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Abstract
The aim of this paper is to demonstrate the rich interaction between the Kowalewski-Painlevé analysis, the
properties of algebraic completely integrable (a.c.i.) systems, the geometry of its Laurent series solutions, and
the theory of Abelian varieties. We study the classification of metrics for which geodesic flow on the group SO(n)
is a.c.i. For n = 3, the geodesic flow on SO(3) is always a.c.i., and can be regarded as the Euler rigid body motion.
For n = 4, in the Adler-van Moerbeke’s classification of metrics for which geodesic flow on SO(4) is a.c.i., three
cases come up; two are linearly equivalent to the Clebsch and Lyapunov-Steklov cases of rigid body motion in
a perfect fluid, and there is a third new case namely the Kostant-Kirillov Hamiltonian flow on the dual of so(4).
Finally, as was shown by Haine, for n≥ 5 Manakov’s metrics are the only left invariant diagonal metrics on SO(n)
for which the geodesic flow is a.c.i.
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1. Introduction
A dynamical system is algebraic completely integrable in the sense of Adler-van Moerbeke [3, 6] if it can be linearized on a
complex algebraic torus (Abelian variety). The invariants (often called first integrals or constants) of the motion are polynomials
and the phase space coordinates, or some algebraic functions of these, restricted to a complex invariant variety defined by
putting these invariants equals to generic constants are meromorphic functions on an Abelian variety. These manifolds are
described explicitly as being affine part of complex algebraic tori and the flows (run with complex time) generated by the
constants of the motion can be solved by quadrature, that is to say their solutions can be expressed in terms of Abelian integrals.

Consider the group SO(n) and its Lie algebra so(n) paired with itself, via the customary inner product

〈X ,Y 〉=−1
2

tr(X .Y ), X ,Y ∈ so(n).

A left invariant metric on SO(n) is defined by a non-singular symmetric linear map

Λ : so(n)−→ so(n), X 7−→ Λ.X ,
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and by the following inner product; given two vectors gX and gY in the tangent space SO(n) at the point g ∈ SO(n),

〈gX ,gY 〉=
〈
X ,Λ−1.Y

〉
.

The question of classifying the metrics for which geodesic flow on SO(n) is algebraically completely integrable is difficult. For
SO(3), we know that the Euler rigid body motion [11] can be regarded as geodesic flow on SO(3) and this problem is always
algebraically completely integrable. For SO(4), Adler and van Moerbeke [4] have shown that the geodesic flow on SO(4) for
the metric defined by the above quadratic form is algebraically completely integrable in the three cases described in the section
5 and these are the only ones that exist. In addition, these three cases come up: two are linearly equivalent to cases of rigid body
motion in a perfect fluid studied there is a long time, respectively by Clebsch and Lyapunov-Steklov, an there is a third new
case namely the Kostant-Kirillov Hamiltonian flow on the dual of so(4). For n≥ 5, as was shown by Haine [14], Manakov’s
metrics are the only left invariant diagonal metrics on SO(n) for which the geodesic flow is algebraically completely integrable.

The paper is organized as follows. In Section 2, we explain the notion of algebraically completely integrable systems.
Section 3 deals with geodesic flow on SO(3) and Euler rigid body motion. In this section, we show that the Euler rigid body
motion is always algebraically completely integrable which can be regarded as geodesic flow on SO(3), and the integration
of the equations is done by means of elliptic Jacobi functions. In section 4, we briefly recall some results concerning the
Clebsch and Lyapunov-Steklov cases of a solid in an ideal fluid. Section 5 deals with the Adler-van Moerbeke classification
of algebraic integrable geodesic flow on the group SO(4). This classification concerns Manakov geodesic flow on the group
SO(4) which is linearly equivalent to Clebsch rigid body motion in a perfect fluid, geodesic flow on the group SO(4) which
is linearly equivalent to Lyapunov-Steklov rigid body motion in a perfect fluid and geodesic flow on SO(4) with a quartic
invariant. Section 6 deals with the algebraic complete integrability of geodesic flow on SO(n) for n≥ 5.

2. Algebraic complete integrability
The definition of the algebraic complete integrability of a Hamiltonian system varies according to the literature and is usually
found (with some minor variants) in any modern text on integrable systems. The integrable systems that we will deal with here
are complex integrable systems on an affine space Cm, the algebra that we consider is just that of the polynomial functions and
we focus on algebraic complete integrability in the sense of Adler-van Moerbeke. We will work with complexes instead of real
ones. Concepts such as: Liouville integrability, involution, commutativity of vector fields and so on, can be defined as in the
real case. On the other hand difficulties arise : we know that there are no compact holomorphic submanifolds in the complex
space Cm (maximum principle), therefore the complex tori that we can get in Arnold Liouville’s theorem are not compact.
The difficult problem of the compactification of invariant varieties therefore arises. In addition, the solutions of the system in
question are not uniform (single-valued). First, we will recall some results, define and explain the concept of algebraic complete
integrability of Hamiltonian systems in general (although for the problems studied in this paper, we will be concerned by the
affine space Cm).

Consider a Hamiltonian completely integrable system

XH : ż = J
∂H
∂ z
≡ f (z), z ∈ Rm, m = 2n+ k, J(z) polynomial in z, (2.1)

with n+ k functionally independent invariants H1, ...,Hn+k of which k invariants (Casimir functions) lead to zero vector fields

J
∂Hn+ j

∂ z
(z) = 0, 1≤ j ≤ k,

the n = (m−k)/2 remaining ones are in involution (i.e.,
{

Hi,H j
}
= 0),which give rise to n commuting vector fields. According

to the Arnold-Liouville theorem [7], if the invariant manifolds

n+k⋂
i=1

{z ∈ Rm : Hi(z) = ci} ,

are compact, then for most values of ci ∈ R, their connected components are diffeomorphic to real tori Rn/Lattice and the
flows gX1

t (x),...,gXn
t (x) defined by the vector fields XH1 ,...,XHn , are straight-line motions on these tori.

Consider now z ∈ Cm and t ∈ C. Let ∆⊂ Cm be a non-empty Zariski open set. By the functional independence of the first
integrals, the map (momentum mapping)

ϕ ≡ (H1, ...,Hn+k) : Cm −→ Cn+k,
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is a generic submersion (i.e., dH1(z), ...,dHn+k(z) are linearly independent) on ∆. Let

Ω =
{

c = (ci) ∈ Cn+k : ∃z ∈ ϕ
−1(c) with dH1(z)∧ ...∧dHn+k(z) = 0

}
,

be the set of critical values of the map ϕ , i.e., Ω = ϕ (Cm\∆) and denote by Ω the Zariski closure of Ω in Cn+k.

Proposition 2.1. The set defined by

Γ =
{

z ∈ Cm : ϕ(z) ∈ Cn+k\Ω
}
,

is everywhere dense in Cm for the usual topology.

Proof. Indeed, it suffices to show that the set Γ = ϕ−1
(
Cn+k\Ω

)
, is a non-empty Zariski open set in Cm. Since a polynomial

mapping between affine algebraic sets is continuous for the Zariski topology, then the above set is indeed a Zariski open set in
Cm and it is nonempty. Suppose this one is empty, that is ϕ(Cm)⊂Ω. Since the map ϕ is submersive on a non-empty open set
of Zariski ∆⊂ Cm, then ϕ(∆) is open in Cn+k. By Sard’s theorem for varieties [33], Cn+k\Ω is a non-empty Zariski open set
and therefore everywhere dense for the usual topology in Cn+k. So ϕ(∆)∩ (Cn+k\Ω) 6= /0, which is absurd. This completes the
proof. �

Let Mc be the complex affine variety defined by

Mc ≡ ϕ
−1(c) =

n+k⋂
i=1

{z ∈ Cm : Hi(z) = ci} , (2.2)

for all c≡ (c1, ...,cn+k) ∈ Cn+k\Ω, the fiber Mc is smooth.

Definition 2.2. The system (2.1) is algebraic complete integrable (a.c.i.) in the sense of Adler-van Moerbeke with Abelian
functions zi [3, 6, 26] when, for every c ∈Cn+k\Ω, the fiber Mc (2.2) is the affine part of an Abelian variety (complex algebraic
torus)

M̃c = T n ' Cn/Lc, (Lc a lattice in Cn)

and moreover, the flows gt
Xi
(z), z ∈Mc, t ∈ C, defined by the vector fields XHi , 1≤ i≤ n, are straight line on T n, i.e.,[

gt
Xi
(z)
]

j = f j
(

p+ t(ki
1, ...,k

i
n)
)
,

where f j (t1, ..., tn) are Abelian functions on T n, f j(p) = z j, 1≤ j ≤ m.

We will be concerned with a.c.i. systems that are irreducible i.e., when the generic Abelian variety is irreducible (that is, it
does not contain a subtorus). The following remark is intended to present interrelated definitions, all involving a.c.i. systems.
For comments on definitions, see [38].

Remark 2.3. 1) [34] Let H be a smooth function on a 2n-dimensional symplectic manifold (M,ω). The Hamiltonian system
defined by the vector field XH is a.c.i., if there exists a smooth algebraic variety M , a co-symplectic structure ω̃ which restricts
to ω along M, i.e., ω̃ ∈ Λ2TM and a morphism h : M −→U where U is a Zariski open subset of Cn, all defined over the real
field such that:

(i) h is a proper submersive whose components are in involution; that is,

{Xioh,X joh} ≡ ω̃(d(Xioh),d(X joh)) = 0,

Xi being coordinates on Rn.
(ii) M is a component of MR, the ω̃ on M is the ω̃ on M along M, and H is a C∞-function of X j.oh|M .
2) [6] Let (M,{., .},ϕ) be a complex integrable system where M is a non-singular affine variety and ϕ = (H1, ...,Hs) is

given by regular algebraic functions Hi. We say that this system is an a.c.i. system if for generic c ∈Cs the fiber of ϕ−1(c) is an
affine part of an Abelian variety and if the Hamiltonian vector fields XHi , are translation invariant, when restricted to these
fibers.

3) [9] Let (M,{., .}) be a smooth Poisson variety. An a.c.i. Hamiltonian system consists of a proper flat morphism
H : M −→ B where B is a smooth variety such that, over the complement B\∆ of some proper closed subvariety Λ⊂ B, the
morphism H is a Lagrangian fibration whose fibers are isomorphic to Abelian varieties.
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4) [18] Let M be a 2n-dimensional complex manifold with a holomorphic symplectic structure ω , a holomorphic function
H : M −→ C and n holomorphic functions which pairwise are in involution and also with H, i.e.,

{Hi,H j}= {Hi,H}= 0, 1≤ i, j ≤ n.

Let B be an open dense subset of Cn and

F : F−1(B)⊂M −→ B,

a submersive map. The Hamiltonian system defined by the vector field XH is an a.c.i. system if there exists a bundle π : A−→ B
of Abelian varieties, a divisor D⊂ A, an isomorphism σ : F−1(B)−→ A\D, and a vector field Y on A\D which restricts to a
linear vector field on the fibers of π , so that the diagram :

F−1(B) −→
σ

A\D
F ↘ ↙ π

B

is commutative and such that the vector field XH is σ -related to Y .
5) Hitchin [15] gave a large class of interesting integrable systems that are almost by construction algebraic completely

integrable and showed that the cotangent bundle of moduli spaces of stable vector bundles on Riemann surfaces carry the
structure of integrable systems and are indeed a.c.i.

It will be interesting to insist a little more on the interpretation of the algebraic complete integrability of a Hamiltonian
system, especially in the sense of Adler-van Moerbeke.

