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Abstract
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1. Introduction
Contact geometry has been seen to underly many physical phenomena and be related to many other mathematical structures.
Contact structures first appeared in the work of Sophus Lie [1] on partial differential equations. They reappeared in Gibbs’
work on thermodynamics, Huygens’ work on geometric optics and in Hamiltonian dynamics. ([2], [3], [4]).

On the other hand, the notion of CR-submanifold of a Kaehler manifold was introduced by Bejancu [5]. Later, semi-invariant
(or contact CR-) submanifolds of a Sasakian manifold was studied by Shahid, Sharfuddin and Husain [6], Kobayashi [7],
Matsumoto [8] and many others. Submanifolds of cosymplectic manifold have been studied by Ludden [9], A. Cabras, A.Ianus
and G.H. Pitis [10].

Later, the subject was considered for Riemannian manifolds with an almost contact structure. In this sense A. Bejancu and
N. Papaghiuc study semi-invariant submanifolds of a Sasakian manifold or Sasakian space form ( [11],[12], [13], [14] ) and
C.L. Bejan, A., et.al. study them on cosymplectic manifolds in ([15], [16]). B. B. Sinha and R. N. Yadav studied the integrable
conditions of distributions and the geometry of leaves on a semi-invariant submanifolds in a Kenmotsu manifold [17].

In 2014, Öztürk et.al. introduced and studied almost α-cosymplectic f -manifold [18] defined for any real number α which
is defined a metric f -manifold with f -structure (ϕ,ξi,η

i,g) satisfying the condition dη i = 0, dΩ = 2αη ∧Ω.
In this paper, we introduce properties of semi-invariant submanifolds of an almost α-cosymplectic f -manifold. In Section

2, we review basic formulas and definitions for almost α-cosymplectic f -manifolds. In Section 3, we define semi-invariant
submanifolds of an almost α-cosymplectic f -manifold. We also present a way to build these submanifolds and give an example.
In Section 4, we obtain some basic results for semi-invariant submanifolds of an almost α-cosymplectic f -manifold. In Section
5, we investigate the integrability of the distributions involved in the definition of a semi-invariant submanifold. In last section
we focus mixed totally geodesic of semi-invariant submanifolds of an almost α-cosymplectic f -manifold.
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2. Preliminaries
Let M̃ be a real (2n+s)-dimensional framed metric manifold [19] with a framed (ϕ,ξi,η

i,g), i ∈ {1, ...,s}, that is, ϕ is a
non-vanishing tensor field of type (1,1) on M̃ which satisfies ϕ3 +ϕ = 0 and has constant rank r = 2n; ξ1, ...ξs are s vector
fields; η1, ...,ηs are 1-forms and g is a Riemannian metric on M̃ such that

ϕ
2 =−I +

s

∑
i=1

η
i⊗ξi (2.1)

η
i(ξ j) = δ

i
j, ϕ(ξi) = 0, η

ioϕ = 0, (2.2)

η
i(X) = g(X ,ξi), (2.3)

g(X ,ϕY )+g(ϕX ,Y ) = 0, (2.4)

g(ϕX ,ϕY ) = g(X ,Y )−
s

∑
i=1

η
i(X)η i(Y ) (2.5)

for all X ,Y ∈ Γ(T M̃) and i, j ∈ {1, ...,s}. In above case, we say that M̃ is a metric f -manifold and its associated structure will
be denoted by M̃(ϕ,ξi,η

i,g) [19].
A 2-form Ω is defined by Ω(X ,Y ) = g(X ,ϕY ), for any X ,Y ∈ Γ(T M̃), is called the fundamental 2-form. A framed metric
structure is called normal [19] if

[ϕ,ϕ]+2dη
i⊗ξi = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ . Throughout this paper we denote by η = η1 +η2 + ...+ηs,

ξ = ξ1 +ξ2 + ...+ξs and δ
j
i = δ 1

i +δ 2
i + ...+δ s

i .

Definition 2.1. Let M̃(ϕ,ξi,η
i,g) be a (2n+s)-dimensional a metric f -manifold for each η i,(1 ≤ i ≤ s) 1-forms and each

2-form Ω, if dη i = 0 and dΩ = 2αη ∧Ω satisfy, then M̃ is called almost α-cosymplectic f -manifold [18].

