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Abstract
In this paper, we present a new method to investigate data of multivariate heavy-tailed
distributions. We show that for any given number α ∈ (0; 2], each Gaussian copula is
also the copula of an α-stable random vector. Simultaneously, every random vector is
α-stable if its marginals are α-stable and its copula is a Gaussian copula. The result is
used to build up a formula representing density functions of α-stable random vectors with
Gaussian copula. Adopting a new tool, the paper points out that pairs of GPS signals
recording latitude and longitude of a fixed point have two-dimensional stable distribution,
and in the most of cases, vectors of daily returns in stock market data have multivariate
stable distributions with Gaussian copulas.
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1. Introduction
Until the 1970’s, most of the statistical analysis methods were developed under nor-

mality assumptions, mainly for mathematical convenience. In applications, however, nor-
mality is only a poor approximation of reality. In particular, normal distributions do not
allow heavy tails, which are so common, especially in finance and risk management stud-
ies [4, 8, 11, 14, 16, 18]. Arising as solutions to central limit problems, stable distributions
are natural heavy tailed extensions of normal distributions and have attracted a lot of
attention [1, 2, 11,12].

While the univariate stable distributions are now mostly accessible by several methods to
estimate stable parameters and reliable programs to compute stable densities, cumulative
distribution functions, and quantiles for stable random variables [1,6,10,13], the use of the
heavy tailed models in practice has been restricted by the lack of the tools for multivariate
stable distributions.

The main challenge of dealing with multivariate data with heavy tailed distributions
is that of ambiguous dependence between coordinates of a random vector. Whilst the
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dependence can be completely determined by covariance matrix for the case of multi-
normal data, the covariance matrix does not exist for heavy tailed data.

Fortunately, the problem can be solved by the tool of copula. The term copula was first
introduced by Sklar [17], but was not of great interest until recent years. Copula functions
describe the dependence structure connecting random variables, giving an opportunity to
separate the dependence structure and marginal distributions.

Another way of parameterizing multivariate stable distributions is to use the well known
univariate stable distribution results about one-dimensional projections of random vectors.
However, in practice, this approach faces with challenging computational problems which
have not been generally solved for multivariate stable distributions. The problems are
caused by the complexity of the possible distributions with an uncountable set of param-
eters.

In recent years, computations are more accessible for elliptically contoured stable dis-
tributions [15] which are scale mixtures of multivariate normal distributions. The tools for
the very special class of stable distributions were applied in several empirical studies [9,12].
Although the method is available only for a narrow subclass of symmetric multivariate
stable distributions, that approach stimulates researchers to create similar tools for other
subclasses of general stable multidimensional distributions.

The current paper attempts to develop a new method for investigating the data of
multivariate distributions with heavy tails, trying to decrease the complexity of stable
copulas downwards to a more practicable case of Gaussian copulas.

The paper is organized as follows. Section 1 presents some auxiliary results on one-
dimensional stable distributions and copulas. In Section 2 we give the main results of
multidimensional stable distributions with Gaussian copulas, demonstrating that Gaussian
copulas are also those of some multivariate stable distributions and a random vector is
stable if it has Gaussian copula and all its marginals are stable. In the last section we
formulate the density function of a stable random vector with Gaussian copula, which can
be practically computed. Then the results are applied for studies of GPS data and stock
market data.

2. Preliminaries and notation
Given a random vector X = (X1, ..., Xn)T taking values in Euclidean space Rn, its cumu-

lative distribution function (cdf hereafter) and probability density function (pdf hereafter)
are denote by FX and fX, respectively. The coordinates X1, ..., Xn are called marginals,
simultaneously FX1 , ..., FXn and fX1 , ..., fXn are called marginal cdf’s and marginal pdf’s
of X, respectively.

A continuous random vector X is said to have normal distribution (X is called a Gauss-
ian or normal random vector) and denoted by X ∼ N(µ; Σ) if its pdf is given by the
formula

fX(x) = 1
(2π)n/2

√
|Σ|

exp
[
−1

2
(x − µ)T Σ−1(x − µ)

]
,

with parameter µ ∈ Rn and positive definite matrix Σ ∈ Rn×n. For the special case of
standard normal random variable X ∼ N(0; 1), which plays an important role in statistics,
symbols φ and Φ refer to its pdf and cdf, respectively. Then

φ(x) = 1√
2π

exp(−x2

2
) .

By definition, a random vector X has stable distribution if for every pair (X′
, X′′) of

independent random vector’s identically distributed as X, for every pair (a, b) of positive
numbers, there always exist a positive number c and a vector d ∈ Rn such that aX′ + bX′′
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has the same distribution as cX+d. It is shown that the constant c is uniquely determined
by the pair (a, b). Namely, there is a number α ∈ (0; 2] called stability index satisfied the
equation aα + bα = cα. Then X is said to be α-stable. Moreover, it is well known that
every stable random variable is absolutely continuous with respect to Lebesgue measure on
R and its pdf has a support of the forms (−∞; +∞), [c; +∞) or (−∞; c] with some c ∈ R
(see [13], Theorem 1.9 and Lemma 1.10, for instance). Besides, every 2-stable random
variable is normally distributed.

From the definition it can be concluded that the stability of a random vector is conserved
after any linear transformation. Specifically, if a random vector X is α-stable and A :
Rn → Rn is a linear transformation then the random vector AX is also α-stable.