Remark 2.4. a) The complete algebraic integrability in the sense of Adler-van Moerbeke in the case where M = Cm means
that :

(i) the system (2.1) with polynomial right hand possesses n+ k independent polynomial invariants H1 ≡ H,H2, ...,Hn+k of
which k invariants lead to zero vector fields, the n = (m−k)/2 remaining ones are in involution, which give rise to n commuting
vector fields. For generic ci, the invariant manifolds

n+k⋂
i=1

{z ∈ Rm : Hi = ci} ,

are assumed compact, connected and therefore real tori by the Arnold-Liouville theorem.
(ii) the invariant manifolds, thought of as affine varieties in Cm (non-compact), can be completed into complex algebraic

tori, i.e.,

n+k⋂
i=1

{z ∈ Cm : Hi(z) = ci}= T n\
{

D ≡
(

one or several codimension
one subvarieties

)}
,

where the tori T n = Cn/Lattice = complex algebraic torus (Abelian variety), depend on the c’s. In the natural coordinates
(t1, ..., tn) of these tori, the Hamiltonian flows (run with complex time) defined by the vector fields generated by the constants of
the motion are straight-line motions and the coordinates zi = zi(t1, ..., tn) are meromorphic in (t1, ..., tn).

b) It must be realized that the existence of polynomial first integrals (invariants) for a Hamiltonian system does not
necessarily imply the complete integrability of this system. For example, the Hamiltonian system where

H(x,y) =
x2

2
+P(y), (P(y) being a polynomial in y),

will be algebraically completely integrable with Abelian (here elliptic) functions if and only if P(y) is a polynomial of degree
3 or 4. Following Mumford [34], the commuting vector fields XH1 , ...,XHn define on the real torus Mc ⊂ R2n defined by the
intersection of the constants of the motion H1 = c1, ...,Hn = cn, an addition law

⊕ : Mc×Mc −→Mc, (x,y) 7−→ x⊕ y = gt+s(p), p ∈Mc,

with x = gt(p), y = gs(p), gt(p) = gX1
t1 ...g

Xn
tn (p), where gXi

ti (p) denote the flows generated by XHi . Algebraic complete integra-
bility means that this addition law is rational, that is:

(x⊕ y) j = R j (xi,yi,c) ,
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where R j (xi,yi,c) is a rational function of all coordinates xi, yi, 1≤ i≤ n. Putting x = p, y = gXi
t (p), in this formula, we notice

that on the real torus Tc, the flows gXi
t (p) depend rationally on the initial condition p. Moreover, a Weierstrass theorem on

functions admitting an addition theorem states that the coordinates xi are restricted to the real torus:

Rn/Lattice−→Mc, (t1, ..., tn) 7−→ xi (t1, ..., tn) ,

are Abelian functions. Geometrically, this means that the real torus Mc ' Rn/Lattice is the affine part of an algebraic complex
torus (Abelian variety) Cn/Lattice and that the real functions xi (t1, ..., tn), (ti ∈ R), are the restrictions on this real torus of the
meromorphic functions xi (t1, ..., tn), (ti ∈ C), of n complex variables, with 2n periods (n periods + n imaginary periods). In
degenerate situations, some of these periods may be infinite, as for example in the case of a harmonic oscillator.

c) If the Hamiltonian flow (2.1) is a.c.i., it means that the variables zi are meromorphic on the torus T n and by compactness
they must blow up along a codimension one subvariety (a divisor) D ⊂ T n. By the a.c.i. definition, the flow (2.1) is a straight
line motion in T n and thus it must hit the divisor D in at least one place. Moreover through every point of D , there is a straight
line motion and therefore a Laurent expansion around that point of intersection. Hence the differential equations must admit
Laurent expansions which depend on the n−1 parameters defining D and the n+ k constants ci defining the torus T n, the total
count is therefore m−1 = dim(phase space)−1 parameters. The fait that a.c.i. systems possess (m−1)-dimensional families
of Laurent solutions, was implicitly used by Kowalewski [21] in her classification of integrable rigid body motions (see also the
Painlevé analysis for ordinary differential equations [35]). Such a necessary condition (see [5]) for a.c.i. can be formulated as
in the theorem below.

Theorem 2.5. If the Hamiltonian system (2.1) (with invariant tori not containing elliptic curves) is a.c.i., then each zi blows up
after a finite (complex) time, and for every zi, there is a family of solutions

zi =
∞

∑
j=0

z( j)
i t j−si , si ∈ Z, some si > 0, (2.3)

depending on dim(phase space)− 1 = m− 1, free parameters. Moreover, the system (2.1) possesses families of Laurent
solutions depending on m−2,m−3, ...,m−n free parameters. The coefficients of each one of these solutions are rational
functions on affine algebraic varieties of dimensions m−1,m−2,m−3, ...,m−n.

The question raised several years ago is whether this criterion is also sufficient. The main problem will be to complete
the affine variety Mc (2.2) into an Abelian variety. A naive guess would be to take the natural compactification Mc of Mc by
projectivizing the equations. Indeed, this can never work for a general reason: an Abelian variety M̃c of dimension bigger or
equal than two is never a complete intersection, that is it can never be described in some projective space Pn by n-dim M̃c
global polynomial homogeneous equations. In other words, if Mc is to be the affine part of an Abelian variety, Mc must have a
singularity somewhere along the locus at infinity. The trajectories of the vector fields (2.1) hit every point of the singular locus
at infinity and ignore the smooth locus at infinity. In fact, the existence of meromorphic solutions to the differential equations
(2.1) depending on some free parameters can be used to manufacture the tori, without ever going through the delicate procedure
of blowing up and down. Information about the tori can then be gathered from the divisor. More precisely, around the points
of hitting, the system of differential equations (2.1) admit a Laurent expansion solution depending on m−1, free parameters
and in order to regularize the flow at infinity, we use these parameters to blowing up the variety Mc along the singular locus
at infinity. The new complex variety obtained in this fashion is compact, smooth and has commuting vector fields on it; it is
therefore an Abelian variety.

The system (2.1) with k+n polynomial invariants has a coherent tree of Laurent solutions, when it has families of Laurent
solutions in t, depending on n−1, n−2,...,m−n free parameters. Adler and van Moerbeke [5] have shown that if the system
possesses several families of (n−1)-dimensional Laurent solutions (principal Painlevé solutions) they must fit together in a
coherent way and as we mentioned above, the system must possess (n−2)-, (n−3)-,... dimensional Laurent solutions (lower
Painlevé solutions), which are the gluing agents of the (n−1)-dimensional family. The gluing occurs via a rational change of
coordinates in which the lower parameter solutions are seen to be genuine limits of the higher parameter solutions an which in
turn appears due to a remarkable propriety of a.c.i. systems; they can be put into quadratic form both in the original variables
and in their ratios (to see further). As a whole, the full set of Painlevé solutions glue together to form a fiber bundle with
singular base. A partial converse to the above theorem can be formulated as follows [5]:

Theorem 2.6. If the Hamiltonian system (2.1) satisfies the condition a)(i) in the remark 2.2 of a.c.i. and if it possesses a
coherent tree of Laurent solutions, then the system is a.c.i. and there are no other m−1-dimensional Laurent solutions but
those provided by the coherent set.
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We assume that the divisor is very ample and in addition projectively normal (see [12, 27] for definitions when needed).
Consider a point p ∈D , a chart U j around p on the torus and a function y j in L (D) having a pole of maximal order at p. Then
the vector (1/y j,y1/y j, . . . ,yN/y j) provides a good system of coordinates in U j. Then taking the derivative with regard to one
of the flows(

yi

y j

)
˙=

ẏiy j− yiẏ j

y2
j

, 1≤ j ≤ N,

are finite on U j as well. Therefore, since y2
j has a double pole along D , the numerator must also have a double pole (at worst),

i.e., ẏiy j− yiẏ j ∈L (2D). Hence, when D is projectively normal, we have that(
yi

y j

)
˙= ∑

k,l
ak,l

(
yk

y j

)(
yl

y j

)
,

i.e., the ratios yi/y j form a closed system of coordinates under differentiation. At the bad points, the concept of projective
normality play an important role: this enables one to show that yi/y j is a bona fide Taylor series starting from every point in a
neighborhood of the point in question. Moreover, the Laurent solutions provide an effective tool for find the constants of the
motion. For that, just search polynomials Hi of z, having the property that evaluated along all the Laurent solutions z(t) they
have no polar part. Indeed, since an invariant function of the flow does not blow up along a Laurent solution, the series obtained
by substituting the formal solutions (2.3) into the invariants should, in particular, have no polar part. The polynomial functions
Hi(z(t)) being holomorphic and bounded in every direction of a compact space, (i.e., bounded along all principle solutions), are
thus constant by a Liouville type of argument. It thus an important ingredient in this argument to use all the generic solutions.
To make these informal arguments rigorous is an outstanding question of the subject.

Assume Hamiltonian flows to be weight-homogeneous with a weight si ∈ N, going with each variable zi, i.e.,

fi (α
s1z1, ...,α

smzm) = α
si+1 fi (z1, ...,zm) , ∀α ∈ C.

Observe that then the constants of the motion H can be chosen to be weight-homogeneous:

H (αs1z1, ...,α
smzm) = α

kH (z1, ...,zm) , k ∈ Z.

The study of the a.c.i. of Hamiltonian systems, includes several passages to prove rigorously. Here we mention the main
passages, leaving the detail when studying the different problems in the following sections. We saw that if the flow is
algebraically completely integrable, the differential equations (2.1) must admits Laurent series solutions (2.3) depending on
m−1 free parameters. We must have ki = si and coefficients in the series must satisfy at the 0thstep non-linear equations,

fi

(
z(0)1 , ...,z(0)m

)
+giz

(0)
i = 0,1≤ i≤ m, (2.4)

and at the kthstep, linear systems of equations :

(L− kI)z(k) =
{

0 for k = 1
some polynomial in z(1), ...,z(k−1) for k > 1,

(2.5)

where

L = Jacobian map of (2.4) =
∂ f
∂ z

+gI |z=z(0) .

If m−1 free parameters are to appear in the Laurent series, they must either come from the non-linear equations (2.4) or from
the eigenvalue problem (2.5), i.e., L must have at least m−1 integer eigenvalues. These are much less conditions than expected,
because of the fact that the homogeneity k of the constant H must be an eigenvalue of L. Moreover the formal series solutions
are convergent as a consequence of the majorant method [6, 24]. Thus, the first step is to show the existence of the Laurent
solutions, which requires an argument precisely every time k is an integer eigenvalue of L and therefore L− kI is not invertible.
One shows the existence of the remaining constants of the motion in involution so as to reach the number n+ k. Then you have
to prove that for given c1, ...,cm, the set

D ≡

{
zi(t) = t−νi

(
z(0)i + z(1)i t + z(2)i t2 + · · ·

)
,1≤ i≤ m

Laurent solutions such that : H j (zi(t)) = c j +Taylor part

}
,
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defines one or several n−1 dimensional algebraic varieties (”Painlevé” divisor) having the property that Mc∪D , is a smooth
compact, connected variety with n commuting vector fields independent at every point, i.e., a complex algebraic torus
Cn/Lattice. The flows J ∂Hk+i

∂ z , ...,J ∂Hk+n
∂ z are straight line motions on this torus. Let’s point out and we’ll see all this in more

detail later, that having computed the space of functions L (D) with simple poles at worst along the expansions, it is often
important to compute the space of functions L (kD) of functions having k-fold poles at worst along the expansions. These
functions play a crucial role in the study of the procedure for embedding the invariant tori into projective space.

The idea of the Adler-van Moerbeke’s proof [3] we shall give here is closely related to the geometric spirit of the Arnold-
Liouville theorem [7]. Namely, a compact complex n-dimensional variety on which there exist n holomorphic commuting
vector fields which are independent at every point is analytically isomorphic to a n-dimensional complex torus Cn/Lattice and
the complex flows generated by the vector fields are straight lines on this complex torus.

Theorem 2.7. Let

A =
⋂

i

{Z = (Z0,Z1, ...,Zn) ∈ PN(C) : Pi(Z) = 0},

be an irreducible variety defined by an intersection involving a large number of homogeneous polynomials Pi with smooth and
irreducible affine part A = A ∩{Z0 6= 0}. Put A ≡A ∪D , i.e., D = A ∩{Z0 = 0} and consider the map

f : A −→ PN(C), Z 7−→ f (Z).