Let M̃ be an almost α-cosypmlectic f -manifold. Since the distribution D is integrable, we have Lξiη
j = 0, [ξi,ξ j] ∈ D and

[X ,ξ j] ∈ D for any X ∈ Γ(D). Then the Levi-Civita connection is given by [18]:

2g((∇̃X ϕ)Y,Z) = 2αg

(
s

∑
i=1

(g(ϕX ,Y )ξi−η
i(Y )ϕX),Z

)
(2.6)

+g(N(Y,Z),ϕX)

for any X ,Y ∈ Γ(T M̃). Putting X = ξi we obtain ∇̃ξiϕ = 0 which implies ∇̃ξiξ j ∈D⊥ and then ∇̃ξiξ j = ∇̃ξ j ξi, since [ξi,ξ j] = 0.

We put AiX =−∇̃X ξi and hi =
1
2 (Lξiϕ), where L denotes the Lie derivative operator. If M̃ is almost α-cosymplectic f -manifold

with Kaehlerian leaves [20], we have

(∇̃X ϕ)Y =
s

∑
i=1

[
−g(ϕAiX ,Y )ξi +η

i(Y )ϕAiX
]

or

(∇̃X ϕ)Y =
s

∑
i=1

[
α
(
g(ϕX ,Y )ξi−η

i(Y )ϕX
)
+g(hiX ,Y )ξi−η

i(Y )hiX
]
. (2.7)

Proposition 2.2. ([18]) For any i ∈ {1, ...,s} the tensor field Ai is a symmetric operator such that
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(i) Ai(ξ j) = 0, for any j ∈ {1, ...,s}

(ii) Aioϕ +ϕoAi =−2αϕ

(iii) tr(Ai) =−2αn

(iv) ∇̃X ξi =−αϕ2X−ϕhiX .

Proposition 2.3. ([21]) For any i ∈ {1, ...,s} the tensor field hi is a symmetric operator and satisfies

(i) hi(ξ j) = 0, for any j ∈ {1, ...,s}

(ii) hioϕ +ϕohi = 0

(iii) trhi = 0

(iv) tr(ϕhi) = 0.

Let M̃ be an almost α-cosymplectic f -manifold with respect to the curvature tensor field R̃ of ∇̃, the following formulas are
proved in [18], for all X ,Y ∈ Γ(T M̃), i, j ∈ {1, ...,s}.

R̃(X ,Y )ξi = α
2

s

∑
k=1

(ηk(Y )ϕ2X−η
k(X)ϕ2Y ) (2.8)

− α

s

∑
k=1

(ηk(X)ϕhkY −η
k(Y )ϕhkX)

+ (∇̃Y ϕhi)X− (∇̃X ϕhi)Y,

R̃(X ,ξ j)ξi =
s

∑
k=1

δ
k
j (α

2
ϕ

2X +αϕhkX) (2.9)

+ αϕhiX−hih jX +ϕ(∇̃ξ j hi)X

R̃(ξ j,X)ξi−ϕR̃(ξ j,ϕX)ξi = 2(−α
2
ϕ

2X +hih jX). (2.10)

Moreover, by using the above formulas, in [18] it is obtained that

S̃(X ,ξi) =−2nα
2

s

∑
k=1

η
k(X)− (divϕhi)X (2.11)

S̃(ξi,ξ j) =−2nα
2− tr(h jhi) (2.12)

for all X ,Y ∈ Γ(T M̃), i, j ∈ {1, ...,s}, where S̃ denote, the Ricci tensor field of the Riemannian connection.
From [18], we have the following result.

Proposition 2.4. Let M̃ be an almost α-cosymplectic f -manifold and M be an integral manifold of D. Then

(i) when α = 0, M is totally geodesic if and only if all the operators hi vanish;

(ii) when α 6= 0, M is totally umbilic if and only if all the operators hi vanish.

