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second derivatives in absolute value at certain power are trigonometrically convex functions.
In addition, we prove that our results give better approach than previous results.

1. Introduction

Throughout the paper / is a non-empty interval in R.

Definition 1.1. A function f : I — R is said to be convex if the inequality
Flex+(1=0)y) <tf(x)+(1—1)f(y)
is valid for all x,y € I and t € [0, 1]. If this inequality reverses, then f is said to be concave on interval I # 0.

Convexity theory has appeared as a powerful technique to study a wide class of related problems in pure and applied sciences. See
articles [2,4,9—12] and the references therein.
Let f : [a,b] — R be a convex function, then the inequality

is known as the Hermite-Hadamard inequality (for more information, see [5] ). Since then, some refinements of the Hermite-Hadamard
inequality for convex functions have been obtained [2, 3, 13,15].

Definition 1.2 ([14]). Let h: (0,1) CJ — R be a non-negative function, h # 0. We say that f : I — R is an h-convex function, or that f
belongs to the class SX (h,1), if f is non-negative and for all x,y € I, o € (0,1) we have

flax+(1—a)y) <h(a)f (x)+h(1-a)f(y).
If this inequality is reversed, then f is said to be h-concave, i.e. f € SV (h,I).

Definition 1.3 ( [7]). A non-negative function f : I — R is called trigonometrically convex function on interval [a,b), if for each x,y € [a,b]
andt € 0,1],

Tt

Flex+(1—1)y) < <sin7)f(x)+ (cos—)f(y). (1.1)

Email address and ORCID number: mahirkadakal @gmail.com, https://orcid.org/0000-0002-0240-918X



Universal Journal of Mathematics and Applications 39

Denoted by T'C (I) the class of all trigonometrically convex functions on interval /. Every non-negative convex function is trigonometrically
convex and every trigonometrically convex function is s-convex with i(z) = %t
A refinement of Holder integral inequality better approach than Holder integral inequality can be given as follows:

Theorem 1.4 (Holder-Iscan Integral Inequality [6]). Let p > 1 and + ~ = 1. If f and g are real functions defined on |a,b] and if |f|?, |g|?
are integrable functions on interval [a,b] then

[reswians ;- {(/f(bx)f(x)V’dx)‘l’(/ab(bx>|g<x>qu)']’
o) ( [ -alseras) Y.
</f ) (L )}

Improwed power-mean integral inequality as a result of the Holder-Iscan integral inequality can be given as follows:

Theorem 1.5 (Improved power-mean integral inequality [8]). Let g > 1. If f and g are real functions defined on |a,b] and if |f], | f]|g|? are
integrable functions on [a,b] then

/ sl < { (/ab“’ =) f<X>ldX)1; ( / =) £ Ig(x)qu);
([ f<X>|dX)1L ([ e-alsw g(xwx)‘l’}.

Definition 1.6. (Beta Function) The Beta function denoted by 3 (a,b) is defined by

1
ﬁ(a,b):/ (1 =02V, a,b> 0.
JO

2. Main results

In this section, using Holder-Iscan integral inequality and improved power-mean integral inequality and an integral identity, author obtain
a generalization of Hermite-Hadamard type inequalities for functions whose second derivatives in absolute value at certain power are
trigonometrically convex functions.

In order to establish some inequalities of Hermite-Hadamard type integral inequalities for trigonometrically convex functions, we will use
the following lemma. This lemma can be easily obtained by taking partial integration in the lemma in [1] .

Lemma 2.1. The following equality holds:

; b —a)?
K );f(b) _bia_/a fx)dx = L ) ) _/ol(f—fz)f”(m"‘(]_t)b)dt

Theorem 2.2. Let f: I — R be a continuously two times differentiable function, let a < b in 1. If the mapping |f"| is trigonometrically
convex function on interval [a,b], then the following inequality

f() 216 47:
Cbh— a/j

x| < (b—a) A(lf" @], (®)])
holds for t € [0,1], where A is the arithmetic mean and % + é =1

Proof. Using Lemma 2.1 and inequality
t
}f” (ta+(1 ft)b)| < (sm ) ’f” )‘ + (cos%) ‘f”(b)’,

we obtain
UCssil fbia/abf(x)dx < “)2/1 1 =1][" (ra+ (1= 0)0)] de
(/ 0| f" (ta+(1-1) )|dz)
< (/ (-0 [(sin ) [ @] + (cos ) ]f”(b)\]dt)
3 [(45) e (7)ol
= <b—a>2 LAl @] @)
where
/Olt(lft)sin%ldt:/Olt(lft)cos%tdt:16;#.