Let

Ã = f (A ) = f (A ), D =
r⋃

i=1

Di, S ≡ f (D) =
r⋃

i=1

f (Di)≡
r⋃

i=1

Si.

where Di are codimension 1 subvarieties. Assume that:
(i) f maps A smoothly and 1-1 onto f (A ).
(ii) There exist n holomorphic vector fields X1, ...,Xn on A which commute and are independent at every point. One vector

field, say Xk (where 1≤ k ≤ n), extends holomorphically to a neighborhood of Sk in the projective space PN(C).
(iii) For all p ∈Sk, the integral curve f (t) ∈ PN(C) of the vector field Xk through f (0) = p ∈Sk has the property that

{ f (t) : 0 <| t |< ε, t ∈ C} ⊂ f (A ).

This condition means that the orbits of Xk through Sk go immediately into the affine part and in particular, the vector field Xk
does not vanish on any point of Sk.
Then

a) M̃ is compact, connected and admits an embedding into PN(C).
b) Ã is diffeomorphic to a n-dimensional complex torus. The vector fields X1, ...,Xn extend holomorphically and remain

independent on Ã .
c) Ã is a Kähler variety.
d) M̃ is a Hodge variety. In particular, A is the affine part of an Abelian variety Ã .

Proof. a) A crucial step is to show that the orbits running through Sk form a smooth variety Σp, p ∈ Sk such that
Σp\Sk ⊆ A . Let p ∈Sk, ε > 0 small enough, gt

Xk
the flow generated by Xk on A and {gt

Xk
: t ∈ C,0 <| t |< ε}, the orbit

going through the point p. The vector field Xk is holomorphic in the neighborhood of any point p ∈Sk and non-vanishing,
by (ii) and (iii). Then the flow gt

Xk
can be straightened out after a holomorphic change of coordinates. Let H ⊂ PN(C) be a

hyperplane transversal to the direction of the flow at p and let Σp be the surface element formed by the divisor Sk and the
orbits going through p. Consider the segment of S ′ ≡H ∩Σp and so locally, we have Σp = S ′×C. We shall show that Σp
is smooth. Note that S ′ is smooth. Indeed, suppose that S ′ is singular at 0, then Σp would be singular along the trajectory
(t-axis) which go immediately into the affine f (A ), by condition (iii). Hence, the affine part would be singular which is
impossible by condition (i). So, S′ is smooth and by the implicit function theorem, Σp is smooth too. Consider now the map

A ⊂ Pm(C)−→ PN(C), Z 7−→ f (Z),

where Z = (Z0,Z1, ...,Zn) ∈ Pm(C) and Ã = f (A ) = f (A ). Recall that the flow exists in a full neighborhood of p in PN(C)
and it has been straightened out. Therefore, near p ∈Sk, we have Σp = Ã and Σp\Sk ⊆A . Otherwise, there would exist an
element Σ′p ⊂ Ã such that

{gt
Xk

: t ∈ C,0 <| t |< ε}= (Σp∩Σ
′
p)\p⊂A ,
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by condition (iii). In other words, Σp∩Σ′p = t-axis and hence A would be singular along the t-axis which is impossible. Since

the variety A is irreducible and since the generic hyperplane section Hgen. of Ã is also irreducible, all hyperplane sections are
connected and hence D is also connected. Now consider the graph G f ⊂ Pm(C)×PN(C) of the map f , which is irreducible
together with Ã . It follows from the irreducibility of G f that a generic hyperplane section G f ∩ (Hgen.×PN(C)) is irreducible,
hence the special hyperplane section G f ∩ ({Z0 = 0}×PN(C)) is connected and therefore the projection map

Pro jPN(C)[G f ∩ ({Z0 = 0}×PN(C))] = f (D)≡S ,

is connected. Hence, the variety

Ã = A ∪ (∪p∈Sk Σp) = A ∪Sk ⊆ PN(C),

is compact, connected and embeds smoothly into PN(C) via f .
b) Let gti be the flow generated by Xi on A and let p1 ∈ Ã \A . For ε > 0 and for all t1 ∈ C such that 0 < |t1|< ε , note

that q≡ gt1(p1) is well defined and gt1(p1) ∈ f (A ), using condition (iii). Let U(q)⊆A be a neighborhood of q and let

gt2(p2) = g−t1 ◦gt2 ◦gt1(p2), ∀p2 ∈U(p1)≡ g−t1 (U(q)) ,

which is well defined since by commutativity one can see that the right hand side is independent of t1:

g−(t1+ε) ◦gt2 ◦gt1+ε(p2) = g−(t1+ε) ◦gt2 ◦gt1 ◦gε(p2) = g−(t1+ε) ◦gε ◦gt2 ◦gt1(p2) = g−t1 ◦gt2 ◦gt1(p2).

Notice that gt2(p2) is a holomorphic function of p2 and t2, because in U(p1) the function gt1 is holomorphic and its image is
away from S , i.e., in the affine, gt2 is holomorphic. The same argument applies to gt3(p3), ...,gtn(pn) where

gtn(pn) = g−tn−1 ◦gtn ◦gtn−1(pn), ∀pn ∈U(pn−1)≡ g−tn−1(U(q)).

Thus X1, ...,Xn have been holomorphically extended, remain independent and commuting on Ã . Therefore, we can show along
the same lines as in the Arnold-Liouville theorem [7] that Ã is a complex torus Cn/lattice. And that will done, by considering
the local diffeomorphism

Cn −→ Ã , t = (t1, ..., tn) 7−→ gt p = gt1 ◦ . . .◦gtn(p),

for a fixed origin p ∈ f (A ). The additive subgroup L = {t ∈ Cn : gt p = p}, is a lattice of Cn (spanned by 2n vectors in Cn,
independent over R), hence Cn/L−→ Ã is a biholomorphic diffeomorphism.

c) Let

ds2 =
n

∑
k=1

dtk⊗dtk,

be a hermitian metric on the complex variety Ã and let ω its fundamental (1,1)-form. We have

ω =−1
2

Imds2 =

√
−1
2

n

∑
k=1

dtk ∧dtk.

So we see that ω is closed and the metric ds2 is kähler and consequently Ã is a Kähler variety.
d) On the Kähler variety Ã are defined periods of ω . If these periods are integers (possibly after multiplication by a

number), we obtain a variety of Hodge. More specifically, integrals
∫

γk
ω of the form ω (where γk are cycles in H2(Ã ,Z))

determine the periods ω . As they are integers, then Ã is a Hodge variety. The variety Ã is equipped with n holomorphic
vectors fields, independent and commuting. From a) and b) the variety Ã is both a projective variety and a complex torus and
hence an Abelian variety as a consequence of Chow theorem [12, 27]. Another proof is to use the result that we just show since
every Hodge torus is Abelian, the converse is also true. Note also that by Moishezon’s theorem [30], a compact complex kähler
variety having as many independent meromorphic functions as its dimension is an Abelian variety. �
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3. Geodesic flow on the group SO(3) and Euler rigid body motion
The Euler rigid body motion [11] (also called Euler-Poinsot [36] motion of the solid) can be regarded as geodesic flow on
SO(3). This problem expresses the free motion of a rigid body around a fixed point and the motion of the body is governed by
the following equation

Ṁ = [M,ΛM] , (3.1)

with

M = (Mi j)1≤i, j≤3 ≡
3

∑
i=1

miei ≡

 0 −m3 m2
m3 0 −m1
−m2 m1 0

 ∈ so(3),

and

ΛM =
3

∑
i=1

λimiei ≡

 0 −λ3m3 λ2m2
λ3m3 0 −λ1m1
−λ2m2 λ1m1 0

 ∈ so(3), λi ≡
1
Ii
,

where (m1,m2,m3) is the angular momentum, and I1, I2, I3, the principal moments of inertia about the principal axes of inertia.
Equation (3.1) is written explicitly in the form

ṁ1 = (λ3−λ2)m2m3,

ṁ2 = (λ1−λ3)m1m3, (3.2)
ṁ3 = (λ2−λ1)m1m2,

and can also be written as a Hamiltonian vector field

ẋ = J
∂H
∂x

, x = (m1,m2,m3)
ᵀ ,

with the Hamiltonian

H =
1
2
(
λ1m2

1 +λ2m2
2 +λ3m2

3
)
,

and

J =

 0 −m3 m2
m3 0 −m1
−m2 m1 0

 ∈ so(3).

The system (3.2) has beside the energy H1 = H, a trivial invariant H2, i.e., such that : J
∂H2

∂x
= 0, implying

H2 =
1
2
(
m2

1 +m2
2 +m2

3
)
.

The system evolves on the intersection of the sphere H1 = c1 and the ellipsoid H2 = c2. In R3, this intersection will be

isomorphic to two circles
(

with c2
λ3

< c1 <
c2
λ1

)
. The system (3.2) is completely integrable and the vector J

∂H
∂x

gives a flow on
a variety

Mc =
2⋂

i=1

{
x ∈ R3 : Hi(x) = ci

}
, (c = (c1,c2) is not a critical value),

diffeomorphic to a real torus of dimension 1, that is to say a circle.
From the first integrals H1 and H2, we express m1 and m3 as a function of m2. These expressions are then introduced into

the second equation of the system (3.2) to obtain a differential equation in m2 and
dm2

dt
only. In more detail, the following

relationships are easily obtained from equations H1 = c1 and H2 = c2:

m2
1 =

2c1− r2λ3− (λ2−λ3)m2
2

λ1−λ3
, (3.3)
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m2
3 =

2c2λ1−2c1− (λ1−λ2)m2
2

λ1−λ3
. (3.4)

By substituting these expressions in the second equation of the system (3.2), we obtain

ṁ2 =
√(

2c1−2c2λ3− (λ2−λ3)m2
2

)(
2c2λ1−2c1− (λ1−λ2)m2

2

)
.

By integrating this equation, we obtain a function t(m2) in the form of an elliptic integral. To reduce this to the standard form,
we can assume that 2c2 >

2c1
λ2

(otherwise, it is enough to invert the indices 1 and 3 in all the previous formulas). We rewrite the
previous equation, in the form

dm2√
(2c1−2c2λ3)(2c2λ1−2c1)dt

=

√(
1−

(λ2−λ3)m2
2

2c1−2c2λ3

)(
1−

(λ1−λ2)m2
2

2c2λ1−2c1

)
.

By setting

τ = t
√

(λ2−λ3)(2c2λ1−2c1), s = m2

√
λ2−λ3

2c1−2c2λ3
,

we obtain

ds
dτ

=

√
(1− s2)

(
1− (λ1−λ2)(2c1−2c2λ3)

(λ2−λ3)(2c2λ1−2c1)
s2

)
,

which suggests choosing elliptic functions as a module

k2 =
(λ1−λ2)(2c1−2c2λ3)

(λ2−λ3)(2c2λ1−2c1)
.

Inequalities λ1 > λ2 > λ3, 2c1
λ1

< 2c2 <
2c1
λ3

and r2 > 2c1
λ2

show that 0 < k2 < 1. So we get

ds
dτ

=
√
(1− s2)(1− k2s2).

This equation admits the solution (we choose the origin of the times such that m2 = 0 for t = 0):

τ =
∫ s

0

ds√
(1− s2)(1− k2s2)

.

It is the integral of a holomorphic differential on an elliptic curve

E : w2 = (1− s2)(1− k2s2). (3.5)

The inverse function s(τ) is one of Jacobi’s elliptic functions [27] : s = snτ , which also determines m2 as a function of time,
that is,

m2 =

√
2H1− r2λ3

λ2−λ3
· snτ.

According to the equalities (3.3) and (3.4), we know that the functions m1 and m3 are expressed algebraically as a function of
m2, so

m1 =

√
2H1− r2λ3

λ1−λ3
·
√

1− sn2τ,

m3 =

√
r2λ1−2H1

λ1−λ3
·
√

1− k2sn2τ.
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Given the definition of the other two elliptical functions [27] :

cnτ =
√

1− sn2τ, dnτ =
√

1− k2sn2τ,

and the fact that τ = t
√
(λ2−λ3)(2c2λ1−2c1), we finally get the following explicit formulas :

m1 =

√
2c1−2c2λ3

λ1−λ3
cn(t

√
(λ2−λ3)(2c2λ1−2H1)),

m2 =

√
2c1−2c2λ3

λ2−λ3
sn(t

√
(λ2−λ3)(2c2λ1−2c1)),

m3 =

√
2c2λ1−2c1

λ1−λ3
dn(t

√
(λ2−λ3)(2c2λ1−2c1)).