In the one-dimensional case, for all α ∈ (0; 2], every α-stable random variable has a
characteristic function of the form

X̂(u) = E exp(iuX) =
{

exp(−γα|u|α[1 − iβ(tan πα
2 )sign(u)] + iδu) α 6= 1

exp(−γ|u|[1 + iβ 2
π sign(u) ln |u|] + iδu) α = 1,

with fixed β ∈ [−1; 1], γ > 0 and δ ∈ R. Then the parameters α, β, γ, and δ uniquely
determine the distribution of X, the symbol X ∼ S(α; β; γ; δ) can be used to refer to that
situation. Proposition 1.17 of [13] gives formulas on the parameter’s change after a linear
transformation. In particular,

Proposition 2.1. (a) If X ∼ S(α; β; γ; δ), then for any a 6= 0 and b ∈ R,

aX + b ∼
{

S(α; sign(a)β; |a|γ; aδ + b) α 6= 1
S(1; sign(a)β; |a|γ; aδ + b − 2

π βa ln |a|) α = 1,

(b) If X1 ∼ S(α; β1; γ1; δ1) and X2 ∼ S(α; β2; γ2; δ2) are independent, then X1 + X2 ∼
S(α; β; γ; δ), where

β = β1γα
1 + β2γα

2
γα

1 + γα
2

, γα = γα
1 + γα

2 , δ = δ1 + δ2 .

For a cdf G : R → [0; 1] let G←(y) = inf{x : G(x) ≥ y} be its generalized inverse. Then
copula of a random vector X, denoted by CX, can be defined by

CX(t1, ..., tn) = FX(F←X1(t1), ..., F←Xn
(tn)) , (2.1)

for 0 ≤ t1, ..., tn ≤ 1. The famous Sklar’s Theorem (see [17]) confirms the relationship
FX(x1, ..., xn) = CX(FX1(x1), ..., FXn(xn)) , (2.2)

for x1, ..., xn ∈ R̄ = [−∞; +∞].
When the random vector X is continuous, its pdf fX and marginal pdf’s fX1 , ..., fXn

exist, simultaneously F←Xk
= F−1

Xk
for k = 1, ..., n. Then the copula density cX can be

defined and is given by the formula

cX(t1, ..., tn) =
fX(F−1

X1
(t1), ..., F−1

Xn
(tn))

fX1(F−1
X1

(t1))...fXn(F−1
Xn

(tn))
. (2.3)

Besides, the pdf fX can be calculated from cX by the identity
fX(x1, ..., xn) = cX(FX1(x1), ..., FXn(xn)) × fX1(x1)...fXn(xn) . (2.4)

In general, the copula functions are invariant under strictly increasing transformations.
Especially, the following proposition given by Embrechts et al. (see Proposition 5.6[3])
provides an useful tool for getting the main results of this study.

Proposition 2.2. Let C be the copula of a random vector X = (X1, ..., Xn)T and suppose
that all marginals X1, ..., Xn are continuous random variables. If T1, ..., Tn are strictly
increasing functions, then C is also the copula of random vector (T1(X1), ..., Tn(Xn))T .
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The Gaussian copula is the most popular one in applications. It is simply derived from
the correlation matrix of a multivariate Gaussian distribution function. For instance, the
copula of any two-dimensional Gaussian random vector is completely determined by the
correlation coefficient ρ between its marginals through the formula

C(u, v; ρ) = 1
2π

√
1 − ρ2

Φ−1(u)∫
−∞

Φ−1(v)∫
−∞

exp(−(s2 − 2ρst + t2)
2(1 − ρ2)

)dsdt (2.5)

for (u, v) ∈ [0; 1]2.
While Gaussian copulas have evidently analytical forms as the above, it raises a question:

whether Gaussian copulas can be the copulas of some non - Gaussian stable random vectors
or not? Then, the formulas (1.2), (1.3) and (1.4) can be combined together with correlation
matrices of Gaussian random vectors to compute pdf’s and cdf’s of those stable random
vectors.

To answer that question, Theorem 2.5 in the next section points out that indeed some
stable random vectors have Gaussian copulas. On the other hand, Theorem 2.6 confirms
that a random vector X = (X1, ..., Xn)T is α-stable with some α ∈ (0; 2) if all marginals
X1, ..., Xn are α-stable random variables and the copula CX is a Gaussian copula. That
means possessing Gaussian copula is a sufficient condition for a random vector with stable
marginals to be stable itself.

3. Stable random vectors with Gaussian copula
Before main results are stated, we formulate some auxiliary lemmas.

Lemma 3.1. Let Y and Z be continuous random variables with pdf’s fY and fZ which
are positive on the images ran(Y ) and ran(Z) of Y and Z. Then there exists a strictly
increasing function g : ran(Y ) → ran(Z) such that the random variable g◦Y : Ω → ran(Z)
has the same distribution as Z. Moreover, the function g has positive derivative g′.

Proof. By assumption, the pdf’s fY and fZ are positive, therefore the cdf’s FY and FZ are
strictly increasing on ran(Y ) and ran(Z), respectively. Then the function g : ran(Y ) →
ran(Z) defined by g(u) = F−1

Z (FY (u)) is well-determined as a strictly increasing function.
Besides, for each u ∈ ran(Z),

g′(u) = fY (u)
fZ(g(u))

,

which is a positive function. The identity implies

fZ(g(u))g′(u)du = fY (u)du ,

that yields

FZ(g(u)) =
g(u)∫
−∞

fZ(g(u))g′(u)du =
u∫

−∞

fY (u)du = FY (u) . (3.1)

On the other hand, for every t ∈ R,

Fg◦Y (t) = P{ω : g(Y (ω)) ≤ t} = P{ω : Y (ω) ≤ g−1(t)} = FY (g−1(t)) .

Compared the above with (2.1), putting t = g(u) implies

FZ(t) = Fg◦Y (t) .