3. Semi-Invariant Submanifolds of Almost α-Cosymplectic f -Manifolds

The submanifold M of the almost α-cosymplectic f -manifold M̃ is said to be semi-invariant [22] if it is endowed with two pair
of ortogonal distribution D,D⊥ satisfying the conditions

(i) T M = D⊕D⊥⊕{ξ1,ξ2, ...,ξs}
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(ii) the distribution D is invariant under ϕ , that is

ϕDx = Dx, f or each x ∈M,

(iii) the distribution D⊥ is anti-invariant under ϕ, that is

ϕD⊥x ⊂ TxM⊥ f or each x ∈M.

The distribution D (resp.D⊥) is called the horizantal (resp. vertical) distribution. A semi-invariant submanifold M is said
to be invariant (resp. anti-invariant) submanifold if we have (D⊥x = 0) respectively (Dx = 0) for each x ∈M. We say that
M is proper semi-invariant submanifold if it is a semi-invariant submanifold which is neither an invariant nor anti-invariant
submanifold [22].

We denote by same symbol g both metrices on M̃ and M. The projection morphism of T M to D and D⊥ are denoted by P
and Q respectively. For any X ∈ Γ(T M) and N ∈ Γ(T M⊥) we have

X = PX +QX +
s

∑
i=1

η
i(X)ξi (3.1)

ϕN =CN +DN (3.2)

and

hiX = tiX + fiX (3.3)

where CN and tiX(resp.DN and fiX) denotes the tangential (resp. normal) of ϕN and hiX , respectively.

∇̃XY = ∇XY +B(X ,Y ) (3.4)

∇̃X N =−ANX +∇
⊥
X N (3.5)

for any X ,Y ∈ Γ(T M) and N ∈ T M⊥, where ∇ is the Levi-civita connection on M, ∇⊥ is the linear connection induced by ∇̃ on
the normal bundle T M⊥, B is the second fundamental form of M and AN is the fundamental tensor of Weingarten with respect
to the normal section N. Also we have

g(B(X ,Y ),N) = g(ANX ,Y ) (3.6)

for any X ,Y ∈ Γ(T M),N ∈ Γ(T M⊥) [19].
We now give an example of semi-invariant submanifold of an almost α-cosymplectic f -manifold.

Example 3.1. Let us denote the standart coordinates of R2n+s (x1, ...,xn,y1, ...,yn,z1, ...,zs) and take (2n+ s)-dimensional
manifold M̃ ⊂ R2n+s defined by

M̃ = {(x1, ...,xn,y1, ...,yn,z1, ...,zs)|z1, ...,zs 6= 0}.

Consider following vector fields as a global basis of M̃ :

Xi = e∑
n
i=1 zi

∂

∂xi
, Yi =

∂

∂yi
, ξ j =

∂

∂ z j
, i = 1, ...,n j = 1, ...,s.

The brackets of these vector fields are

[ξ j,Xi] = e∑
n
i=1 zi

∂

∂xi
, [ξ j,Yi] = [Xk,Xi] = [Xi,Yk] = [Yi,Yk] = 0

for any i,k ∈ {1, ...,n} and j ∈ {1, ...,s}. One may easily verify that putting

η
j = dz j, g =

n

∑
i=1

[e−2(z1+...+zs)dx2
i +dy2

i ]+
s

∑
j=1

dz2
j ,
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ϕ(ξ j) = 0, ϕ(
∂

∂xi
) = e−(z1+...+zs)

∂

∂yi
, ϕ(

∂

∂yi
) =−e(z1+...+zs)

∂

∂xi
,

(ϕ,ξi,η
i,g) is an almost contact metric f - structure on M̃. We şhall check that (M̃,ϕ,ξi,η

i,g) is an almost α-cosymplectic f -
manifold. Obviously, η j = dz j⇒ dη j = d2z j = 0 from poincare metric we get dη j = 0. To verify the condition dΦ = 2αη̄ ∧Φ,
considering that all Φi j’ s are zero except for Φii = g( ∂

∂xi
,ϕ ∂

∂yi
) =−e−(z1+...+zs) and hence

Φ =− 1
e(z1+...+zs)

n

∑
i=1

dxi∧dyi

holds. As a result, the exterior derivative dΦ is given by

dΦ =−e−(z1+...+zs)
n

∑
i=1

dxi∧dyi∧ (dz1 + ...+dzs)

dΦ = e−(z1+...+zs)e(z1+...+zs)Φ∧ (η1 + ...+η
s)

dΦ = η̄ ∧Φ = 2(
1
2
)η̄ ∧Φ.