In other words, the integration of the Euler equations is done by means of elliptic Jacobi functions. In fact, the Euler rigid body
motion is always algebraically completely integrable. The two circles of the intersection Mc, (with c1

λ3
< c2 <

c1
λ1

, otherwise it is
empty) forms the real part of a complex torus of dimension 1, defined by the elliptic curve E (3.5). The complex intersection(
⊂ C3

)
is the affine part of an elliptic curve

Mc =
{

X ∈ P3(C) : H1(X) = c1X2
0
}
∩
{

X ∈ P3(C) : H2(X) = c2X2
0
}
.

We show that Mc is isomorphic to the elliptic curve E . In addition, the circle defined by {H1 = c1}∩{H2 = c2} extends to
the complex torus C/lattice and the flow linearizes on this torus. If p(t) = (m1(t),m2(t),m3(t)), is a solution of the system
(3.2), the law connecting p(t1 + t2) to p(t1) and p(t2) is the the addition law on the elliptic curve E . From equations (3.2), the
unique holomorphic differential on Mc is given by

ω =
dm1

(λ3−λ2)m2m3
=

dm2

(λ1−λ3)m1m3
=

dm3

(λ2−λ1)m1m2
,

so t =
∫ p(t)

p(0)
ω , p(0) ∈Mc. The system (3.2) is invariant by the transformations t→ α−1t, m1→ αm1, m2→ αm2, m3→ αm3.

We seek solutions of the system (3.2) or of equation (3.1) in the form of Laurent series

M(t) = t−1
(

M(0)+M(1)t +M(2)t2 + · · ·
)
=

∞

∑
j=0

M( j)t j−1, (3.6)

depending on dim(phase space)−1 = 2 free parameters. Substituting (3.6) into equation (3.1), one obtains

∞

∑
j=0

( j−1)M( j)t j−2 =
∞

∑
j=0

(
j

∑
i=0

[
M(i),ΛM( j−i)

])
t j−2.

Therefore,

( j− i)M( j) =
j

∑
i=0

[
M(i),ΛM( j−i)

]
,

and we see that the coefficients M(0),M(1), ..., satisfy the equations

M(0)+
[
M(0),ΛM(0)

]
= 0, (3.7)

(L− kI)M(k) =−
k−1

∑
i=1

[
M(i),ΛC(k−i)

]
k ≥ 1,

where L Is the linear operator L : so(3)−→ so(3) defined by

L(Y ) = Y +
[
M(0),ΛY

]
+
[
Y,ΛM0]= Jacobian of (3.7).
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The matrix M(0) appearing in L is a solution of the nonlinear equation (3.7). A simple calculation shows that the matrix (L−kI)
is always invertible except for k = 2 and therefore its rank is equal to 1. This shows that the coefficient M(2) contains two free
parameters and can be assimilated to c1 and c2. In a detailed and explicit way, let us look for the solutions of the system (3.2) in
the form of Laurent’s series

m1 =
1
t

(
m(0)

1 +m(1)
1 t +m(2)

1 t2 + · · ·
)
,

m2 =
1
t

(
m(0)

2 +m(1)
2 t +m(2)

2 t2 + · · ·
)
,

m3 =
1
t

(
m(0)

3 +m(1)
3 t +m(2)

3 t2 + · · ·
)
,

depending on dim(phase space)−1 = 2 free parameters. Substituting these equations into the system (3.2), we see that
1) the coefficients m(0)

1 , m(0)
2 , m(0)

3 , satisfy the equations

m(0)
1 +(λ3−λ2)m(0)

2 m(0)
3 = 0,

m(0)
2 +(λ1−λ3)m(0)

1 m(0)
3 = 0,

m(0)
3 +(λ2−λ1)m(0)

1 m(0)
2 = 0,

whose solutions are
1st case :

m(0)
1 = −1√

(λ2−λ1)(λ1−λ3)
, m(0)

2 = 1√
(λ2−λ1)(λ3−λ2)

, m(0)
3 = 1√

(λ1−λ3)(λ3−λ2)
.

2nd case :
m(0)

1 = 1√
(λ2−λ1)(λ1−λ3)

, m(0)
2 = 1√

(λ2−λ1)(λ3−λ2)
, m(0)

3 = −1√
(λ1−λ3)(λ3−λ2)

.

3rd case :
m(0)

1 = 1√
(λ2−λ1)(λ1−λ3)

, m(0)
2 = −1√

(λ2−λ1)(λ3−λ2)
, m(0)

3 = 1√
(λ1−λ3)(λ3−λ2)

.

4th case :
m(0)

1 = −1√
(λ2−λ1)(λ1−λ3)

, m(0)
2 = −1√

(λ2−λ1)(λ3−λ2)
, m(0)

3 = −1√
(λ1−λ3)(λ3−λ2)

.

2) the coefficients m(1)
1 , m(1)

2 , m(1)
3 , satisfy equations

(λ3−λ2)m(0)
2 m(1)

3 +(λ3−λ2)m(1)
2 m(0)

3 = 0,

(λ1−λ3)m(0)
1 m(1)

3 +(λ1−λ3)m(1)
1 m(0)

3 = 0,

(λ2−λ1)m(0)
1 m(1)

2 +(λ2−λ1)m(1)
1 m(0)

2 = 0,

the solutions of which are in all cases : m(1)
1 = m(1)

2 = m(1)
3 = 0.

3) the coefficients m(2)
1 , m(2)

2 , m(2)
3 , satisfy equations

m(2)
1 −λ3m(0)

2 m(2)
3 −λ3m(1)

2 m(1)
3 −λ3m(2)

2 m(0)
3

+λ2m(0)
2 m(2)

3 +λ2m(1)
2 m(1)

3 +λ2m(2)
2 m(0)

3 = 0,

m(2)
2 −λ1m(0)

1 m(2)
3 −λ1m(1)

1 m(1)
3 −λ1a2m(0)

3

+λ3m(0)
1 m(2)

3 +λ3m(1)
1 m(1)

3 +λ3m(2)
1 m(0)

3 = 0,

m(2)
3 −λ2m(0)

1 b2−λ2m(1)
1 m(1)

2 −λ2m(2)
1 m(0)

2

+λ1m(0)
1 m(2)

2 +λ1m(1)
1 m(1)

2 +λ1m(2)
1 m(0)

2 = 0,

whose solutions corresponding to the different cases are respectively,

1st case : m(2)
1 =

√
(λ3−λ2)√
(λ1−λ3)

m(2)
2 +

√
(λ3−λ2)√
(λ2−λ1)

m(2)
3 .

2nd case : m(2)
1 =−

√
λ3−λ2√
λ1−λ3

m(2)
2 +

√
λ3−λ2√
λ2−λ1

m(2)
3 .

3rd case : m(2)
1 =

√
λ3−λ2√
λ1−λ3

m(2)
2 −

√
λ3−λ2√
λ2−λ1

m(2)
3 .
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4th case : m(2)
1 =−

√
λ3−λ2√
λ1−λ3

m(2)
2 −

√
λ3−λ2√
λ2−λ1

m(2)
3 .

where m(2)
2 et m(2)

3 are two free parameters.
Therefore, for the first case, we have

m1 =
−1

t
√

(λ2−λ1)(λ1−λ3)
+

(√
(λ3−λ2)√
(λ1−λ3)

m(2)
2 +

√
(λ3−λ2)√
(λ2−λ1)

m(2)
3

)
t + · · · ,

m2 =
1

t
√

(λ2−λ1)(λ3−λ2)
+m(2)

2 t + · · · ,

m3 =
1

t
√

(λ1−λ3)(λ3−λ2)
+m(2)

3 t + · · · .
Substituting these developments into the first integrals H1 and H2, we get

H1 = 2
√

λ3−λ2√
λ2−λ1

(
1

λ3−λ2
− 1

λ1−λ3

)
m(2)

2 +2
√

λ3−λ2√
λ1−λ3

(
1

λ3−λ2
− 1

λ2−λ1

)
m(2)

3 ,

H2 = 2
√

λ3−λ2√
λ2−λ1

(
λ2

λ3−λ2
− λ1

λ1−λ3

)
m(2)

2 +2
√

λ3−λ2√
λ1−λ3

(
λ3

λ3−λ2
− λ1

λ2−λ1

)
m(2)

3 ,

and we deduce the relations :
m(2)

3 = 1
6
√

(λ1−λ3)(λ3−λ2)
((λ3−λ2)(λ1H1−H2)− (λ1−λ3)(λ2H1−H2)),

m(2)
2 = 1

6
√

(λ2−λ1)(λ3−λ2)
((λ2−λ1)(λ3H1−H2)− (λ3−λ2)(λ1H1−H2)) .

Obviously, similar expressions are obtained for the other cases.
We deduce from what precedes the following result:

Theorem 3.1. The Euler rigid body motion is always algebraically completely integrable and can be regarded as geodesic
flow on SO(3). In addition, the integration of the equations is done by means of elliptic Jacobi functions.

4. Clebsch and Lyapunov-Steklov cases of a solid in an ideal fluid

The equations of motion of a solid in an ideal fluid have the form (Kirchhoff’s equations [17]) :

ṗ1 = p2
∂H
∂ l3
− p3

∂H
∂ l2

,

ṗ2 = p3
∂H
∂ l1
− p1

∂H
∂ l3

,

ṗ3 = p1
∂H
∂ l2
− p2

∂H
∂ l1

, (4.1)

l̇1 = p2
∂H
∂ p3
− p3

∂H
∂ p2

+ l2
∂H
∂ l3
− l3

∂H
∂ l2

,

l̇2 = p3
∂H
∂ p1
− p1

∂H
∂ p3

+ l3
∂H
∂ l1
− l1

∂H
∂ l3

,

l̇3 = p1
∂H
∂ p2
− p2

∂H
∂ p1

+ l1
∂H
∂ l2
− l2

∂H
∂ l1

,

where (p1, p2, p3) is the velocity of a point fixed relatively to the solid, (l1, l2, l3) the angular velocity of the body expressed
with regard to a frame of reference also fixed relatively to the solid and H is the Hamiltonian. Equations (4.1) can be regarded
as the equations of the geodesics of the right-invariant metric on the group E(3) = SO(3)×R3 of motions of 3-dimensional
Euclidean space R3, generated by rotations and translations.

Equations (4.1) have the trivial first integrals (or invariants):

H1 = H, H2 =
3

∑
k=1

p2
k , H3 =

3

∑
k=1

pklk. (4.2)

We distinguish two integrable cases: the case of Clebsch [8] and the case of Lyapunov-Steklov [28, 37].
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4.1 Clebsch’s case
In Clebsch’s case, we have

H1 = H =
1
2

3

∑
k=1

(
ak p2

k +bkl2
k
)
, (4.3)

with
a2−a3

b1
+

a3−a1

b2
+

a1−a2

b3
= 0.

An additional integral is

H4 =
1
2

3

∑
k=1

(
bk p2

k +ρl2
k
)
, (4.4)

where the constant ρ satisfies the conditions

ρ =
b1 (b2−b3)

a2−a3
=

b2 (b3−b1)

a3−a1
=

b3 (b1−b2)

a1−a2
.

We shall study briefly Kötter’s solution [19] by quadratures of the equations (4.1), in terms of genus 2 hyperelliptic integrals. In
fact, the transformation to the separating coordinates s1 and s2 which leads to the quadratures in terms of hyperelliptic integrals
is quite involved. Finding this transformation require a great deal of luck and ingenuity. After the substitution bk → ρbk,
1≤ k ≤ 3, and after an appropriate linear combination of H1 and H2, the equations (4.2), (4.3), (4.4) can be written in the form

p2
1 + p2

2 + p2
3 = A,

b1 p2
1 +b2 p2

2 +b3 p2
3 + l2

1 + l2
2 + l2

3 = B,

b1l2
1 +b2l2

2 +b3l2
3 −b2b3 p2

1−b1b3 p2
2−b1b2 p2

3 =C,

p1l1 + p2l2 + p3l3 = D,

where A,B,C,D are constants. Following [19, 10, 23], we introduce coordinates ϕk, ψk, 1≤ k ≤ 3 by setting

ϕk = pk


√

∏
3
j=1 (z1−b j)

√
z1−bk

√
∂R/∂ z1

+
√
−1

√
∏

3
j=1 (z2−b j)

√
z2−bk

√
∂R/∂ z2

+ lk

( √
z1−bk√
∂R/∂ z1

+
√
−1
√

z2−bk√
∂R/∂ z2

)
,

ψk = pk


√

∏
3
j=1 (z1−b j)

√
z1−bk

√
∂R/∂ z1

−
√
−1

√
∏

3
j=1 (z2−b j)

√
z2−bk

√
∂R/∂ z2

+ lk

( √
z1−bk√
∂R/∂ z1

−
√
−1
√

z2−bk√
∂R/∂ z2

)
,

where

R(z) =
4

∏
i=1

(z− zi) ,

and z1,z2,z3,z4 are the roots of the equation

A2

(
z2− z

3

∑
k=1

bk

)
+Bz−C+2D

√
3

∏
k=1

(z−bk) = 0.

