeyer operators. We give uniform convergence using the weighted modulus of continuity. Then we study direct approximation of the operators in terms of the moduli of smoothness. After that a Voronovskaya type result is studied.

Keywords - Genuine Baskakov Durrmeyer operators, weighted modulus of continuity, Voronovskaya theorem

1. Introduction

In the paper [1], the authors studied the sequences of linear Bernstein type operators defined for $f \in C[0,1]$ by $B_{n}\left(f \circ \sigma^{-1}\right) \circ \sigma, B_{n}$ being the classical Bernstein operators and σ being any function satisfying some certain conditions. By this way, the Korovkin set is $\left\{1, \sigma, \sigma^{2}\right\}$ instead of $\left\{1, e_{1}, e_{2}\right\}$. It was shown that the B_{n}^{σ} actual a better degree of approximation. For this aim, have studied by a number of authors. For more details in this direction we can refer the readers to [2-9].

In [10], the authors introduced a general sequences of linear Baskakov Durrmeyer type operators by

$$
\begin{equation*}
G_{n}^{\sigma}(g ; x)=(n-1) \sum_{l=0}^{\infty} P_{n, k}^{\sigma}(x) \int_{0}^{\infty}\left(g \circ \sigma^{-1}\right)(u)\binom{n+k-1}{k} \frac{u^{k}}{(1+u)^{n+k}} d u, \tag{1}
\end{equation*}
$$

where $P_{n, k}^{\sigma}(x)=\binom{n+k-1}{k} \frac{(\sigma(x))^{k}}{(1+\sigma(x))^{n+k}}, \sigma$ is a continuous infinite times differentiable function satisfying the condition $\sigma(1)=0, \sigma(0)=0$ and $\sigma^{\prime}(x)>0$ for $x \in[0, \infty)$.

In the present paper, we construct a genuine type modification of the operators in (1) which preserve the function σ, defined as

$$
\begin{align*}
& K_{n}^{\sigma}(g ; x)=\sum_{k=1}^{\infty} P_{n, k}^{\sigma}(x) \frac{1}{\beta(k, n+1)} \int_{0}^{\infty}\left(g \circ \sigma^{-1}\right)(t) \frac{t^{k-1}}{(1+t)^{n+k+1}} d t \\
& +P_{n, 0}^{\sigma}(x)\left(g \circ \sigma^{-1}\right)(0) \tag{2}
\end{align*}
$$

[^0]The operators defined in (2) are linear and positive. In case of $\sigma(x)=x$, the operators in (2) reduce to the following operators introduced in [11]:

$$
T_{n}(g ; x)=\sum_{k=1}^{\infty} P_{n, k}(x) \frac{1}{\beta(k, n+1)} \int_{0}^{\infty} g(t) \frac{t^{k-1}}{(1+t)^{n+k+1}} d t+P_{n, 0}(x) g(0)
$$

2. Auxiliary lemmas

Lemma 2.1. We have

$$
\begin{gather*}
K_{n}^{\sigma}(1 ; x)=1, K_{n}^{\sigma}(\sigma ; x)=\sigma(x), \tag{3}\\
K_{n}^{\sigma}\left(\sigma^{2} ; x\right)=\frac{\sigma^{2}(x)(n+1)+2 \sigma(x)}{n-1}, \tag{4}\\
K_{n}^{\sigma}\left(\sigma^{3} ; x\right)=\frac{\sigma^{3}(x)(n+1)(n+2)+6 \sigma^{2}(x)(n+1)+6 \sigma(x)}{(n-1)(n-2)} \tag{5}
\end{gather*}
$$

Lemma 2.2. If we describe the central moment operator by

$$
M_{n, m}^{\sigma}(x)=K_{n}^{\sigma}\left((\sigma(t)-\sigma(x))^{m} ; x\right)
$$

then we get

$$
\begin{align*}
& M_{n, 0}^{\sigma}(x)=1, \quad M_{n, 1}^{\sigma}(x)=0 \tag{6}\\
& M_{n, 2}^{\sigma}(x)=\frac{2 \sigma(x)(\sigma(x)+1)}{n-1} \tag{7}
\end{align*}
$$

for all $n, m \in \mathbb{N}$.