This confirm the two random variables Z and g◦Y have the same distribution. The lemma
is proved. �
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Although the lemma seems to be quite trivial and simple, it can be useful in practical
application. Namely in applied statistics, sometimes normalizing transformations that
turn a given data set to a new form with normal distribution need to be used. One
of those normalizing transformation for continuously distributed data is proposed in the
following immediate consequence of the lemma.

Corollary 3.2. Let X be continuous random variable with pdf fX which is positive on
ran(X). Then there exists a strictly increasing function g : ran(X) → R such that the
random variable g ◦ X has normal distribution.

It is evident that all marginals of a stable random vector are stable random variables.
The inverse statement is not true, a random vector with all stable marginals is not always
stable. However, as it is confirmed in the next lemma, the inverse statement is valid if
those marginals are independent. Proof of that is quite simple and need not be presented.

Lemma 3.3. Let α ∈ (0; 2] and a random vector U = (U1, ..., Un)T be given. Supposed
that the marginals U1, ..., Un are independent α-stable random variables, then U is an
α-stable random vector.

The above lemma shows that the independence is a strong condition that guarantees the
stability of a random vector with stable marginals. However, for every 2-stable random
vector, it is always possible to rotate the space axes to get a new basis, in which the
random vector has independent marginals. Namely, the standard Cholesky decomposition
theorem immediately implies the following

Lemma 3.4. Let X be an n-dimensional normally distributed random vector with positive
defined covariance matrix Σ, X ∼ Nn(µ, Σ). Then there exists an orthogonal n×n matrix
A = (aij) such that the r.v. Y = AX has independent normally distributed marginals,
where A : Rn → Rn is the linear transformation defined by Ax = AxT .

We are now ready to state the main result.

Theorem 3.5. Let C be a Gaussian copula of a normally distributed random vector X
with positive defined covariance matrix. Then for every number α ∈ (0; 2] there exists an
α-stable random vector W such that C is also the copula of W.

Proof. Because both addition and multiplication by positive numbers are strictly increas-
ing transformations in R, by virtue of Proposition 1.2 it can be supposed that all marginals
X1, ..., Xn of the random vector X are standard normal random variables, Xk ∼ N(0; 1)
for k = 1, ..., n.

Based on the assumption, the covariance matrix Σ of X is positive defined, Lemma
2.4 implies the existence of an orthogonal n × n matrix A = (aij), A−1 = AT , such that
the normal random vector Y = AX has independent marginals Y1, ..., Yn and diagonal
covariance matrix AΣAT with diagonal elements consist of all eigenvalues of Σ.

Now α-stable random variables S1 , ... , Sn are concerned. Lemma 2.1 ensures that, for
each k = 1, ..., n, there exists a strictly increasing function gk : R → ran(Sk) such that the
random variable Uk = gk ◦ Yk has the same α-stable distribution as Sk. Simultaneously,
the independence of marginals Y1, ..., Yn implies the independence of random variables
U1, ..., Un. Thus, the random vector U = (U1, ..., Un)T has independent α-stable marginals,
it must be an α-stable random vector as the conclusion of Lemma 2.3.

Let define a new random vector W = (W1, ..., Wn)T = A−1U. Then it is clear that W
is also an α-stable random vector as U. We attempt to point out that W has the same
copula C as X. Firstly, the α-stability of marginals W1, ..., Wn of the random vector W
together with Lemma 2.1 ensures that for each k = 1, ..., n, there exist strictly increasing
function hk such that the random variable Zk = hk ◦ Wk has standard normal distribution
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as Xk. Consequently, due to Proposition 1.2, the random vector’s W and Z = (Z1, ..., Zn)T

have the same copula, CW = CZ. Therefore, to complete the proof, it is sufficient to show
that CZ = CX, which is equivalent to

cX = cZ . (3.2)
However, for (u1, ... , un) ∈ [0; 1]n, it implies from (1.3) that

cX(u1, ... , un) =
fX(F−1

X1
(u1), ... , F−1

Xn
(un))

fX1(F−1
X1

(u1))...fXn(F−1
Xn

(un))

= fX(Φ−1(u1), ... , Φ−1(un))
φ(Φ−1(u1))...φ(Φ−1(un))

(3.3)

and

cZ(u1, ... , un) =
fZ(F−1

Z1
(u1), ... , F−1

Zn
(un))

fZ1(F−1
Z1

(u1))...fZn(F−1
Zn

(un))

= fZ(Φ−1(u1), ... , Φ−1(un))
φ(Φ−1(u1))...φ(Φ−1(un))

(3.4)

From (2.3) and (2.4), it is evident that (2.2) is equivalent to
fX(Φ−1(u1), ... , Φ−1(un)) = fZ(Φ−1(u1), ... , Φ−1(un)) . (3.5)

Denoting g := (g1, ..., gn), h := (h1, ..., hn), and
Q := A−1 ◦ g ◦ A ,

we see that Z = h(W) and W = Q(X). Then, due to hk = Φ−1◦FWk
and the independence

of Y1, ... , Yn, setting x1 = F−1
W1

(u1), ... , xn = F−1
Wn

(un), the right hand side of (3.5) equals
to

fZ(Φ−1(u1), ... , Φ−1(un)) = fh◦W(Φ−1(u1), ... , Φ−1(un))
= fW(h−1(Φ−1(u1), ... , Φ−1(un))) = fQ◦X(h−1

1 (Φ−1(u1)), ... , h−1
n (Φ−1(un)))

= fX(Q−1(h−1
1 (Φ−1(u1)), ... , h−1

n (Φ−1(un))))
= fX(A−1 ◦ g−1 ◦ A(h−1

1 (Φ−1(u1)), ... , h−1
n (Φ−1(un))))

= fX(A−1 ◦ g−1 ◦ A(F−1
W1

(u1), ... , F−1
Wn

(un)))
= fA−1◦Y(A−1 ◦ g−1 ◦ A(x1, ... , xn)) = fY(A ◦ A−1 ◦ g−1 ◦ A(x1, ... , xn))