Let s1 and s2 be the roots of the equation

ψ2
1

ν2
1 − s

+
ψ2

2

ν2
2 − s

+
ψ2

3

ν2
3 − s

= 0,

where

νk =

√
z3−bk√

∂R/∂ z3
+
√
−1
√

z4−bk√
∂R/∂ z4√

z1−bk√
∂R/∂ z1

+
√
−1
√

z2−bk√
∂R/∂ z2

, 1≤ k ≤ 3.
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An expression of the original variables p1, p2, p3, l1, l2, l3 in terms of s1 and s2 can be found in [19]. After some algebraic
manipulations, we obtain the following equations for s1 and s2:

ds1

dt
=

(as1 +b)
√

P5 (s1)

s2− s1
,

ds2

dt
=

(as2 +b)
√

P5 (s2)

s1− s2
,

where a, b are constants and P5 (s) is a polynomial of degree 5 of the form

P5 (s) = s(s−ν
2
1 )(s−ν

2
2 )(s−ν

2
3 )(s−ν

2
1 ν

2
2 ν

2
3 ).

These equations can be integrated by the Abelian mapping

H → Jac(H ) = C2/Λ, P 7−→
(∫ P

P0

θ1,
∫ P

P0

θ2

)
,

where the hyperelliptic curve H of genus 2 is given by the equation w2 = P5(s), Λ is the lattice generated by the vectors
n1 +Mn2,(n1,n2) ∈ Z2,M is the matrix of period of the curve H , (θ1,θ2) is a canonical basis of holomorphic differentials on
H , i.e.,

θ1 =
ds√
P5(s)

,θ2 =
sds√
P5(s)

,

and P0 is a fixed point. Consequently, we have

Theorem 4.1. The system of differential equations (4.1) in the Clebsch’s case can be integrated in terms of genus 2 hyperelliptic
functions of time.

4.2 Lyapunov-Steklov’s case
In Lyapunov-Steklov’case, we have

H1 = H =
1
2

3

∑
k=1

(
ak p2

k +bkl2
k
)
+

3

∑
k=1

ck pklk,

with

a1 = A2b1 (b2−b3)
2 +B, a2 = A2b2 (b3−b1)

2 +B, a3 = A2b3 (b1−b2)
2 +B,

c1 = Ab2b3 +C, c2 = Ab1b3 +C, c3 = Ab1b2 +C,

where A, B, C are constants. A fourth first integral is given by

H4 =
1
2

3

∑
k=1

(
dk p2

k + l2
k
)
−A

3

∑
k=1

bk pklk,

where

d1 = A2 (b2−b3)
2 , d2 = A2 (b3−b1)

2 , d3 = A2 (b1−b2)
2 .

A long and delicate calculation [20] shows that in this case too, the integration is done using hyperelliptic functions of genus
two.

5. The classification of algebraic integrable geodesic flow on SO(4)

In several problems, , when studying the geodesic flow on SO(4), it is more convenient to use the coordinates u = (x1,x2,x3)
and v = (x4,x5,x6), they correspond to the decomposition u⊕ v ∈ so(4)' so(3)⊕ so(3). In these coordinates, the geodesic
flow on the group SO(4) can be written as

XH : u̇ = u∧ ∂H
∂u

, v̇ = v∧ ∂H
∂v

,
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for invariant metric defined by the quadratic form

H =
1

24

3

∑
i=1

(
3(3ci +di)x2

i +(ci +3di)x2
i+3 +6(di− ci)xixi+3

)
, (5.1)

with coefficients

ci =
bi

ai
,di =

b j−bk

a j−ak
,

3

∑
i=1

ai = 0,
3

∑
i=1

bi = 0,

and i jk permutations of 123. This geodesic flow has three quadratic invariants, namely, the Casimir functions ‖u‖2 and
‖v‖2, and the metric above, and one quartic invariant. The invariants ‖u‖2 and ‖v‖2 define the 4-dimensional non degenerate
symplectic leaves of Hamiltonian structure, which therefore are parameterized by the values of ‖u‖2 and ‖v‖2. More precisely,
in the classification [4, 6] of algebraic integrable geodesic flow on SO(4), three cases come up; two are linearly equivalent to
cases of rigid body motion in a perfect fluid studied last century, respectively by Clebsch and Lyapunov-Steklov, and there is a
third new case namely the Kostant-Kirillov Hamiltonian flow on the dual of so(4). The metric H is obviously written in the
quadratic form

H =
1
2

6

∑
j=1

λ jx2
j +

3

∑
j=1

µ jx jx j+3,

where λ1, ...,λ6,µ1,µ2,µ3 ∈ C and λ12λ23λ31λ45λ56λ64µ1µ2µ3 6= 0 with λ jk ≡ λ j−λk. Explicitly, the equations above are
written

dx1

dt
= λ32x2x3 +µ3x2x6−µ2x3x5,

dx2

dt
= λ13x3x1 +µ1x3x4−µ3x1x5,

dx3

dt
= λ21x1x2 +µ2x1x5−µ1x2x4,

dx4

dt
= λ65x5x6 +µ3x3x5−µ2x2x6,

dx5

dt
= λ46x6x4 +µ1x1x6−µ3x3x4,

dx6

dt
= λ54x4x5 +µ2x2x4−µ1x1x5.

The equations have besides the energy H1 = H, two trivial constants of the motion

H2 = x2
1 + x2

2 + x2
3,H3 = x2

4 + x2
5 + x2

6.

Adler and van Moerbeke [4, 6] have shown that the geodesic flow on SO(4) for the metric defined by the above quadratic
form is algebraically completely integrable in the three cases described in the following subsections and these are the only ones
that exist.

5.1 Manakov geodesic flow on the group SO(4) and Clebsch rigid body motion in a perfect fluid
The geodesic flow for this metric takes the following commutator form (Euler-Arnold equations) :

Ẋ = [X ,Λ.X ] , . ≡ d
dt

(5.2)

where

X = (Xi j)1≤i, j≤4 =
6

∑
i=1

xiei =


0 −x3 x2 −x4
x3 0 −x1 −x5
−x2 x1 0 −x6
x4 x5 x6 0

 ∈ so(4),
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and

Λ.X = (λi jXi j)1≤i, j≤4 =
6

∑
i=1

λixiei =


0 −λ3x3 λ2x2 −λ4x4

λ3x3 0 −λ1x1 −λ5x5
−λ2x2 λ1x1 0 −λ6x6
λ4x4 λ5x5 λ6x6 0

 ∈ so(4).

In view of the isomorphism between
(
R6,∧

)
and (so(4), [, ]) we write the system (5.2) as

ẋ1 = (λ3−λ2)x2x3 +(λ6−λ5)x5x6,

ẋ2 = (λ1−λ3)x1x3 +(λ4−λ4)x4x6,

ẋ3 = (λ2−λ1)x1x2 +(λ5−λ4)x4x5, (5.3)
ẋ4 = (λ3−λ5)x3x5 +(λ6−λ2)x2x6,

ẋ5 = (λ4−λ3)x3x4 +(λ1−λ6)x1x6,

ẋ6 = (λ2−λ4)x2x4 +(λ5−λ1)x1x5.

The quadratic form H is diagonal with regard to the customary so(4) coordinates (Manakov metric [29]), i.e.,

2H =
4

∑
j,k=1

j<k

Λ jkX2
jk, (X jk)1≤ j,k≤4) ∈ so(4),

with

Λ jk =
β j−βk

α j−αk
, (α j,β j ∈ C,1≤ j ≤ 4),

all Λ jk distinct. The extra invariant H4 is quadratic and we’ll see how this was done independently by Haine [13] and Mumford
(appendix in[2]) that the flow evolves on Abelian surfaces C2/lattice⊆ P7(C), having period matrix(

2 0 a c
0 4 c b

)
, Im

(
a c
c b

)
> 0, (a,b,c ∈ C),

and also the linearization takes place on a Prym variety (For the definition and properties of Prym varieties, see for example
[13, 25]). The periods of this Prym variety provide the exact periods of the motion in terms of Abelian integrals. The problem
of the solid body in a fluid in the case of Clebsch is a particular case of this metric (see subsection 4.1).

Let’s see in more detail the linearization of this problem [13, 6, 22]. Let x ∈ C6, t ∈ C and Z ⊂ C6 a non-empty Zariski
open set. The momentum map

g : (H1, ...,H4) : C6 −→ C4,

is submersive on Z, i.e., dH1(x), ...,dH4(x) are linearly independent on Z. Let

I = g
(
C6\Z

)
=
{

c = (ci) ∈ C4 : ∃x ∈ g−1(c) with dH1(x)∧ ...∧dH4(x) = 0
}
,

be the set of critical values of g and I the Zariski closure of I in C4. The non-empty Zariski open set Z can be chosen as the set

Z =
{

x ∈ C6 : g(x) ∈ C4\I
}
.

The invariant variety defined by

Mc = g−1(c) =
4⋂

i=1

{
x ∈ C6 : Hi(x) = ci

}
,

is the fibre of a morphism from C6 to C4, thus Mc is a smooth affine surface for generic c = (c1, ...,c4) ∈ C4 and the main
problem will be to complete Mc into an Abelian surface. Now, how does one find the compactification of Mc into an Abelian
surface? This compactification is not trivial and the simplest one obtained as a closure :

Mc =
4⋂

i=1

{
Hi(x) = cix2

0
}
⊂ P6(C),
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i.e.,

x1x4 + x2x5 + x3x6 = c1x2
0,

x2
1 + x2

2 + · · ·+ x2
6 = c2x2

0,

λ1x2
1 +λ2x2

2 + · · ·+λ6x2
6 = c3x2

0,

µ1x2
1 +µ2x2

2 + · · ·+µ6x2
6 = c4x2

0,

where [x0 : x1 : ... : x6] are homogeneous coordinates on P6(C), does not lead to this result (in the following we will not
distinguish between x1 as a homogeneous coordinates [x0 : x1] and as an affine coordinate x1/x0). Indeed, an Abelian surface is
not simply-connected and therefore cannot be projective complete intersection. In other words, if Mc is to be the affine part of
an Abelian surface, Mc must have a singularity somewhere along the locus at infinity C = Mc

⋂
{x0 = 0}. A direct calculation

shows that C is an ordinary double curve of Mc except at 16 ordinary pinch points of Mc; the variety Mc has a local analytic
equation x2 = yz2. The reduced curve Cr is a smooth elliptic curve. Now , it’s only after blowing up Mc along the curve Cr that
one gets the desired Abelian surface.

Theorem 5.1. a) The divisor of poles of the functions x1,x2, ...,x6 is a Riemann surface D of genus 9. For generic constants,
the surface Mc is the affine part of an Abelian surface M̃c obtained by gluing to Mc the divisor D .

b) The flow (5.3) evolves on an Abelian surface M̃c ∼= C2/lattice of polarization(
2 0 a c
0 4 c b

)
, Im
(

a c
c b

)
> 0.

c) The Abelian surface M̃c which completes the affine surface Mc is the Prym variety Prymα(Γ) of the genus 3 Riemann
surface Γ:

Γ :
{

w2 =−c1
(
x0

5x0
6

)2− c2
(
x0

6

)2 z− c3
(
x0

5

)2 z+ c4y
y2 = z

(
α2z−1

)
(β 2z+1)

for the involution

σ : Γ−→ Γ, (w,y,z) 7−→ (−w,y,z),

interchanging the two sheets of the double covering

Γ 7−→ Γ0, (w,y,z) 7−→ (y,z),

where Γ0 is the elliptic curve defined by

Γ0 : y2 = z
(
α

2z−1
)
(β 2z+1).