Since the Nijenhuis torsion of ϕ is not zero, the manifold is an almost ( 1
2 )-cosymplectic f -manifold.

Now, we definite the distributions

D = sp{X1,Y1,X2,Y2, ...,Xm,Ym}

and

D⊥ = sp{Xm+1,Xm+2, ...,Xm+p}(m < n).

It is clear that T M = D⊕D⊥⊕{ξ1, ...,ξs}, dimM = 2m+ p+ s. Let

T M⊥ = {Ym+1,Ym+2, ...,Ym+p,Ym+p+1, ...,Yn,Xm+p+1, ...,Xn}

then we have ϕD = D and ϕD⊥ ⊂ T M⊥. Consequently, M is a semi-invariant submanifold of an almost 1
2 -cosymplectic

f -manifold.

4. Basic Lemmas
For any X ,Y ∈ Γ(T M), we put

u(X ,Y ) = ∇X ϕPY −AϕQY X . (4.1)

We start with proving the following lemma.

Lemma 4.1. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then
we have

P(u(X ,Y )) = ϕP∇XY −
s

∑
i=1

[αη
i(Y )ϕPX +η

i(Y )PtiX ] (4.2)

Q(u(X ,Y )) = QCB(X ,Y )−
s

∑
i=1

η
i(Y )QtiX (4.3)

B(X ,ϕPY )+∇
⊥
X ϕQY = ϕQ∇XY +DB(X ,Y )

−
s

∑
i=1

[αη
i(Y )ϕQX−η

i(Y ) fiX ] (4.4)

η
i(u(X ,Y ))ξi =

s

∑
i=1

[αg(ϕPX ,Y )ξi +g(hiX ,Y )ξi]

−
s

∑
i, j=1

η
i(Y )η j(tiX)ξi. (4.5)
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Proof. For X ,Y ∈ Γ(T M), putting (3.1), (3.2) and (3.3) in the equation (2.7) we get

(∇̃X ϕ)Y =
s

∑
i=1

[α(g(ϕPX ,Y )ξi−η
i(Y )ϕPX−η

i(Y )ϕQX)

+ g(hiX ,Y )ξi−η
i(Y )hiX ]

=
s

∑
i=1

[α(g(ϕPX ,Y )ξi−η
i(Y )ϕPX−η

i(Y )ϕQX)+g(hiX ,Y )ξi

− η
i(Y )PtiX−η

i(Y )QtiX−η
i(Y )

s

∑
j=1

η
j(tiX)ξ j−η

i(Y ) fiX .

On the other hand, by using (3.1), (3.2), (3.4) and (3.5) we have

(∇̃X ϕ)Y = ∇̃X ϕY −ϕ∇̃XY

= ∇̃X ϕPY + ∇̃X ϕQY −ϕ(∇XY +B(X ,Y ))

= ∇X ϕPY +B(X ,ϕPY )−AϕQY X +∇
⊥
X ϕQY

−ϕP∇XY −ϕQ∇XY −CB(X ,Y )−DB(X ,Y )

(∇̃X ϕ)Y = P∇X ϕPY +Q∇X ϕPY +
s

∑
i=1

η
i(∇X ϕPY )ξi +B(X ,ϕPY )

−PAϕQY X−QAϕQY X +∇
⊥
X ϕQY −

s

∑
i=1

η
i(AϕQY X)ξi

−ϕP∇XY −ϕQ∇XY −CB(X ,Y )−DB(X ,Y ).

Taking the components of D, ξi, D⊥ and T M⊥ in above equations, we have our assertion.