3. Weighted Convergence of $K_{n}^{\sigma}(f)$

We suppose that:
$\left(p_{1}\right) \sigma$ is a continuously differentiable function on $[0, \infty)$
$\left(p_{2}\right) \sigma(0)=0, \inf _{x \in[0, \infty)} \sigma^{\prime}(x) \geq 1$.
Let $\psi(x)=1+\sigma^{2}(x)$ and $B_{\psi}\left(\mathbb{R}^{+}\right)=\left\{f:|f(x)| \leq n_{f} \psi(x)\right\}$, where n_{f} is constant which may depend only on $f . C_{\psi}\left(\mathbb{R}^{+}\right)$denote the subspace of all continuous functions in $B_{\psi}\left(\mathbb{R}^{+}\right)$. By $C_{\psi}^{*}\left(\mathbb{R}^{+}\right)$, we denote the subspace off all functions $f \in C_{\psi}\left(\mathbb{R}^{+}\right)$for which $\lim _{x \rightarrow \infty} f(x) / \psi(x)$ is finite. Also let $U_{\psi}\left(\mathbb{R}^{+}\right)$be the space of functions $f \in C_{\psi}\left(\mathbb{R}^{+}\right)$such that f / ψ is uniformly continuous. $B_{\psi}\left(\mathbb{R}^{+}\right)$is the linear normed space with the norm $\|f\|_{\psi}=\sup _{x \in \mathbb{R}^{+}}|f(x)| / \psi(x)$.

The weighted modulus of continuity defined in [12] is as follows

$$
\omega_{\sigma}(f ; \delta)=\sup _{\substack{x, t \in \mathbb{R}^{+} \\ \mid \sigma(t)-\sigma(x) \leq \delta}} \frac{|f(t)-f(x)|}{\psi(t)+\psi(x)}
$$

for each $f \in C_{\psi}\left(\mathbb{R}^{+}\right)$and for every $\delta>0$. We observe that $\omega_{\sigma}(f ; 0)=0$ for every $f \in C_{\psi}\left(\mathbb{R}^{+}\right)$and the function $\omega_{\sigma}(f ; \delta)$ is nonnegative and nondecreasing with respect to δ for $f \in C_{\psi}\left(\mathbb{R}^{+}\right)$and also $\lim _{\delta \rightarrow 0} \omega_{\sigma}(f ; \delta)=0$ for every $f \in U_{\psi}\left(\mathbb{R}^{+}\right)$.

Let $\delta>0$ and $W_{\infty}^{2}=\left\{g \in C_{B}[0, \infty) ; g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\}$. The Peetre's K functional is defined by

$$
K_{2}(f, \delta)=\inf \left\{\|f-g\|+\delta\|g\|_{W_{\infty}^{2}} ; g \in W_{\infty}^{2}\right\}
$$

where

$$
\|f\|_{W_{\infty}^{2}}:=\|f\|+\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|
$$

It was shown in [13], there exists an absolute constant $C>0$ such that

$$
K_{2}(f, \delta) \leq C\left\{w_{2}(f ; \sqrt{\delta})+\min (1, \delta)\|f\|\right\}
$$

where the second order modulus of smoothness is defined by

$$
w_{2}(f, \sqrt{\delta})=\sup _{0 \leq h \leq \sqrt{\delta}} \sup _{x \in[0, \infty)}|f(x+2 h)-2 f(x+h)+f(x)|
$$

The usual modulus of continuity of $f \in C_{B}[0, \infty)$ is defined by

$$
w(f, \delta)=\sup _{0 \leq h \leq \sqrt{\delta}} \sup _{x \in[0, \infty)}|f(x+h)-f(x)|
$$