Proof. a) Consider points at infinity which are limit points of trajectories of the flow. There is a Laurent decomposition of
such asymptotic solutions,

X(t) = t−1
(

X (0)+X (1)t +X (2)t2 + · · ·
)

(5.4)

which depend on dim(phase space)−1 = 5 free parameters. Putting (5.4) into (5.2), solving inductively for the X (k), one finds
at the 0th step a non-linear equation,

X (0)+
[
X (0),Λ.X (0)

]
= 0, (5.5)

and at the kth step, a linear system of equations

(L− kI)
(

X (k)
)
=

{
0 for k = 1

quadratic polynomial in X (1), ...,X (k−1) for k ≥ 2
(5.6)

where L denotes the linear map

L(Y ) =
[
Y,Λ.X (0)

]
+
[
X (0),Λ.Y

]
+Y = Jacobian map of (5.5).
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One parameter appear at the 0th step, i.e., in the resolution of (5.5) and the 4 remaining ones at the kth step, k = 1, ...,4. Taking
into account only solutions trajectories lying on the surface Mc, we obtain one-parameter families which are parameterized by a
Riemann surface. To be precise we search for the set D of Laurent solutions (5.4) restricted to the affine invariant surface Mc,
i.e.,

D = closure of the continuous components of
{Laurent solutions X(t) such that Hi (X(t)) = ci, 1≤ i≤ 4} ,

=
4⋂

i=1

{
t0− coefficient of Hi (X(t)) = ci

}
,

= a Riemann surface (algebraic curve) whose affine equation is w2 + c1

(
x(0)5 x(0)6

)2
+ c2

(
x(0)4 x(0)6

)2
+ c3

(
x(0)4 x(0)5

)2
+ c4x(0)4 x(0)5 x(0)6 ,

≡ w2 +F
(

x(0)4 ,x(0)5 ,x(0)6

)
= 0

(5.7)

where w is an arbitrary parameter and where x(0)4 ,x(0)5 ,x(0)6 parameterizes the elliptic curve

E :


(

x(0)4

)2
+
(

x(0)5

)2
+
(

x(0)6

)2
= 0(

βx(0)5 +αx(0)6

)(
βx(0)5 −αx(0)6

)
= 1

(5.8)

with (α,β ) such that : α2 +β 2 +1 = 0. The Riemann surface D is a two-sheeted ramified covering of the elliptic curve E and
it easy to check that the elliptic curve E is exactly the reduced curve Cr. The branch points are defined by the 16 zeroes of
F
(

x(0)4 ,x(0)5 ,x(0)6

)
on E . The Riemann surface D is unramified at infinity and by Riemann-Hurwitz’s formula,

2g(D)−2 = N (2g(E )−2)+R,

where N is the number of sheets and R the ramification index, the genus g(D) of D is 9. To show that Mc is the affine part of
an Abelian surface M̃c with M̃c\Mc = D , we can use the method of Laurent’s developments (see Haine [13]) or theorem 2.3.
Here, by following Mumford (see appendix to [2]), we give an abstract algebro-geometrical proof that the four quadrics in this
problem intersect in the affine part of an Abelian surface using Enriques classification of algebraic surfaces. For this, we will
compute the invariants of M̃c and use Enriques classification of algebraic surfaces (see [12], p.590). We denote as usual by KM̃c

the canonical bundle, χ(OM̃c
) the Euler characteristic and q(M̃c) the irregularity of M̃c. Now if

φ : M̃c −→Mc ⊂ P6(C)

is the normalization of Mc, then the pullback map on sections

φ
∗ : H0 (Mc,OMc

)
−→ H0

(
M̃c,OM̃c

)
,

is an isomorphism and

KM̃c
= K̃Mc

−D , K̃Mc
= φ

∗ (KMc

)
and so for H a hyperplane in P6(C),

KM̃c
= φ

∗

(
Mc.KP6(C)+(

4

∑
i=1

deg Hi).H

)
−D = 0.

Also

χ

(
OM̃c

)
= χ

(
φ∗OM̃c

/OMc

)
+χ

(
OMc

)
= χ (φ∗OD/OE )+χ

(
OA

)
.

Recall that the Riemann surface D (5.7) of genus 9, is a double cover ramified over 16 points of the elliptic curve E (5.8).
We shall use the Koszul complex to compute χ

(
OMc

)
. In the local ring at each point of P6(C) the localizations of the 4

homogeneous polynomials Hi give a regular sequence, and the Koszul complex gives a canonical resolution

0→ OP6(C)(−8)→ OP6(C)(−6)4→ OP6(C)(−4)6→ OP6(C)(−2)4→ OP6(C)→ O −
Mc
→ 0
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Thus χ
(
OMc

)
= 8, hence χ

(
OM̃c

)
= 0 and q

(
M̃c

)
= 2. By Enriques-Kodaira’s classification theorem, it follows that M̃c is an

Abelian surface.
b) Let

L≡
{

f : f meromorphic on M̃c,( f )+D ≥ 0
}

be the set of meromorphic functions on M̃c with at worst a simple pole along D and let

χ(D) = dimH0
(

M̃c,O(D)
)
−dimH1

(
M̃c,O(D)

)
,

be the Euler characteristic of D . The adjunction formula and the Riemann-Roch theorem for divisors on Abelian surfaces imply
that

g(D) =
KM̃c

.D +D .D

2
+1,

and

χ(D) = pa

(
M̃c

)
+1+

1
2

(
D .(D−KM̃c

)
)
,

where g(D) is the geometric genus of D and pa

(
M̃c

)
is the arithmetic genus of M̃c. Since M̃c is an Abelian surface(

KM̃c
= 0, pa

(
M̃c

)
=−1

)
,

g(D)−1 =
D .D

2
= χ(D).

Using Kodaira-Serre duality [12, 27], Kodaira-Nakano vanishing theorem [12, 27] and a theorem on theta-functions [12, 27], it
easy to see that

g(D)−1 = dimL(D)
(
≡ h0(L)

)
= δ1δ2, (5.9)

where δ1,δ2 ∈N, are the elementary divisors of the polarization c1(L) of M̃c. Note that the natural reflection about the origin of
C2, is given by

σ ≡−id : (x0,x1, . . . ,x6) 7−→ (−x0,x1, . . . ,x6) ,

and has 16 fixed points on M̃c, given by the 16 branch points on D covering the 16 roots of the polynomial F(x0
4,x

0
5,x

0
6) (5.7).

Since L is symmetric (σ∗L ' L), σ can be lifted to L as an involution σ̃ in two ways differing in sign and for each section
(theta-function) s ∈ H0(L), we therefore have σ̃s =±s. Recall that a section s ∈ H0(L) is called even (resp. odd) if σ̃s =+s
(resp.σ̃s =−s). Under σ̃ the vector space H0(L) splits into an even and odd subspace H0(L) = H0(L)even⊕H0(L)odd with
H0(L)even containing all the even sections and H0(L)odd all odd ones. Using the inverse formula [12, 27], we see after a small
computation that

dimH0 (L )even =
δ1δ2

2
+2−1+] even δk ,k = 1,2 (5.10)

dimH0 (L )odd =
δ1δ2

2
−2−1+] even δk ,k = 1,2

Notice that c1(L) = φ ∗(H) and (c1(L)2) = 16 (since the degree of Mc is 16). By the classification theory of ample line bundles
on Abelian varieties, M̃c ' C2/LΩ with period lattice given by the columns of the matrix

Ω =

(
δ1 0 a c
0 δ2 c b

)
, Im

(
a c
c b

)
> 0,

according to (5.9), with

δ1δ2 = h0(L) = g(D)−1 = 8, δ1|δ2, δi ∈ N∗.
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Hence we have two possibilities : (i) δ1 = 1, δ2 = 8 and (ii) δ1 = 2, δ2 = 4. From formula (5.10), the corresponding line
bundle L has in case (i), 5 even sections, 3 odd ones and in case (ii), 6 even sections, 2 odd ones. Now x1, . . . ,x6 are 6 even
sections, showing that case (ii) is the only alternative and the period matrix has the form(

2 0 a c
0 4 c b

)
, Im

(
a c
c b

)
> 0.

c) After substitution z≡
(
x0

4
)2, the Riemann surface D can also be seen as a four-sheeted unramified covering of another

Riemann surface Γ, determined by the equation

Γ : G(w,z)≡
(

w2 + c1
(
x0

5x0
6
)2

+ c2
(
x0

6
)2

z+ c3
(
x0

5
)2

z
)2
− c2

4
(
x0

5x0
6
)2

z = 0.

It is straightforward to verify that the equations (5.8) are equivalent to
(
x0

5

)2
= β 2z+1 and

(
x0

6

)2
= α2z−1. To compute the

genus of Γ, we observe that the Riemann surface Γ is invariant under an involution

σ : Γ−→ Γ, (w,z) 7−→ (−w,z). (5.11)

Consider a map

ρ : Γ−→ Γ0 ≡ Γ/σ , (w,y,z) 7−→ (y,z),

of the Riemann surface Γ onto an elliptic curve Γ0 ≡ Γ/σ , that is given by the equation

Γ0 : y2 = z
(
α

2z−1
)
(β 2z+1). (5.12)

The genus of the Riemann surface

Γ :
{

w2 =−c1
(
x0

5x0
6

)2− c2
(
x0

6

)2 z− c3
(
x0

5

)2 z+ c4y
y2 = z

(
α2z−1

)
(β 2z+1)

(5.13)

is calculated by means of the map ρ . The latter is two-sheeted ramified covering of the elliptic curve Γ0 with 4 branch points.
Using the Riemann-Hurwitz formula, we obtain g(Γ) = 3.

I now will proceed to show that the Abelian surface M̃c can be identified as Prym variety Prymσ (Γ). Let (a1,a2,a3,b1,b2,b3)
be a basis of cycles in the Riemann surface Γ with the intersection indices aioa j = biob j = 0, aiob j = δi j, such that

σ (a1) = a3, σ (b1) = b3, σ (a2) =−a2, σ (b2) =−b2

for the involution σ (5.11). By the Poincaré residue formula, the 3 holomorphic 1-forms ω0,ω1,ω2 in Γ are the differentials

P(w,z)
dz

(∂G/∂w)(w,z)

∣∣∣∣
G(w,z)=0

= P(w,z)
dz

4wy
,

for P a polynomial of degree ≤ degG−3 = 1. Therefore

ω0 =
dz
y
,ω1 =

zdz
wy

,ω2 =
dz
wy

,

form a basis of holomorphic differentials on Γ and obviously

σ
∗ (ω0) = ω0,σ

∗ (ωk) =−ωk, (k = 1,2),

for the involution σ (5.11). It is well known that the period matrix Ω of Prymσ (Γ) can be written as follows

Ω =

(
2
∫

a1
ω1

∫
a2

ω1 2
∫

b1
ω1

∫
b2

ω1

2
∫

a1
ω2

∫
a2

ω2 2
∫

b1
ω2

∫
b2

ω2

)
,

Let (dt1,dt2) be a basis of holomorphic 1-forms on M̃c such that dt j
∣∣
D
= ω j, ( j = 1,2),

LΩ′ =

{
2

∑
k=1

mk

∫
a′k

(
dt1
dt2

)
+nk

∫
b′k

(
dt1
dt2

)
: mk,nk ∈ Z

}
,
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the lattice associated to the period matrix

Ω
′ =

( ∫
a′1

dt1
∫

a′2
dt1

∫
b′1

dt1
∫

b′2
dt1∫

a′1
dt2

∫
a′2

dt2
∫

b′1
dt2

∫
b′2

dt2

)
,

where (a′1,a
′
2,b
′
1,b
′
2) is a basis of H1(M̃c,Z) and let

M̃c −→ C2/LΩ′ : p 7−→
∫ p

p0

(
dt1
dt2

)
,

be the uniformizing map. By the Lefschetz theorem on hyperplane section [12, 27], the map H1(D ,Z)−→ H1(M̃c,Z) induced
by the inclusion D ↪→ M̃c is surjective and consequently we can find 4 cycles a′1,a

′
2,b
′
1,b
′
2 on the Riemann surface D such that

Ω
′ =

( ∫
a′1

ω1
∫

a′2
ω1

∫
b′3

ω1
∫

b′4
ω1∫

a′1
ω2

∫
a′2

ω2
∫

b′3
ω2

∫
b′4

ω2

)
,

and

LΩ′ =

{
2

∑
k=1

mk

∫
a′k

(
ω1

ω2

)
+nk

∫
b′k

(
ω1

ω2

)
: mk,nk ∈ Z

}
.