= fY1(g−1
1 (

n∑
j=1

a1jxj)) · ... · fY1(g−1
n (

n∑
j=1

anjxj))

= fU1(
n∑

j=1
a1jxj) · ... · fUn(

n∑
j=1

anjxj) . (3.7)

Simultaneously, setting y1 = F−1
U1

(u1), ... , yn = F−1
Un

(un), the left hand side of (3.5) is equal
to

fA−1◦Y(Φ−1(u1), ... , Φ−1(un)) = fY(A(Φ−1(FU1(y1)), ... , Φ−1(FUn(yn)))
= fY(A(g1(y−1

1 ), ... , fYn(g−1
n (yn))))

= fY1(
n∑

j=1
a1jg−1

j (yj)) · ... · fYn(
n∑

j=1
anjg−1

j (yj))

= 1√
2π

exp(−1
2

[
n∑

j=1
a1jg−1

j (yj)]2) · ... · 1√
2π

exp(−1
2

[
n∑

j=1
anjg−1

j (yj)]2)

= ( 1√
2π

)n exp(−1
2

n∑
k=1

([
n∑

j=1
akjg−1

j (yj)]2)
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= ( 1√
2π

)n exp(−1
2

n∑
k=1

n∑
j=1

akjg−1
j (yj)

n∑
i=1

akig
−1
i (yi))

= ( 1√
2π

)n exp(−1
2

n∑
j=1

n∑
i=1

n∑
k=1

akjakig
−1
j (yj)g−1

i (yi))

= ( 1√
2π

)n exp(−1
2

n∑
j=1

n∑
i=1

δjig
−1
j (yj)g−1

i (xi))

= ( 1√
2π

)n exp(−1
2

n∑
j=1

(g−1
j (xj))2) = φ(g−1

1 (x1))...φ(g−1
n (yn))

= fY1(g−1
1 (y1))...fYn(g−1

n (yn)) = fU1(y1)...fUn(yn) , (3.8)
where δkk = 1 for k = 1, ..., n; δki = 0 for k 6= i = 1, ..., n. Comparing (3.6) to (3.7), with
y1 =

∑n
j=1 a1jxj , ... , yn =

∑n
j=1 anjxj , we can conclude (3.5) is true, that means (3.2)

holds, the proof completes. �
The next theorem presents Gaussian copula as a sufficient condition for a random vector

with stable marginals to have stable distribution.

Theorem 3.6. For given α ∈ (0; 2] let X be a Gaussian random vector with positive
defined covariance matrix such that the matrix A = (aij) defined in the Lemma 2.4 satisfies
det(|aij |α) 6= 0. Suppose that W∗ = (W ∗

1 , ..., W ∗
n)T is a random vector with α-stable

marginals W ∗
1 , ... , W ∗

n such that the copulas of W∗ and of X are equal, CW∗ = CX.
Then W∗ is an α-stable random vector.

Proof. Let β∗1 , ..., β∗n ∈ [−1; 1]; γ∗1 , ..., γ∗n > 0; and δ∗1 , ..., δ∗n ∈ R be the stable parameters
and W ∗

1 ∼ S(α; β∗1 ; γ∗1 ; δ∗1), ..., W ∗
n ∼ S(α; β∗n; γ∗n; δ∗n). Then, since α-stability of a random

vector is unchanged after invertible linear transformation
(x1, ..., xn) 7→ (a1x1 + b1, ..., anxn + bn)

for any a1 > 0, ..., an > 0 and (b1, ..., bn) ∈ Rn, without loss of generality, it can be
supposed that γ∗1 = ... = γ∗n = 1 and δ∗1 = ... = δ∗n = 0.

Let matrix A = (aij) and the random vector Y = (Y1, ..., Yn)T = AX be determined as
in Lemma 2.4. We attempt to determine α-stable random variables S1 ∼ S(α; β1; γ1; 0),
..., Sn ∼ S(α; βn; γn; 0) satisfying the equations

1 = (γ∗1)α = |a11|αγα
1 + ... + |an1|αγα

n

. . .
1 = (γ∗n)α = |a1n|αγα

1 + ... + |ann|αγα
n

(3.9)

and 
β∗1 = β1|a11|αγα

1 +...+βn|an1|αγα
n

|a11|αγα
1 +...+|an1|αγα

n
= |a11|αγα

1 β1 + ... + |an1|αγα
n βn

. . .

β∗n = β1|a1n|αγα
1 +...+βn|ann|αγα

n

|a1n|αγα
1 +...+|ann|αγα

n
= |a1n|αγα

1 β1 + ... + |ann|αγα
n βn

(3.10)

with unknowns γα
1 , ..., γα

n and γα
1 β1, ..., γα

n βn.
From the assumption, det(|aij |α) 6= 0, it is clear that the equations (3.9) and (3.10) are

solved and the α-stable random variables S1 ∼ S(α; β1; γ1; 0), ..., Sn ∼ S(α; βn; γn; 0) are
completely defined. By virtue of Lemma 2.1, for each k = 1, ..., n, there exists a strictly
increasing function gk : R → ran(Sk) such that the random variable Uk = gk ◦ Yk has the
same α-stable distribution as Sk. Simultaneously, the independence of marginals Y1, ..., Yn

implies the independence of α-stable random variables U1, ..., Un.
With W = (W1, ..., Wn)T = A−1U, by the same argument of Theorem 2.5, it is certain

that W is an α-stable random vector that has the same copula as X, CW = CX = CW∗ .
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On the other hand, the equations (3.9) and (3.10) together with Proposition 1.1 imply the
equality in distribution of all the marginals of W to correspondent marginals of W∗. In
particular, W1 ∼ S(α; β∗1 ; γ∗1 ; δ∗1), ..., Wn ∼ S(α; β∗n; γ∗n; δ∗n). Consequently, W∗ D= W and
W∗ is an α-stable random vector, the proof is fulfilled. �

The above theorem suggests a procedure to check whether a data set can be fitted to
any stable random vector or not, with details as follows:

Step 1. To estimate stable parameters of data marginals and to check if the all marginals
have α-stable distributions with a common suitably chosen α.