Lemma 3.1. [14] The positive linear operators $L_{n}, n \geq 1$, act from $C_{\psi}\left(\mathbb{R}^{+}\right)$to $B_{\psi}\left(\mathbb{R}^{+}\right)$if and only if the inequality

$$
\left|L_{n}(\psi ; x)\right| \leq P_{n} \psi(x)
$$

holds, where P_{n} is a positive constant depending on n.
Theorem 3.2. [14] Let the sequence of linear positive operators $\left(L_{n}\right), n \geq 1$, acting from $C_{\psi}\left(\mathbb{R}^{+}\right)$ to $B_{\psi}\left(\mathbb{R}^{+}\right)$satisfy the three conditions

$$
\lim _{n \rightarrow \infty}\left\|L_{n} \sigma^{\nu}-\sigma^{\nu}\right\|_{\psi}=0, \quad \nu=0,1,2
$$

Then for any function $g \in C_{\psi}^{*}\left(\mathbb{R}^{+}\right)$,

$$
\lim _{n \rightarrow \infty}\left\|L_{n} g-g\right\|_{\psi}=0
$$

Theorem 3.3. For each function $g \in C_{\psi}^{*}\left(\mathbb{R}^{+}\right)$

$$
\lim _{n \rightarrow \infty}\left\|K_{n}^{\sigma} g-g\right\|_{\psi}=0
$$

Proof. Using Theorem 3.2 we see that it is sufficient to verify the following three conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|K_{n}^{\sigma}\left(\sigma^{\nu}\right)-\sigma^{\nu}\right\|_{\psi}=0, \nu=0,1,2 \tag{8}
\end{equation*}
$$

It is clear that from (3) and (4), $\left\|K_{n}^{\sigma}(1)-1\right\|_{\psi}=0$ and $\left\|K_{n}^{\sigma}(\sigma)-\sigma\right\|_{\psi}=0$. Hence the conditions (8) are fullfilled for $\nu=0,1$. Also using the property (4) we have

$$
\begin{align*}
\left\|K_{n}^{\sigma}\left(\sigma^{2}\right)-\sigma^{2}\right\|_{\psi} & =\sup _{x \in \mathbb{R}^{+}} \frac{1}{\left(1+\sigma^{2}(x)\right)}\left(\frac{\sigma^{2}(x)(n+1)+2 \sigma(x)}{(n-1)}-\sigma^{2}(x)\right) \\
& \leq \frac{4}{n-1} \tag{9}
\end{align*}
$$

This means that the condition (8) holds also for $\nu=2$ and by Theorem 3.2 the proof is completed.
Theorem 3.4. [12] Let $L_{n}: C_{\psi}\left(\mathbb{R}^{+}\right) \rightarrow B_{\psi}\left(\mathbb{R}^{+}\right)$be a sequence of positive linear operators with

$$
\begin{gather*}
\left\|L_{n}\left(\sigma^{0}\right)-\sigma^{0}\right\|_{\psi^{0}}=a_{n} \tag{10}\\
\left\|L_{n}(\sigma)-\sigma\right\|_{\psi^{\frac{1}{2}}}=b_{n} \\
\left\|L_{n}\left(\sigma^{2}\right)-\sigma^{2}\right\|_{\psi}=c_{n} \\
\left\|L_{n}\left(\sigma^{3}\right)-\sigma^{3}\right\|_{\psi^{\frac{3}{2}}}=d_{n} \tag{11}
\end{gather*}
$$

where a_{n}, b_{n}, c_{n} and d_{n} tend to zero as $n \rightarrow \infty$. Then

$$
\begin{equation*}
\left\|L_{n}(g)-g\right\|_{\psi^{\frac{3}{2}}} \leq\left(7+4 a_{n}+2 c_{n}\right) \omega_{\sigma}\left(g ; \delta_{n}\right)+\|g\|_{\psi} a_{n} \tag{12}
\end{equation*}
$$

for all $g \in C_{\psi}\left(\mathbb{R}^{+}\right)$, where

$$
\delta_{n}=2 \sqrt{\left(a_{n}+2 b_{n}+c_{n}\right)\left(1+a_{n}\right)}+a_{n}+3 b_{n}+3 c_{n}+d_{n}
$$

Theorem 3.5. For all $g \in C_{\psi}\left(\mathbb{R}^{+}\right)$we get

$$
\left\|K_{n}^{\sigma}(g)-g\right\|_{\psi^{\frac{3}{2}}} \leq\left(7+\frac{2}{(n-1)}\right) \omega_{\sigma}\left(g ; \frac{4}{\sqrt{(n-1)}}+\frac{24 n^{2}+4 n-8}{(n-1)(n-2)}\right)
$$