Recalling that F(x0
4,x

0
5,x

0
6) (5.7) has 4 zeroes on Γ0 (5.12) and 16 zeroes on E (5.8), it follows that the 4 cycles a′1,a

′
2,b
′
1,b
′
2 on

D which we look for are 2a1,a2,2b1,b2 and they form a basis of H1(M̃c,Z) such that

Ω
′ =

(
2
∫

a1
ω1

∫
a2

ω1 2
∫

b1
ω1

∫
b2

ω1

2
∫

a1
ω2

∫
a2

ω2 2
∫

b1
ω2

∫
b2

ω2

)
= Ω,

is a Riemann matrix. Thus, M̃c and Prymσ (Γ) are two Abelian varieties analytically isomorphic to the same complex torus
C2/LΩ. By Chow’s theorem [12, 27], M̃c and Prymσ (Γ) are then algebraically isomorphic. This completes the proof of the
theorem. �

Remark 5.2. It is well known that this problem has been solved via the Lax spectral curve technique by Adler and van
Moerbeke [1]. Strange as it may seem, the use of the spectral curve method may not give the tori correctly, but perhaps with
period doubling, in contrast with the statement that the correct tori would be obtained by the Kowalewski-Painlevé analysis.
This indicated a need for caution in interpretation of the result for tori calculated from the Lax spectral curve technique.
A striking example of this phenomenon appears in the problem studied in this subsection. We know from [1, 22], that the
linearization of the Euler-Arnold equations obtained using the isospectral deformation method (Lax technique) takes place on
the Prym variety Prymσ (C ) of a genus 3 Riemann surface C ; the latter is a double ramified cover of an elliptic curve C0. Also,
we have just seen from the asymptotic analysis of the Euler-Arnold equations, the affine variety Mc completes into an Abelian
surface M̃c upon adding a Riemann surface D of genus 9, which is a 4-fold unramified cover of another Riemann surface Γ of
genus 3; the latter is a double ramified cover of an elliptic curve Γ0. The Abelian surface M̃c can also be identified as the Prym
variety Prymσ (Γ) and the problem linearizes on Prymσ (Γ). From the fundamental exponential sequence

0→ Z→ OM̃c

exp .→ O∗
M̃c
→ 0,

we get the map

· · · → H1
(

M̃c,O
∗
M̃c

)
→ H2

(
M̃c,Z

)
→ ···

i.e., the first Chern class of a line bundle on M̃c. Recall that any line bundle with Chern class zero can be realized by constant
multipliers. Therefore the group Pico

(
M̃c

)
of holomorphic line bundles on M̃c with Chern class zero is given by

Pico
(

M̃c

)
= H1

(
M̃c,OM̃c

)
/H1

(
M̃c,Z

)
,

and is naturally isomorphic to the dual Abelian surface M̃c
∨

of M̃c (∨ means the dual Abelian surface). The relationship
between M̃c and M̃c

∨
is symmetric like the relationship between two vectors spaces set up a bilinear pairing. It is interesting
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to observe that the Abelian surfaces M̃c = Prymσ (Γ) obtained from the asymptotic analysis of the differential equations and
Prymσ (C ) obtained from the orbits in the Kac-Moody Lie algebra are not identical but only isogenous, i.e., one can be obtained
from the other by doubling some periods and leaving other unchanged. The precise relation between these two Abelian surfaces
is M̃c = (Prymσ (C ))∨, i.e., they are dual of each other. The functions x1, ...,x6 are themselves meromorphic on M̃c, while only
their squares are on Prymσ (C ). The relationship between the Riemann surfaces Γ and C is quite intricate. As usual we let Θ

the theta divisor on Jac(Γ), we have

Prymσ (C )\Π = Θ∩Prymσ (C ) = Γ,

with Π a Zariski open set of Prymσ (C ). Also

Θ∩ M̃c = C ,

where Θ is a translate of the theta divisor of Jac(C ) invariant under the involution σ . Moser [31] was aware of a similar
situation in the context of the Jacobi’s geodesic flow problem on ellipsoids.

5.2 Manakov geodesic flow on the group SO(4) and Lyapunov-Steklov rigid body motion in a perfect fluid
The quadratic form H satisfies the conditions(

µ
2
1 ,µ

2
2 ,µ

2
3
)
=

λ12λ23λ31λ45λ56λ64

(λ46λ32−λ65λ13)
2

(
(λ23−λ56)

2

λ23λ56
,
(λ31−λ64)

2

λ31λ64
,
(λ12−λ45)

2

λ12λ45

)
,

with the product µ1µ2µ3 being rational in λ1, ...,λ6 and with the following sign specification

µ1µ2µ3 =
λ12λ23λ31λ45λ56λ64

(λ46λ32−λ65λ13)
3 (λ12−λ45)(λ23−λ56)(λ31−λ64).

The problem of the solid body in a fluid in the case of Lyapunov-Steklov is a particular case of this metric (see subsection 4.2).
The extra invariant H4 is quadratic and the flow linearizes on 2-dimensional hyperelliptic Jacobians. More precisely

4⋂
j=1

{
x ∈ C6 : Q j(x) = c j

}
= Jac (hyperelliptic curve C of genus 2)\D ,

where D is a divisor of genus 17, which contains 4 translates of the Θ-divisor in Jac(C ), each of which is isomorphic to C .
The hyperelliptic curve C is a double cover of the curve C0 (isomorphic to P1(C)) defined as

{t1 : t2 : t3 : t4] ∈ P3(C) such that ∑ t jQ j has rank 3}.

The periods of the motion are given by the periods of the hyperelliptic curve C . When studying the differential systems in this
case as well as the invariants via Kowalewski-Painlevé’s analysis, it is advantageous to rewrite them in a simpler form in order
to reduce the notations and thus avoid too much calculation, since it requires less variables (see [6] for more detail). We show
that this geodesic flow X1 and a commuting flow X2 can be written respectively in the form

ẋ1 = x2x6,

ẋ2 =
1
2

x3(x1 + x4),

ẋ3 =
1
2

x2(x1 + x4),

ẋ4 = x3x5,

ẋ5 = x3x4,

ẋ6 = x1x2,

and

ẋ1 = x5x6,

ẋ2 = x3x4,

ẋ3 = x2x4,

ẋ4 = x5(2x3− x6),

ẋ5 = x4(2x3− x6),

ẋ6 = x1x5.
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The Hamiltonian structure being determined by the Poisson bracket :

{H,F}=
〈

∂H
∂x

,J
∂F
∂x

〉
= ∑

i, j
Ji j

∂H
∂xi

∂F
∂x j

,

where

J =


0 x3 x2 0 0 2x2− x5
−x3 0 0 0 0 0
−x2 0 0 0 0 0

0 0 0 0 0 x5
0 0 0 0 0 x4

−2x2 + x5 0 0 −x5 −x4 0

 .

The problem is to show, among other things, that the geodesic flow on SO(4) for a left invariant in the case of the second metric
is a weight homogeneous algebraic complete integrable system. Using the asymptotic expansion method as in the previous case
(Kowalewski-Painlevé’s analysis), we obtain the following results [6] :

Theorem 5.3. This geodesic flow has four quadric invariants :

H1 = −x2
4 + x2

5 = c1,

H2 = −x2
1 + x2

6 = c2,

H3 = −x2
2− x2

3 =
c3

4
,

H4 = −(x1− x4)
2 +2(x2− x5)

2 +2(x3− x6)
2 = 4c4,

(with generic (c1,c2,c3,c4) ∈ C4), and it evolues on some hyperelliptic Jacobians. The hyperelliptic curve is a double cover of
the curve of rank four quadrics (isomorphic to P1) :{

t ∈ P3 such that t1(H1− c1x2
0)+ t2(H2− c2x2

0)+ t3(H3−
c3

4
x2

0)+ t4(H4−4c4x2
0) has rank 4

}
,

ramified at the six points where the rank drops to 3. The system in question possesses Laurent solutions depending on 5 free
parameters and the affine surface defined by the constants of motion can be completed into a torus T by adjoining a singular
divisor D . The latter consists of four copies H1,...,H4 of the genus two hyperelliptic curves. Analyze the points of intersection
of these curves. All these curves are translates of the Θ-divisor by 1

2 -periods and three of these curves form a very ample and
projectively normal divisor which results in the embedding of the Jacobian in P8 and the functions having poles there form a
closed system of quadratic equations under differentiations as well as their ratios. The line bundle [D ] defines a polarization of
type (4,4) on T and leads to an embedding in P15. The three flows X1, X2 and 2X1−X2 are doubly tangent to each of the four
curves H1,...,H4 at four points P1,...,P4 and the sixteen half-periods on the torus are given by the total set of branch points of
these hyperelliptic curves. The values of the constants of motion c1/c4, c2/c4, c3/c4 provide the three moduli for the full family
of 2-dimensional hyperelliptic Jacobians.

5.3 Geodesic flow on SO(4) with a quartic invariant
The form H satisfies(

µ
4
1 ,µ

4
2 ,µ

4
3
)
= λ13λ46λ21λ54λ32λ65

(
1

λ32λ65
,

1
λ13λ46

,
1

λ21λ54

)
.

The quantities ζ , ξ and η defined by

ζ
2 ≡ λ46

λ13
, ξ

2 ≡ λ54

λ21
, η

2 ≡ λ65

λ32
,

satisfy the quadratic relations

ζ ξ +ξ η +ηζ +1 = 0, 3ξ η +η−ξ +1 = 0.

The geodesic flow has a quartic invariant, evolves on Abelian surfaces Ã⊆ P23(C) having period matrix(
2 0 a c
0 12 c b

)
, Im

(
a c
c b

)
> 0, (a,b,c ∈ C) ,
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and it will be expressed in terms of Abelian integrals. See for details [3, 6]. After the following linear change of coordinates,
which is meaningful insofar a 6= 0,−1,1,−1/3,1/3,(

x1
x4

)
=
√
−1
(

a−1 −1
3a+1 1

)(
(a−1)z1

(3a−1)(a+1)z4

)
,(

x2
x5

)
= −

√
−1
(

a+1 −1
3a−1 1

)(
(a+1)z2

(3a+1)(a−1)z5

)
,(

x3
x6

)
=
√
−1
(

a−1 a+1
3a+1 3a−1

)(
(a−1)z3
(a+1)z6

)
,

the geodesic flow takes (after rescaling time) on the simple form :

ż1 = z3z5,

ż2 = z4z6,

ż3 =
1−a

2
z4z5 + z1z5 +

1+a
2

z1z2, (5.14)

ż4 =
2a

3a−1
z5z6 +

a−1
3a−1

z2z3,

ż5 =
2a

3a+1
z5z6 +

a+1
3a+1

z2z3,

ż6 =
1+a

2
z4z5 + z2z4 +

1−a
2

z1z2,

with three quadratic invariants (in z) :

H1 ≡ aF2 +
1−a

3a+1
F7 = A1,

H2 ≡ −aF1−
a+1

3a−1
= A2,

H3 ≡ 2F6

(3a−1)(3a+1)
− F1

3a+1
+

F2

3a−1
= A3,

and a quartics invariant (in z) :

H4 ≡ − 1−a
3a+1

(
F2

1 +F2
4
)
+

1+a
3a−1

(
F2

2 +F2
5
)
+

3(1−a2)

(3a−1)(3a+1)
(
2F1F2−F2

3
)

+
4(1+a)

(3a−1)(3a+1)
F2(F6 +F8)+

4(1−a)
(3a−1)(3a+1)

F1(F6 +F7) = A4, (5.15)

where

F1 = z2
4− z2z5,F2 = z2

5− z1z4,F3 = z1z2− z4z5,F4 =
2

3a−1
(z2z3− z5z6),

F5 =
−2

3a+1
(z1z6− z3z4),F6 = z1z4 + z2z5− z3z6,F7 = z2

1− z2
3 + z1z4,F8 = z2

2− z2
6 + z2z5.