Lemma 4.2. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then
we have

ϕP(ANX)+P(∇XCN) = P(ADNX) (4.6)
Q((C∇

⊥
X N)+ADNX−∇XCN) = 0 (4.7)

η(ADNX−∇XCN) = αg(X ,CN)+g(hiX ,N)ξi (4.8)
B(X ,CN)+ϕQ(ANX)+∇

⊥
X DN = D∇

⊥
X N (4.9)

for any X ∈ Γ(T M) and N ∈ Γ(T M⊥)

Proof. By using the decompositions (3.1), (3.2) and the equations of Gauss and Weingarten in (2.7) we have

(∇̃X ϕ)N = ∇̃X ϕN−ϕ∇̃X N =
s

∑
i=1

[αg(ϕX ,N)ξi +g(hiX ,N)ξi]

∇XCN +B(X ,CN)−ADNX +∇
⊥
X DN +ϕANX−ϕ∇

⊥
X N =

s

∑
i=1

[αg(ϕX ,N)ξi +g(hiX ,N)ξi]

= P∇XCN +Q∇XCN +
s

∑
i=1

η
i(∇XCN)ξi +B(X ,CN)−PADNX−QADNX−

s

∑
i=1

(ADNX)ξi

+∇
⊥
X DN +ϕPANX +ϕQANX−C∇

⊥
X N−D∇

⊥
X N

=−
s

∑
i=1

[αg(X ,CN)ξi +g(hiX ,N)ξi]

Then (4.6)- (4.9) follows by taking the components on each of the vector bundle D, D⊥, ξi and respectively T M⊥.
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Lemma 4.3. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then we have

∇X ξi = αX−ϕtiX−C fiX ∀X ∈ Γ(D) (4.10)

∇X ξi = αX−ϕtiX−C fiX ∀X ∈ Γ(D⊥) (4.11)
∇ξiξ j = 0, B(X ,ξi) =−D fiX . (4.12)

Proof. For X ∈ Γ(T M), using (3.2), (3.3) and (3.4) we obtain

∇̃X ξi = ∇X ξi +B(X ,ξi) =−αϕ
2X−ϕhiX

= αX−α

s

∑
i=1

η
i(X)ξi−ϕhiX

= αX−α

s

∑
i=1

η
i(X)ξi−ϕtiX−ϕ fiX

= αX−α

s

∑
i=1

η
i(X)ξi−ϕtiX−C fiX−D fiX . (4.13)

Thus (4.10)-(4.12) follows from (4.13).

Lemma 4.4. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then
we have

AϕXY = AϕY X (4.14)

for all X ,Y ∈ Γ(D⊥).

Proof. For all X ,Y ∈ Γ(D⊥) and Z ∈ Γ(T M), by using (3.4) and (3.6), we get

g(AϕXY,Z) = g(B(Y,Z),ϕX) = g(∇̃ZY,ϕX)

=−g(ϕ∇̃ZY,X) =−g(∇̃ZϕY − (∇̃Zϕ)Y,X)

=−g(∇̃ZϕY,X) = g(ϕY, ∇̃ZX)

= g(ϕY,B(Z,X)) = g(AϕY X ,Z),

which proves (4.14).

Lemma 4.5. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then we have,

∇ξiU ∈ Γ(D), (4.15)

∇ξiV ∈ Γ(D⊥), (4.16)

[U,ξi] ∈ Γ(D), (4.17)

[V,ξi] ∈ Γ(D⊥) (4.18)

for any i ∈ {1,2, ...,s}, U ∈ Γ(D) and V ∈ Γ(D⊥).

Proof. For U ∈ Γ(D) and V ∈ Γ(D⊥),

g(∇ξiU,ξ j) = ξig(U,ξ j)−g(U,∇ξiξ j) = 0

and

g(∇ξiU,V ) = ξig(U,V )−g(U,∇ξiV ) = g(ϕ2U,∇ξiV ) =−g(ϕU,ϕ∇ξiV ) =−g(ϕU,∇ξiϕV ) = g(∇ξiϕU,ϕV ) = 0,

so ∇ξiU ∈ Γ(D). In a similary way is deduced (4.16). On the other hand, using (4.10) and (4.11), we have

g([U,ξi],ξ j) = g(∇U ξi,−∇ξiU,ξ j) = 0

and

g([U,ξi],V ) = g(∇U ξi,V )−g(∇ξiU,V ) = 0.