Proof. On account of apply Theorem 3.4, we must calculate the sequences a_{n}, b_{n}, c_{n} and d_{n}. Using (3) and (4) we find

$$
\left\|K_{n}^{\sigma}\left(\sigma^{0}\right)-\sigma^{0}\right\|_{\psi^{0}}=a_{n}=0
$$

and

$$
\left\|K_{n}^{\sigma}(\sigma)-\sigma\right\|_{\psi^{\frac{1}{2}}}=b_{n}=0
$$

Also from (9)

$$
c_{n}=\left\|\widetilde{C}_{n}^{\sigma}\left(\sigma^{2}\right)-\sigma^{2}\right\|_{\psi} \leq \frac{4}{(n-1)}
$$

Since

$$
\begin{equation*}
K_{n}^{\sigma}\left(\sigma^{3} ; x\right)=\frac{\sigma^{3}(x)(n+1)(n+2)+6 \sigma^{2}(x)(n+1)+6 \sigma(x)}{(n-1)(n-2)} \tag{13}
\end{equation*}
$$

we can write

$$
\begin{aligned}
d_{n}= & \left\|K_{n}^{\sigma}\left(\sigma^{3}\right)-\sigma^{3}\right\|_{\psi^{\frac{3}{2}}} \\
= & \sup _{x \in \mathbb{R}^{+}} \frac{1}{\left(1+\sigma^{2}(x)\right)^{\frac{3}{2}}} \\
& \times \frac{\sigma^{3}(x)(n+1)(n+2)+6 \sigma^{2}(x)(n+1)+6 \sigma(x)-\sigma^{3}(x)(n-1)(n-2)}{(n-1)(n-2)} \\
\leq & \frac{24 n^{2}}{(n-1)(n-2)}
\end{aligned}
$$

Thus the conditions (10-11) are satisfied. From Theorem 3.4 we have

$$
\left\|K_{n}^{\sigma}(g)-g\right\|_{\psi^{\frac{3}{2}}} \leq\left(7+\frac{2}{(n-1)}\right) \omega_{\sigma}\left(g ; \frac{4}{\sqrt{(n-1)}}+\frac{24 n^{2}+4 n-8}{(n-1)(n-2)}\right)
$$

Remark 3.6. Using $\lim _{\delta \rightarrow 0} \omega_{\sigma}(f ; \delta)=0$ and Theorem 3.5, we have

$$
\lim _{n \rightarrow \infty}\left\|K_{n}^{\sigma}(g)-g\right\|_{\psi^{\frac{3}{2}}}=0
$$

for $f \in U_{\psi}\left(\mathbb{R}^{+}\right)$.
Theorem 3.7. Let σ be a function satisfying the conditions p_{1} and p_{2} and $\left\|\sigma^{\prime \prime}\right\|$ is finite. If $f \in$ $C_{B}[0, \infty)$, then we have

$$
\left|K_{n}^{\sigma}(g ; x)-g(x)\right| \leq C\left\{w_{2}\left(f ; \sqrt{\frac{2 \sigma(x)(\sigma(x)+1)}{n-1}}\right)+\min \left(1, \frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\right)\|g\|\right\}
$$

Proof. The classic Taylor's expansion of $g \in W_{\infty}^{2}$ yields for $t \in[0, \infty)$ that

$$
\begin{aligned}
g(t)= & \left(g \circ \sigma^{-1}\right)(\sigma(t))=\left(g \circ \sigma^{-1}\right)(\sigma(x))+D\left(g \circ \sigma^{-1}\right)(\sigma(x))(\sigma(t)-\sigma(x)) \\
& +\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) D^{2}\left(g \circ \sigma^{-1}\right)(u) d u
\end{aligned}
$$

Applying the operators K_{n}^{σ} to both sides of above equality and considering the fact (6) we obtain

$$
K_{n}^{\sigma}(g ; x)-g(x)=K_{n}^{\sigma}\left(\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) D^{2}\left(g \circ \sigma^{-1}\right)(u) d u ; x\right)
$$