Step 2. To estimate a Gaussian copula for the transformed data having normal dis-
tributed marginals, and to check if the original data are fitted to that Gaussian copula.

If the two steps are satisfied, it can be concluded the data vector has stable distribution.

4. Application
This section proposes a new method to analyze data of stable distribution with Gauss-

ian copula by using the results given in the previous section. The special structure of
Gaussian copulas allows researchers to combine well - known computational tools for one-
dimensional stable distributions and Gaussian copulas to compute density functions and
cumulative distribution functions of data which follow stable distributions with Gaussian
copulas.

4.1. Computation with multivariate data of stable distribution
Nolan[12] represented an approach to determine density functions of stable random

vectors belonging to a specific class of random vectors with elliptically contoured stable
distributions. At first, the researcher dealt with an α-stable radially symmetric (around
0) random vector X with density function fX(x) and amplitude R = |X|. For the case
0 < α < 2, the study showed that

X D= Z1/2G1 ,

where Z ∼ S(α/2; 1; 2γ2
0(cos πα/4)2/α; 0) is positive stable and G1 ∼ N(0; I), Z and G1

are independent. Then R2 D= ZT , where T is a chi-squared random variable with n degrees
of freedom, and independent of Z. From this equation, the density functions of R and X
are completely defined by

fR(r) = fR(r|α; γ0; n) = 2r

∞∫
0

fZ(r2/t)fT (t)
t

dt (4.1)

and

fX(x) =
{

(Γ(n/2)/(2πn/2))|x|1−nfR(|x| | α; γ0; n) x 6= 0
Γ(n/α)/(α2n−1πn/2Γ(n/2)2γn

0 ) x = 0.
(4.2)

A random vector Y is called elliptically contoured stable if it is an affine transformation
of the α-stable radially symmetric random vector X by Y = Σ1/2X + δ, where Σ1/2 is
from the Cholesky decomposition of a positive definite matrix Σ and δ ∈ Rn. Then

Y D= Z1/2Σ1/2G1 + δ ,

and
fY(y) = | det Σ|−1/2fX(Σ−1/2y) . (4.3)

Since the tools for computation of univariate stable density functions are quite com-
monly available at present, the formulas (4.1), (4.2) and (4.3) make the analyses of data
with elliptically contoured stable distributions easier.
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However, it is clear that all marginals of an α-stable radially symmetric random vector
are identically distributed and all marginals of an elliptically contoured stable random
vector are symmetric (around respective location parameter). Those properties of data
are quite rarely met in practice. In the following part, we propose a method of computing
density functions of stable random vectors having Gaussian copulas. Whilst marginals of
a stable random vector with Gaussian copula are not necessarily symmetric, this model of
multivariate stable distributions may be more acceptable in the practical data analysis.

Let G ∼ N(0; Σ) be a Gaussian random vector with covariance matrix Σ = (σij) and
σii = 1 for all i = 1, ..., n. It is evident that Σ also is the correlation matrix of G and all
marginals of this random vector are standard normal random variables. Then G has the
density function

fG(x) = (2π)−n/2|Σ|−1/2 exp(−1
2

xΣ−1xT )

for x = (x1, ..., xn) ∈ Rn, and from (1.1), its copula can be computed by

CG(u) = 1
(2π)n/2|Σ|1/2

Φ−1(u1)∫
−∞

...

Φ−1(un)∫
−∞

exp(−1
2

xΣ−1xT ) dxn... dx1

for u = (u1, ..., un) ∈ [0; 1]n. Moreover from (1.3), its copula density is determined by

cG(t) = fG(Φ−1(t1), ..., Φ−1(tn))
φ(Φ−1(t1))...φ(Φ−1(tn))

=
exp(−1

2(Φ−1(t1), ..., Φ−1(tn))Σ−1(Φ−1(t1), ..., Φ−1(tn))T )
(2π)n/2|Σ|1/2φ(Φ−1(t1))...φ(Φ−1(tn))

(4.4)

for t = (t1, ..., tn) ∈ [0; 1]n.
For fixed α ∈ (0; 2), let S1 ∼ S(α; β1; γ1; δ1), ..., Sn ∼ S(α; βn; γn; δn) be certain α-stable

random variables with density functions fS1 , ..., fSn and cumulative distribution functions
FS1 , ..., FSn , respectively. Then formula (1.2) from Sklar’s Theorem ensures the function

FY(y1, ..., yn) = CG(FS1(y1), ..., FSn(yn)) ,

for y1, ..., yn ∈ R̄ = [−∞; +∞], defines the cumulative distribution function of some ran-
dom vector Y with copula CG and marginals S1, ..., Sn. In the case when the condition
of Theorem 2.6 fulfilled for A = Σ1/2, the random vector Y is truly an α-stable random
vector, and by virtue of formula (1.4), its density function has the following form:

fY(y1, ..., yn) = cG(FS1(y1), ..., FSn(yn)) × fS1(y1)...fSn(yn)

=
exp(−1

2(Φ−1FS1(y1), ..., Φ−1FSn(yn))Σ−1(Φ−1FS1(y1), ..., Φ−1FSn(yn))T )
(2π)n/2|Σ|1/2φ(Φ−1FS1(y1))...φ(Φ−1FSn(yn))

× fS1(y1)...fSn(yn). (4.5)
It is evident that (3.5) can be calculate by ordinary computing without symmetry as-

sumption on the α-stable random variables S1, ..., Sn. Therefore, the approach represented
here is more flexible than the one of (4.3).