Thus completes the proof.
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Lemma 4.6. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then we have

g(X , tiY ) = g(tiX ,Y ), (4.19)
ϕtiX + tiϕX +C fiX = 0, (4.20)

D fiX + fiϕX = 0 (4.21)

for any X ,Y ∈ Γ(M).

Proof. Since hi is symmetric, we get

g(X ,hiY ) = g(hiX ,Y )

g(X , tiY + fiY ) = g(tiX ,Y )+g( fiX ,Y )

g(X , tiY )+g(X , fiY ) = g(tiX ,Y )+g( fiX ,Y ).

From above equation we get (4.19). By making use of proposotion 2.3 and using (3.2), (3.3), we get

ϕtiX + tiϕX +C fiX +D fiX + fiϕX = 0. (4.22)

Comparing the tangential and normal part of (4.22), we get (4.20) and (4.21), respectively.

5. Integrability of distribution on a semi-invariant submanifold in an almost α-
cosymplectic f - manifold

Theorem 5.1. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then the distribution D is
never integrable.

Proof. For all X ,Y ∈ Γ(D), we have

g([X ,Y ],ξi) = g(∇XY,ξi)−g(∇Y X ,ξi)

=−g(Y,∇X ξi)+g(X ,∇Y ξi)

=−g(Y,αX−ϕtiX−C fiX)+g(X ,αY −ϕtiY −C fiY )

= g(Y,ϕtiX)+g(Y,C fiX)−g(X ,ϕtiY )−g(X ,C fiY )

= g(Y,ϕtiX +C fiX)−g(X ,ϕtiY +C fiY )

=−g(Y, tiϕX)+g(X , tiϕY )

=−g(tiY,ϕX)+g(tiX ,ϕY )

=−g(Y, tiϕX)−g(ϕtiX ,Y )

=−g(Y, tiϕX +ϕtiX)

= g(Y,C fiX) 6= 0.

This follows the non-integrability of D.

Corollary 5.2. The distribution D⊕D⊥ never involutive.

Theorem 5.3. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. The
distribution D⊕{ξ1, ...,ξs} is integrable if and only if

B(X ,ϕY ) = B(ϕX ,Y ) (5.1)

is satisfied.

Proof. From (4.4), the distribution D⊕{ξ1, ...,ξs} is integrable if and only if

B(X ,ϕY )−B(Y,ϕX) = ϕQ[X ,Y ] = 0

is satisfied so, B(X ,ϕY ) = B(Y,ϕX).

Theorem 5.4. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then
the distribution D⊥ is integrable.
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Proof. From (4.1), we have for X ,Y ∈ Γ(D⊥)

U(X ,Y ) =−AϕQY X

operating ϕ in (4.2) we get

P∇XY = ϕP(AϕY X) (5.2)

for any X ,Y ∈ Γ(D⊥). By virtue of Lemma 4.4, (5.2) reduce to

P([X ,Y ]) = 0

which is prove that [X ,Y ] ∈ Γ(D⊥).

6. Mixed totally geodesic semi-invariant submanifolds

Definition 6.1. A semi-invariant submanifold M of an almost α- cosymplectic f - manifold M̃ is called mixed totally geodesic
if the second fundamental form satisfies B(X ,Y ) = 0 for any X ∈ D and Y ∈ D⊥[5].

Theorem 6.2. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then M is mixed totally
geodesic submanifold of almost α- cosymplectic f - manifold M̃ if and only if

AV X ∈ Γ(D) (∀X ∈ Γ(D), V ∈ Γ(T M)⊥) (6.1)

and

AV X ∈ Γ(D)⊥ (∀X ∈ Γ(D)⊥, V ∈ Γ(T M)⊥). (6.2)

Proof. Consider AV X , let X ∈ Γ(D) and V ∈ Γ(T M)⊥ and Y ∈ Γ(D⊥), then we have

g(B(X ,Y ),V ) = g(AV X ,Y )

= 0⇔ AV X ∈ Γ(D).

On the other hand, if AV X ∈ Γ(D), we get

g(AV X ,V ) = g(B(X ,Y ),V )

= 0⇔ B(X ,Y ) = 0.

In a similar way is deduced (6.2).
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