This completes the proof of the theorem. O
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Theorem 2.3. Let f : I — R be a continuously two times differentiable function, let a < b in I and assume that q > 1. If the mapping | f"'|?

is trigonometrically convex function on interval [a,b], then the following inequality

—a)? P i
% (%) Br (p+1p+1)A7 (|f (@], |f"(0)]) @b

HALIE) L[ g

<
2 b—als =

holds fort € [0,1], where %Jr% - L

Proof. Using Lemma 2.1, Holder integral inequality and inequality

}f”(er(lft)b)!qg(sm )‘f” a)|’+ (cos )!f” )|?

which is the trigonometrically concexity of | /|7, we obtain

b —a)? 1
f(a);—f(b)fbia/af(x)dx < boa =l Gak (100
2
< (b;a) </01[p( pdt) (/ ‘f” ta+ l*l ‘th)
2 1 1 %
< < pdt) (/0 [(sin%t)v“(a)]q (cos )‘f” ” )
- & )ﬁfl’(p+1p+1)(If”(a)\qgﬂf”(b)lq%)a
2 1
- () BF (1o 1A% (|7 @) |70
where
/Oltp(lft)deZﬁ(erl,prl).
This completes the proof of the theorem. O

Theorem 2.4. Let f : I — R be a continuously two times differentiable function, let a < b in I and assume that q > 1. If the mapping | f"|?
is trigonometrically convex function on interval [a,b), then the following inequality
1

LI L[ i < O3 g e nped [(2- ) Ial+ () o]

a2 :
CSB 20 | @+ (2 25 ) @) @2)

T 72

+

holds fort € [0, 1], where %—f— é =1.

Proof. Using Lemma 2.1, Holder-Iscan integral inequality and inequality
}f” (ta+(1 ft)b)|q < (sm ) ‘f” )|q (cos ) !f” |

which is the trigonometrically concexity of | f”|?, we obtain

a b —a)® 1
£( );f(b)*bia/a f(")dxlg%/o 1|1 =] [ £ (ta+ (1 —1)b)| dt

S(17—261)2 (/](1 P (1 t)l’d[);(/ol(lt){j"’(taJr(lt)b)‘th);

2 l 1 é
ttp lftpdt> (/ t]f”(za+(17t)b)]th)
0

S
2 ([o-vrs) (ool (B roris)
2
—— B

([ pd’)](/ol’Ksm i+ (o) rora)
e (2= 5)irars () el

B 20| @+ (2 %) M(b)}"}‘l’,

_ (= )

(b—a)’
+ 2 n 72
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where
1
[ a=nra =B pr1.p+2),
JO
1
[t -nrar=pp+2.p+)
! T I m 2 4
/()(]_t)ml?dt:/() tcos?dtzg—ﬁ,
! t I t 4
/O(I*Z)COS%dtZ/O tsin%dzzﬁ,
This completes the proof of the theorem. O

Remark 2.5. The inequality (2.2) is better than the inequality (2.1).
Proof. By using the properties

Bp+1,p+2)=B(p+2,p+1)
p+1
2(p+1)

and the concavity of the function 4 : [0,00) — R, h(x) =x°,0 < s < 1, that is, if we use the property
u’ +v* < (uty g
2 = 2
we can write the right hand-side of the inequality (2.1) as follow:

g (25 s () 1rer] + B30 e [ rars (- ) L]

Blp+1Lp+2)=B(p+1,p+1)

2 T n?
1
2 2 g1 q 2 "(p) 4 q
BN TR | L= T
. 1
_ (b-a) p+1 1o | 21/ @+ 2" (b)) |7
= 2 Bl gy )
(b—a)® (4N 1
= B (2) B et (F@f o)),
which is the required result. This completes the proof of the Remark. O