4.2. Multivariate stable distribution of GPS data
In this subsection we examine the probability distribution of two-dimensional random

vectors of GPS data. The data used in this study are given by Bui Quang[2] and were
taken from a GPS receiver device (JMC GP-200) fixed at the window of a room on the 3rd
floor in a 5 floor’s building. The device was connected with a computer to automatically
record data by a software (format-NMEA0183). With the equipment, longitude and lat-
itude coordinates of the fixed location were recorded sequentially every one second. The
measurement was conducted three times in May 2011, with the duration of 10 - 15 min-
utes each time, providing three files with 812, 752, and 627 signals, respectively. Totally,
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we got a data set with 2191 signals, each signal include a pair of longitude and latitude
coordinates recorded. Due to the changes of satellites positions on orbits, the measures
varied moment by moment though the location was fixed. However, we can determine the
distribution of the deviations from the "true" coordinates of the location, which will be
done as follows.

Traditionally, deviations in any measurement were treated as values of a normally dis-
tributed quantity. Therefore, Kolmogorov - Smirnov test (K-S test) was used to check if
the GPS data followed the normal distribution. The results are represented in Table 1,
with (X, Y ) denoted the pairs of longitude and latitude observed. In this table, the two
p-values presented less than 0.05, rejecting the hypothesis of having normal distribution
for coordinates. That means the two-dimensional vectors of longitudes and latitudes are
not normally distributed.

Guessing the two-dimensional coordinate vectors have stable distribution, we use the
functions McCullochParametersEstim and ks.test in the software R were used to estimate
stable parameters for each coordinate and then do K-S test verifying the hypothesis of
stable distribution, taking ᾱ (the average of two values of α) as the common first stable
parameter. The results are presented in Table 2, where the p-values are greater than 0.05,
indicating every coordinate has stable distribution S(ᾱ; β; γ; δ) with the corresponding
parameters. That means

X ∼ S(1.567; −0.1024; 3.15 · 10−5; 105.799922),
Y ∼ S(1.567; 0.1592; 2.16 · 10−5; 21.043174).

According to Theorem 2.6, the random vector (X, Y ) will be stable if it has Gaussian
copula. By Proposition 1.1 and Corollary 2.2, the Gaussian copula of (X, Y ) is com-
pletely determined by the correlation coefficient corr(X ′, Y ′), where variables X ′ and Y ′

are standard normal variables transformed from X and Y by

x′j = Φ−1(F̂X(xj)),

y′j = Φ−1(F̂Y (yj)),

with j = 1, ..., N , F̂X and F̂Y being the empirical cumulative distribution functions of X
and Y , respectively. Actually,

ρ = corr(X ′, Y ′) = −0.01462955 . (4.6)

We attempt now to show that the copulas defined by (2.5) with the correlation coef-
ficients ρ will be truly the copula of GPS coordinates corresponding to the data vectors
(X, Y ).

Genest and Rémillard[5] established the validity of the parametric bootstrap method
when testing the goodness of-fit of families of multivariate distributions and copulas. Based
on the reliable theoretical frame and other related ones, Kojadinovic and Yan[7] built up
an R package named copula to implement the goodness-of-fit tests. Used the function
named gofCopula in the copula package, we tested the hypothesis

H0 : C(X,Y )(u, v) = C(u, v; ρ) ,

(u, v) ∈ [0; 1]2, where C(u, v; ρ) is the Gaussian copula defined by (1.5) with the correlation
coefficient ρ given in (4.6).

The testing result approximates p-value of 0.6489, much greater than 0.05. That means
the hypothesis can be accepted. Then we can confirm that the GPS data vector has
Gaussian copula, consequently it has two-dimensional stable distribution by virtue of
Theorem 2.6.
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Table 1. Kolmogorov-Smirnov test for normal distribution of GPS data

Coordinate N (Size) Mean SD p-value
X 2191 105.799922 0.000053 4.6 · 10−5

Y 2191 21.043174 0.000039 2.4 · 10−8

Table 2. Parameters and Kolmogorov-Smirnov test for stable distribution

Coordinate α ᾱ β γ δ p-value
X 1.585 1.567 -0.1024 3.15 · 10−5 105.799922 0.1756
Y 1.504 1.567 0.1592 2.16 · 10−5 21.043174 0.6437

Applying (3.5) for the two-dimensional case, density functions of GPS signals are for-
mulated as follows.

f(X,Y )(x, y) = exp(−[Φ−1(FX(x))]2 + 2ρΦ−1FX(x)Φ−1FY (y) − [Φ−1FY (y)]2

2(1 − ρ2)
)

× fX(x)fY (y)
2π[1 − ρ2]1/2φ(Φ−1FX(x))φ(Φ−1FY (y))

for (x, y) ∈ R2.

4.3. Multivariate stable distribution of stock market data
This subsection models daily return data from 6 stocks AK (Akorn), AP (Apple), FA

(Facebook), MI (Microsoft), WM (Walmart), and AM (Amazon), using a sample from 01
May 2014 to 01 May 2019 to imply observations downloaded from Nasdaq Finance. Con-
tinuously compounded percentage returns are considered, i.e. daily returns are measured
by log-differences of closing pricing multiplied by 100. Descriptive statistics together with
Kolmogorov - Smirnov for normal distribution of the univariate series are shown in Table
3 and the result for the univariate stable model estimation are presented in Table 4.