On the other hand, with the change of variable $u=\sigma(y)$ we get

$$
\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) D^{2}\left(g \circ \sigma^{-1}\right)(u) d u=\int_{x}^{t}(\sigma(t)-\sigma(y)) D^{2}\left(g \circ \sigma^{-1}\right) \sigma(y) \sigma^{\prime}(y) d y
$$

Using the equality

$$
D^{2}\left(g \circ \sigma^{-1}\right)(\sigma(y))=\frac{1}{\sigma^{\prime}(y)} \frac{g^{\prime \prime}(y) \sigma^{\prime}(y)-g^{\prime}(y) \sigma^{\prime \prime}(y)}{\left(\sigma^{\prime}(y)\right)^{2}}
$$

we can write

$$
\begin{aligned}
\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) D^{2}\left(g \circ \sigma^{-1}\right)(u) d u= & \int_{x}^{t}(\sigma(t)-\sigma(y))\left(\frac{1}{\sigma^{\prime}(y)} \frac{g^{\prime \prime}(y) \sigma^{\prime}(y)-g^{\prime}(y) \sigma^{\prime \prime}(y)}{\left(\sigma^{\prime}(y)\right)^{2}}\right) d y \\
= & \int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) \frac{g^{\prime \prime}\left(\sigma^{-1}(u)\right)}{\left(\sigma^{-1}\left(\sigma^{-1}(u)\right)\right)^{3}} d u \\
& -\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) \frac{g^{\prime}\left(\sigma^{-1}(u)\right) \sigma^{\prime \prime}\left(\sigma^{-1}(u)\right)}{\left(\sigma^{\prime}\left(\sigma^{-1}(u)\right)\right)^{3}} d u
\end{aligned}
$$

So we can write

$$
\begin{aligned}
K_{n}^{\sigma}(g ; x)-g(x)= & K_{n}^{\sigma}\left(\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) \frac{g^{\prime \prime}\left(\sigma^{-1}(u)\right)}{\left(\sigma^{-1}\left(\sigma^{-1}(u)\right)\right)^{3}} d u ; x\right) \\
& -K_{n}^{\sigma}\left(\int_{\sigma(x)}^{\sigma(x)}(\sigma(t)-u) \frac{g^{\prime}\left(\sigma^{-1}(u)\right) \sigma^{\prime \prime}\left(\sigma^{-1}(u)\right)}{\left(\sigma^{\prime}\left(\sigma^{-1}(u)\right)\right)^{3}} d u ; x\right)
\end{aligned}
$$

Since σ is strictly increasing on $[0, \infty)$ and with the condition p_{2}, we get

$$
\begin{aligned}
\left|K_{n}^{\sigma}(g ; x)-g(x)\right| & \leq M_{n, 2}^{\sigma}(x)\left(\left\|g^{\prime \prime}\right\|+\left\|g^{\prime}\right\|\left\|\sigma^{\prime \prime}\right\|\right) \\
& \leq \frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\left(\left\|g^{\prime \prime}\right\|+\left\|g^{\prime}\right\|\left\|\sigma^{\prime \prime}\right\|\right)
\end{aligned}
$$

Also, it is clear that

$$
\left\|K_{n}^{\sigma}\right\| \leq\|f\|
$$

Hence we have

$$
\begin{aligned}
\left|K_{n}^{\sigma}(g ; x)-g(x)\right| & \leq\left|K_{n}^{\sigma}(g-f ; x)\right|+\left|K_{n}^{\sigma}(f ; x)-f(x)\right|+|-(g-f)(x)| \\
& \leq 2\|f-g\|+\frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\left(\left\|g^{\prime \prime}\right\|+\left\|g^{\prime}\right\|\left\|\sigma^{\prime \prime}\right\|\right)
\end{aligned}
$$

and choosing $C:=\max \left\{1,\left\|\sigma^{\prime \prime}\right\|\right\}$ we have

$$
\begin{aligned}
\left|K_{n}^{\sigma}(g ; x)-g(x)\right| & \leq C\left\{\|f-g\|+\frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\left(\left\|g^{\prime \prime}\right\|+\left\|g^{\prime}\right\|+\|g\|\right)\right\} \\
& =C\left\{\|f-g\|+\frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\|g\|_{W_{\infty}^{2}}\right\}
\end{aligned}
$$