Theorem 2.6. Let f: I C R — R be a continuously two times differentiable function, let a < b in I and assume that ¢ > 1. If the mapping
|f"|% is trigonometrically convex function on interval [a,b], then the following inequality holds for t € [0,1]:

'f(a)gf(b) i /abf(x)dx < (,,,2@2 (é)l (8(23”));*‘5 (L7 @[" 1" @) @3

Proof. From Lemma 2.1, power-mean integral inequality and trigonometrically convexity of |/

'f(a)+f(b
2

4 we have

b —612 1
)*bia/a f(x)dx’ﬁ (b 2) /0 | |1 =t]|f" (ta+ (1 —1)b)|dt

< (b_za)z (/Olt(lft)dt) o (/Olt(lft) \f”(ra+(lfz)b)\th)a
/Olz(1 —1) [( sin%t) " (a)]? + (cos%t) }f”(b)\q] dt) ’

(

)1_; (1@l [ ra=nsnFars o [ ")C"S?Zdt);
(
(

3

0
4(4-m) !f”(a)|q+ 4(471:_3 ) |f"(b)‘q)a
8(4_”)>;Aé (’f”(a)!q,‘f//(b)’q)

where

1 — d*f1
t(1 =
/0 (=1 6

1 t 1 t
/t(l—t)sinn—dt:/ t(l—t)cosn—dt:
0 2 0 2

This completes the proof of the theorem. O

<=
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Corollary 2.7. Under the assumption of Theorem 2.6 with g = 1, we get the following the inequality:

H 0L [ o] < O (D)) o)

Theorem 2.8. Let f:ICR —>Rbea com‘muously two times differentiable function, let a < b in I and assume that ¢ > 1. If the mapping
|f"|% is trigonometrically convex function on interval [a,b], then the following inequality holds for t € [0,1]:

a)+f(b 1 b b—a)* [ 1 32(n-3) ., 4(24—4 " a
'f();f()fb_a/af(x)dxg(2)(5) ((n s 4 nnn‘ o ‘>

b—a) (170 (4(24—4 s RE=D) | g

4

Proof. From Lemma 2.1, improved power-mean integral inequality and trigonometrically convexity of |f”|?, we have

_ 2 1
'f o b a/f ’ za) /O ] [1=t]|f" (ta+ (1 —1)b)]|dt

< (b;a)z (/Olt(l_t)zdl)li (/(;lt(l—t)zf”(ta+(1—t)b)|th);

+ (b;a)z (/O'lﬂ(l_t)d;)l”]’ (/Oltz(l _t)|f,,(m+(1_t)b)|th);

(sinG) s @[+ (cos ) )] a )

() 0l + (o) L] )
|

P
=
S

=

S—
-

(38}
’:
>
@.
SE
I
-~
+
\\

\
O
(=}
SE
I
8

N———

£S)

where

1 1
/r(lfz)2dz=/ zz(lft)dt:i,
0 0 12
1 1 —

/Ot(lfz)2 sin%ldt:/o tz(lft)cos%tdt:%

1 it 1 t 4
1—1)2cos ™ :/21— in™ :—(24—4—2)
/Ot( t) coszdt Ot ( t)51n2dt g T—T
This completes the proof of the theorem. O
Remark 2.9. The inequality (2.4) is better than the inequality (2.3).
Proof. By using concavity of the function 4 : [0,00) — R, h(x) =x°,0 < s < 1, we can write the right hand-side of the inequality (2.4) as

follow:
1

b*az 1 32 3 ” 4 (24 —4 ” q

( 2) (12) ( (ﬂ |f ! ( nn r) |7 |>
b—a)® [ 1 =0 [(4(24—4 2 32(m—3) " ‘

+ S () (< ) | 25 »)

(fz%i "E“(“ 7) |f"(a >|’f;|f”<b>q)5

)
3
G N
() (BR) e e
T

S (é)l_; (%= ));Ai (" @] @))

(b—a)’
<
<2 5
b—a)
2
2
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which is the required result. This completes the proof of the Remark. O

Corollary 2.10. Under the assumption of Theorem 2.8 with q = 1, we get the following the inequality:

2
f(a)+f(b) 1 /b (b—a)” 8(4—m) 1 /"
- x)dx| < —————A a b)|).
5 p=a . S| < == —m—A (| @) | ()])
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