Table 3 indicates that all the series have univariate distributions statistically different
from Gaussian distribution. In the meantime, Table 4 shows the series having univariate
stable distributions with a common stability index ᾱ = 1.4885 less than 2, driving us
to guess the 6-coordinates vector of daily returns have multivariate stable distribution.
The preliminary exploratory analysis in Table 3 also presents all series being asymmetric,
therefore it can be concluded that the vector of daily returns is not an elliptically contoured
stable vector.

To check if the 6-coordinates vector of daily returns have multivariate stable distribution
with Gaussian copula, applying the same argument as that presented in the subsection
3.2, we used the function named gofCopula in the copula package, testing the hypothesis
of owning Gaussian copula for the vector of daily returns. However, the calculation gave
a p-value of 0.0004995, rejecting the above hypothesis of Gaussian copula.

That phenomenon may be caused by the fact that the multivariate distribution of the
5-years data is a "mixture" of several distributions of data collected in shorter periods, at
the same time, the relationships between daily returns of any stock market are changing
year - by - year. It is possible that vectors of daily returns in any one - year collected
data have Gaussian copula even when their five-years "mixture" does not. In this context,
we investigate one - year period’s data, dividing each of the given daily returns series
into samples from the one - year periods of 1/5/2014 - 1/5/2015, 1/5/2015 - 1/5/2016,
1/5/2016 - 1/5/2017, 1/5/2017 - 1/5/2018, and 1/5/2018 - 1/5/2019.
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Table 3. Normal distribution test for Nasdaq stock market daily return data

Daily return Mean SD skew kurtosis p-value
Akorn -0.18 4.65 -6.97 120.11 2.200 × 10−16

Amazon 0.15 1.89 0.48 8.19 7.293 × 10−10

Apple 0.07 1.53 -0.33 4.35 5.181 × 10−8

Facebook 0.09 1.80 -0.89 19.78 1.354 × 10−8

Microsoft 0.09 1.45 0.15 7.06 3.715 × 10−7

Walmart 0.02 1.23 -0.12 17.59 1.186 × 10−7

Table 4. K-S test for univariate stability of Nasdaq daily returns

Daily return α ᾱ β γ δ p-value
Akorn 1.323 1.4885 -0.139 1.3814575 0.0928667 0.2145
Amazon 1.507 1.4885 -0.136 0.8938552 0.1625179 0.3195
Apple 1.433 1.4885 -0.112 0.7530880 0.0997931 0.5816
Facebook 1.564 1.4885 -0.153 0.9040878 0.1411224 0.2961
Microsoft 1.495 1.4885 -0.024 0.7038934 0.0739206 0.5166
Walmart 1.609 1.4885 -0.150 0.6042559 0.0620062 0.5488

Table 5. K-S tests for normal distribution of Nasdaq daily returns

Period AK AM AP FA MI WM
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

2014-2015 0.013261 0.008177 0.391102 0.744801 0.008314 0.115903
2015-2016 0.018070 0.047730 0.039080 0.061702 0.049890 0.038790
2016-2017 0.003373 0.120602 0.041780 0.115101 0.008741 0.008337
2017-2018 2.2/1016 0.021290 0.103902 0.006812 0.011230 0.000813
2018-2019 5.32/108 0.004618 0.009243 0.000610 0.029810 0.169003

The Kolmogorov - Smirnov tests checking the normal distribution hypothesis for each
daily returns series of AK; AM; AP; FA; MI; and WM for each one - year period, provide
the correspond p-values given in Table 5. Almost all p-values smaller than 5% confirm the
significant divergence from normal distribution of the 6-dimensional vector. Simultane-
ously, the greater than 5% p-values of Kolmogorov - Smirnov tests in Table 6 are crucial
arguments to conclude all the daily returns series of AK; AM; AP; FA; MI; and WM have
univariate stable distributions with common stable index ᾱ.

After the above conclusion, we guess the 6-components vectors of one - year series of
AK; AM; AP; FA; MI; and WM have multivariate stable distributions with stable index ᾱ
(the average number of α’s of those returns series in each one - year period). The values of
parameter β in Table 6 show almost all the series are asymmetric, then the 6-coordinate
vectors of one - year daily returns are not elliptically contoured stable vectors. Therefore
the method proposed by Nolan[12] for modeling density functions of stable random vectors
cannot be applied to these data.

To solve the problem, model of multivariate stable distributions with Gaussian copula
was used. In the first step, the correlation matrices of daily returns for each year (after
normalizing by respective functions determined in Corollary 2.2) were calculated, with
results given in Table 7 (showing only upper diagonal part of each correlation matrix).
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Table 6. K-S test for univariate stability of Nasdaq daily returns

Period return Size α ᾱ β γ δ p-value
AK 253 1.585 1.749 -0.119 1.5530655 0.2911653 0.8921
AM 253 1.890 1.749 0.250 1.0121948 0.0468389 0.9705

2014- AP 253 1.816 1.749 0.226 0.9143218 0.0940329 0.2943
2015 FA 253 1.834 1.749 -0.487 1.0605608 0.1819212 0.1691

MI 253 1.802 1.749 0.950 0.7181263 -0.0944571 0.8333
WM 253 1.566 1.749 -0.164 0.5259360 0.0202864 0.6175
AK 253 1.520 1.594 -0.129 1.8928297 -0.1685622 0.9705
AM 253 1.551 1.594 -0.170 1.1102714 0.1187294 0.2943

2015- AP 253 1.464 1.594 0.011 0.9516475 -0.1293445 0.6175
2016 FA 253 1.714 1.594 -0.275 1.1203550 0.1709250 0.6175

MI 253 1.579 1.594 -0.279 0.8872402 0.0570302 0.8921
WM 253 1.735 1.594 -0.342 0.7393400 -0.0387758 0.6175
AK 252 1.386 1.542 -0.052 1.4137946 0.0060832 0.5412
AM 252 1.571 1.542 0.040 0.6644741 0.1368053 0.5412

2016- AP 252 1.554 1.542 0.052 0.5639271 0.0694965 0.6900
2017 FA 252 1.700 1.542 -0.059 0.6375508 0.0656164 0.5412

MI 252 1.456 1.542 0.163 0.5062569 0.0125571 0.6900
WM 252 1.587 1.542 0.013 0.4897892 0.0414158 0.9971
AK 253 0.879 1.416 0.022 0.2224033 -0.0017055 0.2467
AM 253 1.594 1.416 -0.242 0.8952823 0.2258286 0.7655

2017- AP 253 1.519 1.416 -0.272 0.7178885 0.0804291 0.8333
2018 FA 253 1.449 1.416 -0.226 0.7877504 0.1023312 0.6175

MI 253 1.383 1.416 -0.206 0.6377951 0.1471863 0.1690
WM 253 1.672 1.416 -0.349 0.6182917 0.1956893 0.6924
AK 252 1.475 1.486 -0.592 2.1214072 0.7908369 0.9375
AM 252 1.324 1.486 -0.171 0.9626232 0.2057382 0.9375

2018- AP 252 1.420 1.486 -0.076 0.8866676 0.2004820 0.7634
2019 FA 252 1.636 1.486 0.163 1.0735537 0.0367324 0.2447

MI 252 1.363 1.486 -0.098 0.8032993 0.2114007 0.615
WM 252 1.696 1.486 -0.420 0.6659449 0.0687611 0.4709

Then, the function named gofCopula in the copula package was used to test the hy-
potheses of having Gaussian copula for each one - year 6-coordinates vector of daily returns.
The calculations generated the p-values of 0.09241; 0.4001; 0.4261; 0.03247; and 0.1424
for the periods of 1/5/2014-1/5/2015, 1/5/2015-1/5/2016, 1/5/2016-1/5/2017, 1/5/2017-
1/5/2018, and 1/5/2018-1/5/2019, respectively. The result shows that the copula of
daily returns vector is significantly different from Gaussian copula only for the period
of 1/5/2017-1/5/2018. Consequently, for other periods, (3.5) can be applied to determine
the density functions of 6-coordinates vector of daily returns.

In particular, the density functions are defined by the following explicit form:

fYi(y1, ..., y6) =

=
exp(−1

2(Φ−1FSi1(y1), ..., Φ−1FSi6(y6))Σ−1
i (Φ−1FSi1(y1), ..., Φ−1FSi6(y6))T )

(2π)3|Σi|1/2φ(Φ−1FSi1(y1))...φ(Φ−1FSi6(y6))

× fSi1(y1)...fSi6(y6).
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Table 7. Correlation matrices of yearly Nasdaq daily returns

Period Return AK AM AP FA MI WM
AK 1 0.2186643 0.2475693 0.3077665 0.2459316 0.1601064

2014- AM − 1 0.3409933 0.4551869 0.3825091 0.3096944
2015 AP − − 1 0.4335172 0.3217411 0.3265398
(Σ1) FA − − − 1 0.3563987 0.1559727

MI − − − − 1 0.4056158
WM − − − − − 1
AK 1 0.3588723 0.2654328 0.2849989 0.3524828 0.1686205

2015- AM − 1 0.4593876 0.6691572 0.5978800 0.2696340
2016 AP − − 1 0.4907881 0.6187722 0.3225324
(Σ2) FA − − − 1 0.6049646 0.2915228

MI − − − − 1 0.3800727
WM − − − − − 1
AK 1 0.1343061 0.1724847 0.1420178 0.1304932 0.0985428

2016- AM − 1 0.3852057 0.6213989 0.5295887 0.2304948
2017 AP − − 1 0.4696930 0.3770917 0.1327082
(Σ3) FA − − − 1 0.4943592 0.1408454

MI − − − − 1 0.1764853
WM − − − − − 1
AK 1 0.1331431 0.1339723 0.0957475 0.2203172 0.1150943

2017- AM − 1 0.5391196 0.5924327 0.6516110 0.1614915
2018 AP − − 1 0.4973002 0.6237823 0.2566277
(Σ4) FA − − − 1 0.5590985 0.1808916

MI − − − − 1 0.2446375
WM − − − − − 1
AK 1 0.1580187 0.0902602 0.0766932 0.0922525 0.1139641

2018- AM − 1 0.6874822 0.5985045 0.7364774 0.2353871
2019 AP − − 1 0.4927705 0.6563119 0.1773758
(Σ5) FA − − − 1 0.5133173 0.0338976

MI − − − − 1 0.2756855
WM − − − − − 1

Where i = 1, 2, 3, and 5 for the one-year periods of 1/5/2014-1/5/2015, 1/5/2015-1/5/2016,
1/5/2016-1/5/2017, and 1/5/2018-1/5/2019, respectively. Simultaneously, FSi1 , ..., FSi6
and fSi1 , ..., fSi6 are univariate cumulative distribution functions and density functions of
daily returns series of AK; AM; AP; FA; MI; and WM with stable parameters (ᾱ, β, γ, δ)
given in Table 6, whilst Σi is the correlation matrix presented in Table 7.

In short, the multivariate stable density functions can be directly used to compute the
implied distribution of any portfolio of 6 assets AK; AM; AP; FA; MI; and WM. As the
joint distribution of the vector of asset-returns is a multivariate stable distribution, the
univariate distribution of returns of any portfolio of these assets is also stable. This ap-
proach can be used to solve many problems related to portfolio selection.
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