Taking the infimum on the right hand side over all $g \in W_{\infty}^{2}$ we obtain

$$
\begin{aligned}
\left|K_{n}^{\sigma}(g ; x)-g(x)\right| & \leq C K_{2}\left(f ; \frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\right) \\
& \leq C\left\{w_{2}\left(f ; \sqrt{\frac{2 \sigma(x)(\sigma(x)+1)}{n-1}}\right)+\min \left(1, \frac{2 \sigma(x)(\sigma(x)+1)}{n-1}\right)\|g\|\right\}
\end{aligned}
$$

Lemma 3.8. [12] For every $g \in C_{\psi}\left(\mathbb{R}^{+}\right)$, for $\delta>0$ and for all $u, x \geq 0$,

$$
\begin{equation*}
|g(u)-g(x)| \leq(\psi(u)+\psi(x))\left(2+\frac{|\sigma(u)-\sigma(x)|}{\delta}\right) \omega_{\sigma}(g, \delta) \tag{14}
\end{equation*}
$$

holds.

Theorem 3.9. Let $g \in C_{\psi}\left(\mathbb{R}^{+}\right), x \in I$ and suppose that the first and second derivatives of $g \circ \sigma^{-1}$ exist at $\sigma(x)$. If the second derivative of $g \circ \sigma^{-1}$ is bounded on \mathbb{R}^{+}, then we have

$$
\lim _{n \rightarrow \infty} n\left[K_{n}^{\sigma}(g ; x)-g(x)\right]=\sigma(x)(\sigma(x)+1)\left(g \circ \sigma^{-1}\right)^{\prime \prime}(\sigma(x))
$$

Proof. By the Taylor expansion of $g \circ \sigma^{-1}$ at the point $\sigma(x) \in \mathbb{R}^{+}$, there exists ξ lying between x and t such that

$$
\begin{aligned}
g(t)= & \left(g \circ \sigma^{-1}\right)(\sigma(t))=\left(g \circ \sigma^{-1}\right)(\sigma(x)) \\
& +\left(g \circ \sigma^{-1}\right)^{\prime}(\sigma(x))(\sigma(t)-\sigma(x)) \\
& +\frac{\left(g \circ \sigma^{-1}\right)^{\prime \prime}(\sigma(x))(\sigma(t)-\sigma(x))^{2}}{2}+\gamma_{x}(t)(\sigma(t)-\sigma(x))^{2},
\end{aligned}
$$

where

$$
\begin{equation*}
\gamma_{x}(t):=\frac{\left(g \circ \sigma^{-1}\right)^{\prime \prime}(\sigma(\xi))-\left(g \circ \sigma^{-1}\right)^{\prime \prime}(\sigma(x))}{2} \tag{15}
\end{equation*}
$$

We get

$$
\begin{aligned}
K_{n}^{\sigma}(g ; x)-g(x)= & \left(g \circ \sigma^{-1}\right)^{\prime}(\sigma(x)) K_{n}^{\sigma}(\sigma(t)-\sigma(x) ; x) \\
& +\frac{\left(g \circ \sigma^{-1}\right)^{\prime \prime}(\sigma(x)) K_{n}^{\sigma}\left((\sigma(t)-\sigma(x))^{2} ; x\right)}{2}+K_{n}^{\sigma}\left(\gamma_{x}(t)(\sigma(t)-\sigma(x))^{2} ; x\right)
\end{aligned}
$$

Using (6) and (7), we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n K_{n}^{\sigma}(\sigma(t)-\sigma(x) ; x)=0 \\
\lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left(\left((\sigma(t)-\sigma(x))^{2} ; x\right)=2 \sigma(x)(\sigma(x)+1)\right.
\end{gathered}
$$

and thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[K_{n}^{\sigma}(g ; x)-g(x)\right]= & \sigma(x)(\sigma(x)+1)\left(g \circ \sigma^{-1}\right)^{\prime \prime}(\sigma(x)) \\
& +\lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left(\gamma_{x}(t)(\sigma(t)-\sigma(x))^{2} ; x\right)
\end{aligned}
$$