The geodesic flow in question admits one family of Laurent solutions,

z =
ζ

t

(
1+UY 1t +

1
γZ2 +δ

(
U2Y 2

0 +
3

∑
i=1

AiY 2
i

)
t2 +o(t3)

)
,

where 1 = (1,1, ...,1)>, Y 1,Y 2
0 ,Y

2
i are appropriate vectors depending on Y,Z and a only, γ ≡ 4a, δ ≡ (a−1)(3a+1) and

ζ = diag
(

Y 2

Z
,

Z2

Y
,−Y

Z
,Z,Y,−Z

Y

)
,

with Y,Z ∈ C such that Y 2 +Z2 = 1. The 5-dimensional family of Laurent solutions depend on the parameters Z,U,A1,A2
and A3. The vectors Y 2

i can be chosen such that Hi(z(t)) = Ai for i = 1,2,3. Confining the 5-dimensional family of Laurent
solutions to the invariant manifold

Mc =
4⋂

i=1

{z : Hi(z) = Ai},
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yields a relation between the free parameters, defining a curve

D :
{

(U,V,Y,Z) such hat Z2 =V,Y 2 = 1−V and
P(U,V ) =

(
U2(1−V )V (αV +β )

)2−2U2(1−V )V P(V )+Q(V ) = 0,

where

α = 16a3,β = (a−1)3(3a+1),

and

P(V ) = (αV +β )
[
((3a2 +1)A3−A1−A2)(V −1)+A1V −A2(V −1)

]
−2V (V −1)

[
A1(1−a)3(1+3a)+A2(1+a3(1−3a)−A3(1−a2)(1−9a2)

]
,

Q(V ) =
[
((3a2 +1)A3−A1−A2)V (V −1)−A1V +A2(V −1)

]2
+V (V −1)

[
(4aV +(a−1)(3a+1))A4 +4A1A2− (a−1)(3a+1)(a+1)(3a−1)A2

3
]
.

Note that

P2(V )− (αV +β )2Q(V ) =V (1−V )R(V ), (5.16)

with R(V ) being a cubic polynomial. The curve D is an unramified 4−1 cover of the curve

C : P(U,V ) = 0.

In view of (5.16), the curve C itself is a double cover of the hyperelliptic curve

H : W 2 =V (1−V )R(V ),

of genus 2, ramified over four points where Q(V ) = 0. Therefore C has genus 5 and D has genus 17. The curve D must be
thought of as being a very ample divisor on some Abelian surface M̃c, to be constructed according to the method described in
the theorem 2.3. The curve D , wrapped around M̃c intersects itself transversally in 8 points, adding 8 to the genus 17. Therefore
the torus M̃c 'C2/LΩ on which the geodesic flow linearizes, is defined by a period lattice Ω given by the columns of the matrix

Ω =

(
δ1 0 a c
0 δ2 c b

)
, Im

(
a c
c b

)
> 0,

with

δ1δ2 = g(D)−1 = 24, δ1|δ2, δi ∈ N∗.

So we have the following two possibilities : (i) δ1 = 1, δ2 = 24 and (ii) δ1 = 2, δ2 = 12. The line bundle

L(D) = {1,z1, ...,z6, f1, ..., f5,g1, ...,g8,h1, ...,h4},

is specified as follows

g1 =−2az2 f2− (1−a)z4 f3, g2 =−2az1 f1− (1+a)z5 f3, g3 = (1−a)z5 f4 +(1+a)z4 f5,

g4 = (1+a)z5 f5 +(1−a)z1 f4, g5 = (1−a)z4 f4 +(1+a)z2 f5 g6 =−(1−a)z3 f1− (1+a)z6 f2,

g7 = 2az5 f2− (1−a)z1 f3, g8 =−2az4 f1− (1+a)z2 f3, h1 = 4a2 f1 f2 +(1−a2) f3,

h2 = 2a2 f1 f5− (1−a) f3 f4, h3 =−2a2 f2 f4− (1+a) f3 f5, h4 = 2a2 f4 f5 + f3((1+a) f2− (1−a) f1).

Now the reflection about the origin on the Abelian surface amounts to flipping the time for each linear flow on it, but since the

flow
dz
dt1

given by (5.14) is quadratic and since the other flow
dz
dt2

(commuting with the first) is quartic (as it derives from the

quartic Hamiltonian (5.15), flipping the signs of t1 and t2 for each of the flows amounts to the flip (z1, ...,z6) 7−→ (−z1, ...,−z6).



Classifying the Metrics for Which Geodesic Flow on the Group SO(n) is Algebraically Completely Integrable — 50/52

From formula (5.10), the above line bundle L(D) has in case (i), 11 even sections, 13 odd ones and in case (ii), 10 even
sections, 14 odd ones, showing that case (ii) is the only alternative and the period matrix has the form(

2 0 a c
0 12 c b

)
, Im

(
a c
c b

)
> 0.

Differentiating
1
z1

and
z2

z1
with respect to t1 (corresponding to the flow (5.14)) and t2 (corresponding to the quartic flow

generated by H4 (5.15)), yield two differentials ω1 and ω2 defined on the curve C :

ω1 =
ϕ(V )dV

U
√

V (1−V )R(V )
ω2 =

dV

U
√

V (1−V )R(V )
,

where ϕ(V ) is a rational function in V having the form

ϕ(V ) =
4aV +(a−1)(3a+1)

V (1−V )

[
(αV +β )U2V (1−V )+(A3(3a2 +1)−A1−A2)(1−V )V −A1V −A2(1−V )

)
].

The restriction of the differentials dt1 and dt2 to the curve D are

ω1 = dt1|D = ϕ(Z2)ω2,ω2 = dt2|D =
dZ

UY
√

R
.

Recall that C is a double ramified cover of a hyperelliptic curve H of genus 2, whose sheets are interchanged by the involution
(V,U) 7−→ (V,−U). Hence

Jac(C ) = Prym(C /H )⊕ Jac(H ).

Since ω1 and ω2 are both odd differentials for that involution, the flows evolve on the 3-dimensional Prym(C /H ) and therefore
M̃c ⊂ Prym(C /H ). This shows that Prym(C /H ) splits further, up to isogenies, into an elliptic curve E and the 2-dimensional
invariant torus M̃c :

M̃c⊕E = Prym(C /H ).

In summary, we have

Theorem 5.4. The affine invariant surface Mc for the Adler-van Moerbeke geodesic flow completes into a generic Abelian
surface M̃c of polarization (1,6), i.e., defined by a period matrix of the form(

1 0 a c
0 6 c b

)
, Im

(
a c
c b

)
> 0,

by adjoining at infinity a curve of genus 25, with 8 normal crossings and smooth version D . There exists an elliptic curve E
such that M̃c satisfies M̃c⊕E = Prym(C /H ). More precisely

4⋂
j=1

{
x ∈ C6 : H j(x) = c j

}
= M̃c\{a curve of genus 25 with 8 singular points}.

Put in a more geometrical language, the tori M̃c contain a very ample and projectively normal curve of geometric genus 25,
with 8 normal crossings whose smooth version D is a 4− 1 unramified cover of a curve C of genus 5. The curve C itself
is a double cover ramified over 4 points of a genus 2 hyperelliptic curve H . Moreover, the linearization takes place on a
2-dimensional subtorus of the 3-dimensional Prym variety Prym(C /H ) with

Prym(C /H ) = Ã⊕E ,

where E is an elliptic curve.

This situation provides a full description of the moduli for the Abelian surfaces of polarization (1,6). For more information,
see [6].
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6. The algebraic complete integrability of geodesic flow on SO(n), n≥ 5

We have seen previously that if a system is algebraically completely integrable, then it must admit a family of meromorphic
Laurent series depending on ”dim(phase space)−1” free parameters. Now, trying to generalize the result to the geodesic flow
on SO(n) for n≥ 5 using the same method leads to insurmountable calculations even with the help of a computer. Therefore, to
answer the question concerning the classification of the metrics for which the geodesic flow on SO(n) while taking into account
these difficulties, it was necessary to resonate differently.

The geodesic flow for this problem takes the following commutator form (Euler-Arnold equations) :

Ẋ = [X ,Λ.X ] , (6.1)

where

X = (xi j)≡∑
i< j

xi jei j ∈ so(n),

and Λ.X = (λi jXi j), λi j = λ ji. The quadratic form H is diagonal with regard to the customary so(n) coordinates (Manakov
metric [29]), with

Λ jk =
β j−βk

α j−αk
⇐⇒ [X ,β ]+ [α,Λ.X ] = 0,∀X ∈ so(n), (6.2)

with

α = diag(α1, ...,αn), β = diag(β1, ...,βn), ∏
i< j

(αi−β j) 6= 0,

all Λ jk distinct. Note that it turns out that the geodesic flow on SO(n) admits a lot of invariant manifolds on which they reduce
to geodesic flow on SO(3) and the solutions of the differential equation with initial conditions on these manifolds are elliptic
functions and this without any condition on the metric. Haine [14] has shown that looking at solutions near these special a priori
known solutions and imposing these solutions to be single-valued functions of t ∈ C, suffices to single out the left invariant
diagonal metrics for which the geodesic flow is algebraically completely integrable. Under the non-degeneracy assumption on
the diagonal metric Λ that all Λi j be distinct, the system (6.1) is algebraically completely integrable with Abelian functions xi j
if and only if the metric Λ satisfies (6.2) (Manakov’s conditions).

Theorem 6.1. For n≥ 5, Manakov’s metrics are the only left invariant diagonal metrics on SO(n) for which the geodesic flow
is algebraically completely integrable.

This criterion was first used, without proof by Lyapunov [28] (the proof is due to Haine [14])), who showed that the only
integrable tops whose solutions have analytic properties belong to the classical known cases : Euler top, Lagrange top and
Kowalewski top.
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[12] P. A. Griffiths, J. Harris, Principles of algebraic geometry, Wiley-Interscience, New-York, 1978.
[13] L. Haine, Geodesic flow on SO(4) and Abelian surfaces, Math. Ann., 263 (1983), 435-472.
[14] L. Haine, The algebraic complete integrability of geodesic flow on SO(N) and Abelian surfaces, Comm. Math. Phys., 94(2)

(1984), 271-287.
[15] N. Hitchin, Stable bundles and integrable systems, Duke Mathematical Journal, 54,1 (1994), 91-114.
[16] C. G. J. Jacobi, Vorlesungen über Dynamik, Königsberg lectures of 1842-1843, (reprinted by Chelsea Publishing Co., New

York, 1969.
[17] G. Kirchoff, Vorlesungen über Mathematische Physik, Vol. 1, Mechanik. Teubner, Leipzig, 1876.
[18] H. Knörrer, Integrable Hamiltonsche Systeme und algebraische Geometrie, Jahresber. Deutsch. Math.- Verein., 88 (2)

(1986), 82-103.
[19] F. Kötter, Uber die Bewegung eines festen Körpers in einer Flüssigkeit I, II, Journal für die reine und angewandte

Mathematik, 109 (1892), 51-81, 89-111.
[20] F. Kötter, Die von Steklow und Lyapunov entdeckten intgralen Fälle der Bewegung eines Körpers in einen Flüssigkeit

Sitzungsber, Königlich Preussische Akad. d. Wiss., Berlin 6, 79-87 (1900).
[21] S. Kowalewski, Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math., 12 (1889), 177-232.
[22] A. Lesfari, Geodesic flow on SO(4), Kac-Moody Lie algebra and singularities in the complex t-plane, Publ. Mat., Barc.,

431 (1999), 261-279.
[23] A. Lesfari, The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case, NoDEA, Nonlinear

diff.Equ. Appl., 81 (2001), 1-13.
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