Let calculate the last term $\left|n K_{n}^{\sigma}\left(\left|\gamma_{x}(t)\right|(\sigma(t)-\sigma(x))^{2} ; x\right)\right|$. Since $\lim _{t \rightarrow x} \gamma_{x}(t)=0$ for every $\varepsilon>0$, let $\delta>0$ such that $\left|\gamma_{x}(t)\right|<\varepsilon$ for every $t \geq 0$. Cauchy-Schwarz inequality applied we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left(\left|\gamma_{x}(t)\right|(\sigma(t)-\sigma(x))^{2} ; x\right) \leq & \varepsilon \lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left((\sigma(t)-\sigma(x))^{2} ; x\right) \\
& +\frac{C}{\delta^{2}} \lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left((\sigma(t)-\sigma(x))^{4} ; x\right)
\end{aligned}
$$

Since

$$
\lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left((\sigma(t)-\sigma(x))^{4} ; x\right)=0
$$

we get

$$
\lim _{n \rightarrow \infty} n K_{n}^{\sigma}\left(\left|\gamma_{x}(t)\right|(\sigma(t)-\sigma(x))^{2} ; x\right)=0
$$

Corollary 3.10. We have following particular case:

1. If we choose $\sigma(x)=x$, the operators (2) reduce to T_{n} operators defined in [11]. As a consequence of Theorem 3.9, we refined the following result.

$$
\lim _{n \rightarrow \infty} n\left[T_{n}(g ; x)-g(x)\right]=x(x+1) g^{\prime \prime}(x)
$$

References

[1] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type Operators which Preserve Polynomials, Computers and Mathematics with Applications 62 (2011) 158-163.
[2] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer Operators, General Mathematics 22(1) (2014) 27-41.
[3] T. Acar, A. Aral, I. Raşa, Positive Linear Operators Preserving τ and τ^{2}, Constructive Mathematical Analysis 2(3) (2019) 98-102.
[4] T. Acar, G. Ulusoy, Approximation by Modified Szasz Durrmeyer Operators, Periodica Mathematica Hungarica 72 (2016) 64-75.
[5] T. Acar, V. Gupta, A. Aral, Rate of Convergence for Generalized Szász Operators, Bulletin of Mathematical Science 1(1) (2011) 99-113.
[6] A. Aral, D. Inoan, I. Raşa, On the Generalized Szász-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
[7] M. Bodur, O. G. Yılmaz, A. Aral, Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions, Constructive Mathematical Analysis 1(1) (2018) 1-8.
[8] Z. Finta, A Quantitative Variant of Voronovskaja's Theorem for King-Type Operators, Constructive Mathematical Analysis 2(3) (2019) 124-129.
[9] R. Maurya, H. Sharma, C. Gupta, Approximation Properties of Kantorovich Type Modifications of (p, q)-Meyer-König-Zeller Operators, Constructive Mathematical Analysis 1(1) (2018) 58-72.
[10] G. Ulusoy Ada, On the Generalized Baskakov Durrmeyer Operators, Sakarya University Journal of Science 23(4) (2019) 549-553.
[11] Z. Finta, On Converse Approximation Theorems, Journal of Mathematical Analysis and Applications 312(1) (2005) 159-180.
[12] A. Holhos, Quantitative Estimates for Positive Linear Operators in Weighted Space, General Mathematics 16(4) (2008) 99-110.
[13] A. Ciupa, A Class of Integral Favard Szasz Type Operators, Studia Universitatis Babeş-Bolyai Mathematica 40(1) (1995) 39-47.
[14] A. D. Gadžiev, The Convergence Problem for a Sequence of Positive Linear Operators on Unbounded Sets and Theorems Analogues to that of P. P. Korovkin, Doklady Akademii Nauk SSSR 218 (1974) 1001-1004, Also in Soviet Mathematics Doklady 15 (1974) 1433-1436.

[^0]: ${ }^{1}$ ulusoygulsum@hotmail.com (Corresponding Author)
 ${ }^{1}$ Department of Mathematics, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey

