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Abstract
The main purpose of the paper is to investigate geodesics on the tangent bundle with respect to the
twisted-Sasaki metric. We establish a necessary and sufficient conditions under which a curve be a
geodesic respect. Afterward, we also construct some examples of geodesics.
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1. Introduction
The geometry of the tangent bundle TM equipped with Sasaki metric has been studied by many authors such as

Sasaki, S. [18], Yano, K. and Ishihara, S. [20], Dombrowski, p. [6], Salimov, A., Gezer, A., and Cengiz, N. [2, 7, 14–16].
The rigidity of Sasaki metric has incited some geometers to construct and study other metrics on TM . Musso, E. and
Tricerri, F. have introduced the notion of Cheeger-Gromoll metric [13], Jian, W. and Yong, W. have introduced the
notion of Rescaled Metric [9], Zagane, A. and Djaa, M. have introduced the notion of Mus-Sasaki metric [12, 21, 22].

The main idea in this note consists in the modification of the Sasaki metric. First we introduce a new metric
called twisted-Sasaki metric on the tangent bundle TM . This new natural metric will lead us to interesting results.
Afterward we establish a necessary and sufficient conditions under which a curve be a geodesic with respect to the
twisted-Sasaki metric.

2. Preliminaries
Let (Mm, g) be an m-dimensional Riemannian manifold and (TM, π,M) be its tangent bundle. A local chart

(U, xi)i=1,m on M induces a local chart (π−1(U), xi, yi)i=1,m on TM . Denote by Γkij the Christoffel symbols of g and
by∇ the Levi-Civita connection of g.

We have two complementary distributions on TM , the vertical distribution V and the horizontal distributionH
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defined by :

V(x,u) = Ker(dπ(x,u)) = {ai ∂
∂yi
|(x,u); ai ∈ R},

H(x,u) = {ai ∂
∂xi
|(x,u) − aiujΓkij

∂

∂yk
|(x,u); ai ∈ R},

where (x, u) ∈ TM , such that T(x,u)TM = H(x,u) ⊕ V(x,u).
Let X = Xi ∂

∂xi be a local vector field on M . The vertical and the horizontal lifts of X are defined by

XV = Xi ∂

∂yi
, (2.1)

XH = Xi δ

δxi
= Xi{ ∂

∂xi
− yjΓkij

∂

∂yk
}. (2.2)

For consequences, we have ( ∂
∂xi )H = δ

δxi and ( ∂
∂xi )V = ∂

∂yi , then ( δ
δxi ,

∂
∂yi )i=1,m is a local adapted frame on TTM .

If w = wi ∂
∂xi + wj ∂

∂xj ∈ T(x,u)TM, then its horizontal and vertical parts are defined by

wh = wi
∂

∂xi
− wiujΓkij

∂

∂yk
∈ H(x,u), (2.3)

wv = (wk + wiujΓkij)
∂

∂yk
∈ V(x,u). (2.4)

Lemma 2.1. [20] Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita connection and R its tensor curvature, then for
all vector fields X,Y ∈ Γ(TM), we have following relations

1. [XH , Y H ]p = [X,Y ]Hp − (Rx(X,Y )u)V ,

2. [XH , Y V ]p = (∇XY )Vp ,

3. [XV , Y V ]p = 0,

where p = (x, u) ∈ TM .

3. Twisted-Sasaki metric
3.1 Twisted-Sasaki metric
Definition 3.1. Let (M, g) be a Riemannian manifold and f : M → [0,+∞[ be a positive smooth function on M .
On the tangent bundle TM , we define a twisted-Sasaki metric noted gf by

1 gf (XH , Y H)(x,u) = gx(X,Y ),

2 gf (XH , Y V )(x,u) = 0,

3 gf (XV , Y V )(x,u) = gx(X,Y ) + f(x)gx(X,u)gx(Y, u),

where X,Y ∈ Γ(TM), (x, u) ∈ TM , f is called twisting function.

Remark 3.1. 1 If f = 0 gf is the Sasaki metric [20],

2 gf (XV , UV ) = αg(X,u), α = 1 + fr2 and r2 = g(u, u),
where X,U ∈ Γ(TM), Ux = u ∈ TxM and (x, u) ∈ TM .

In the following, we consider f 6= 0, α = 1 + fr2 and r2 = g(u, u) = ‖u‖2 where ‖.‖ denote the norm with
respect to (M, g).

Lemma 3.1. Let (M, g) be a Riemannian manifold and ρ : R→ R a smooth function. For all X,Y ∈ Γ(TM), p = (x, u) ∈
TM and u ∈ TxM , we have following relations

1. XH(ρ(r2))p = 0,
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2. XV (ρ(r2))p = 2ρ′(r2)g(X,u)x,

3. XH(g(Y, u))p = g(∇XY, u)x,

4. XV (g(Y, u)p = g(X,Y )x.

Proof. Locally, if U : x ∈M → Ux = u = ui ∂
∂xi ∈ TxM be a local vector field constant on each fiber TxM , then we

have

1. XH(ρ(r2))p =
[
Xi ∂

∂xi
(ρ(r2))− ΓkijX

iyj
∂

∂yk
(ρ(r2))

]
p

=
[
Xiρ′(r2)

∂

∂xi
(r2)− ρ′(r2)ΓkijX

iyj
∂

∂yk
(r2)

]
p

= ρ′(r2)
[
Xi ∂

∂xi
gsty

syt − ΓkijX
iyj

∂

∂yk
gsty

syt
]
p

= ρ′(r2)
[
Xg(U,U)x − 2(ΓkijX

iyjgsky
s)p
]

= ρ′(r2)[Xg(U,U)x − 2g(U,∇XU)x]

= 0.

2. XV (ρ(r2))p = [Xiρ′(r2)
∂

∂yi
gsty

syt]p

= 2ρ′(r2)Xigitu
t

= 2ρ′(r2)g(X,u)x.

The other formulas are obtained by a similar calculation.

Lemma 3.2. Let (M, g) be a Riemannian manifold, we have the following

1) XHgf (Y H , ZH) = Xg(Y,Z),

2) XV gf (Y H , ZH) = 0,

3) XHgf (Y V , ZV ) = gf ((∇XY )V , ZV ) + gf (Y V , (∇XZ)V ) +X(f)g(Y, u)g(Z, u),

4) XV gf (Y H , ZH) = f
[
g(X,Y )g(Z, u) + g(Y, u)g(X,Z)

]
,

where X,Y, Z ∈ Γ(TM).

Proof. Lemma 3.2 follows from Definition 3.1 and Lemma 3.1.

3.2 The Levi-Civita connection

We shall calculate the Levi-Civita connection ∇f of TM with twisted-Sasaki metric gf . This connection is
characterized by the Koszul formula

2gf (∇f
X̃
Ỹ , Z̃) = X̃gf (Ỹ , Z̃) + Ỹ gf (Z̃, X̃)− Z̃gf (X̃, Ỹ )

+gf (Z̃, [X̃, Ỹ ]) + gf (Ỹ , [Z̃, X̃])− gf (X̃, [Ỹ , Z̃]). (3.1)

for all X̃, Ỹ , Z̃ ∈ Γ(TM).

Lemma 3.3. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki metric.
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If ∇ (resp ∇f ) denotes the Levi-Civita connection of (M, g) (resp (TM, gf )), then we have following relations

1) gf (∇f
XHY

H , ZH) =gf
(
(∇XY )H , ZH

)
,

2) gf (∇f
XHY

H , ZV ) =− 1

2
gf
(
(R(X,Y )u)V , ZV

)
,

3) gf (∇f
XHY

V , ZH) =
1

2
gf
(
(R(u, Y )X)H , ZH

)
,

4) gf (∇f
XHY

V , ZV ) =gf
(
(∇XY )V , ZV

)
+

1

2α
X(f)g(Y, u)gf (UV , ZV ),

5) gf (∇f
XV Y

H , ZH) =
1

2
gf
(
(R(u,X)Y )H , ZH

)
,

6) gf (∇f
XV Y

H , ZV ) =
1

2α
Y (f)g(X,u)gf (UV , ZV ),

7) gf (∇f
XV Y

V , ZH) =
−1

2
g(X,u)g(Y, u)gf ((grad f)H , ZH),

8) gf (∇f
XV Y

V , ZV ) =
f

α
g(X,Y )gf (UV , ZV ),

for all vector fields X,Y, U ∈ Γ(TM), Ux = u ∈ TxM and (x, u) ∈ TM , where R denotes the curvature tensor of (M, g).

Proof. The proof of Lemma 3.3 follows directly from Kozul formula (3.1), Lemma 2.1, Definition 3.1 and Lemma 3.2.
1) The statement is obtained as follows

2gf (∇f
XHY

H , ZH) =XHgf (Y H , ZH) + Y Hgf (ZH , XH)− ZHgf (XH , Y H)

+ gf (ZH , [XH , Y H ]) + gf (Y H , [ZH , XH ])− gf (XH , [Y H , ZH ])

=Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + gf (ZH , [X,Y ]H)

+ gf (Y H , [Z,X]H)− gf (XH , [Y,Z]H)

=Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g(Z, [X,Y ])

+ g(Y, [Z,X])− g(X, [Y, Z])

=2g(∇XY,Z)

=2gf ((∇XY )H , ZH).

2) Direct calculations give

2gf (∇f
XHY

H , ZV ) =XHgf (Y H , ZV ) + Y Hgf (ZV , XH)− ZV gf (XH , Y H)

+ gf (ZV , [XH , Y H ]) + gf (Y H , [ZV , XH ])− gf (XH , [Y H , ZV ])

=gf (ZV , [XH , Y H ])

=− gf ((R(X,Y )u)V , ZV ).

The other formulas are obtained by a similar calculation.

As a direct consequence of Lemma 3.3, we get the following theorem.

Theorem 3.1. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If∇ (resp ∇f ) denotes the Levi-Civita connection of (M, g) (resp (TM, gf ) ), then we have:

1. (∇f
XHY

H)p = (∇XY )Hp −
1

2
(Rx(X,Y )u)V ,

2. (∇f
XHY

V )p = (∇XY )Vp +
1

2α
Xx(f)gx(Y, u)UVp +

1

2
(Rx(u, Y )X)H ,

3. (∇f
XV Y

H)p =
1

2α
Yx(f)gx(X,u)UVp +

1

2
(Rx(u,X)Y )H ,

4. (∇f
XV Y

V )p =
−1

2
gx(X,u)gx(Y, u)(grad f)Hp +

f

α
gx(X,Y )UVp ,

for all vector fields X,Y, U ∈ Γ(TM), Ux = u ∈ TxM and p = (x, u) ∈ TM , where R denotes the curvature tensor of
(M, g).
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4. Geodesics of twisted-Sasaki metric.
Lemma 4.1. Let (M, g) be a Riemannian manifold. If X,Y ∈ Γ(TM) are vector fields on M and (x, u) ∈ TM such that
Yx = u, then we have

dxY (Xx) = XH
(x,u) + (∇XY )V(x,u).

Proof. Let (U, xi) be a local chart onM in x ∈M and π−1(U), xi, yj) be the induced chart on TM , ifXx = Xi(x) ∂
∂xi |x

and Yx = Y i(x) ∂
∂xi |x = u, then

dxY (Xx) = Xi(x)
∂

∂xi
|(x,u) +Xi(x)

∂Y k

∂xi
(x)

∂

∂yk
|(x,u).

Thus the horizontal part is given by:

(dxY (Xx))h = Xi(x)
∂

∂xi
|(x,u) −Xi(x)Y j(x)Γkij(x)

∂

∂yk
|(x,u)

= XH
(x,u),

and the vertical part is given by:

(dxY (Xx))v = {Xi(x)
∂Y k

∂xi
(x) +Xi(x)Y j(x)Γkij(x)} ∂

∂yk
|(x,u)

= (∇XY )V(x,u).

Let (M, g) be a Riemannian manifold and x : I →M be a curve on M . We define a curve C : I → TM by for all
t ∈ I, C(t) = (x(t), y(t)) where y(t) ∈ Tx(t)M i.e. y(t) is a vector field along x(t).

Definition 4.1. ([17, 20]) Let (M, g) be a Riemannian manifold. If x(t) is a curve on M , the curve C(t) = (x(t), ẋ(t))
is called the natural lift of curve x(t).

Definition 4.2. ([20]) Let (M, g) be a Riemannian manifold and ∇ denotes the Levi-Civita connection of (M, g). A
curve C(t) = (x(t), y(t)) is said to be a horizontal lift of the cure x(t) if and only if ∇ẋy = 0.

Lemma 4.2. Let (M, g) be a Riemannian manifold and ∇ denotes the Levi-Civita connection of (M, g). If x(t) be a curve on
M and C(t) = (x(t), y(t)) be a curve on TM , then

Ċ = ẋH + (∇ẋy)V . (4.1)

Proof. Locally, if Y ∈ Γ(TM) is a vector field such Y (x(t)) = y(t), then we have

Ċ(t) = dC(t) = dY (x(t)).

Using Lemma 4.1, we obtain
Ċ(t) = dY (x(t)) = ẋH + (∇ẋy)V .

Theorem 4.1. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If∇ (resp. ∇f ) denotes the Levi-Civita connection of (M, g) (resp. (TM, gf )) and C(t) = (x(t), y(t)) is the cure on
TM such y(t) is a vector field along x(t), then

∇f
Ċ
Ċ = (∇ẋẋ)H + (R(y,∇ẋy)ẋ)H − 1

2
g(∇ẋy, y)2(grad f)H

+(∇ẋ∇ẋy)V +
1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
yV . (4.2)
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Proof. Using Lemma 4.2, we obtain

∇f
Ċ
Ċ = ∇f

[ẋH + (∇ẋy)V ]
[ẋH + (∇ẋy)V ]

= ∇f
ẋH

ẋH +∇f
ẋH

(∇ẋy)V +∇f
(∇ẋy)V

ẋH +∇f
(∇ẋy)V

(∇ẋy)V

= (∇ẋẋ)H − 1

2
(R(ẋ, ẋ)y)V + (∇ẋ∇ẋy)V +

1

2α
ẋ(f)g(∇ẋy, y)yV

+
1

2
(R(y,∇ẋy)ẋ)H +

1

2α
ẋ(f)g(∇ẋy, y)yV +

1

2
(R(y,∇ẋy)ẋ)H

−1

2
g(∇ẋy, y)g(∇ẋy, y)(grad f)H +

f

α
g(∇ẋy,∇ẋy)yV

= (∇ẋẋ)H + (R(y,∇ẋy)ẋ)H − 1

2
g(∇ẋy, y)2(grad f)H

+(∇ẋ∇ẋy)V +
1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
yV .

Theorem 4.2. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If C(t) = (x(t), y(t)) is the cure on (TM, gf ) such y(t) is a vector field along x(t), then C(t) is a geodesic on TM if
and only if 

∇ẋẋ =
1

2
g(∇ẋy, y)2grad f −R(y,∇ẋy)ẋ

∇ẋ∇ẋy = − 1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
y.

(4.3)

Proof. The statement is a direct consequence of Theorem 4.1 and definition of geodesic.

Using Theorem 4.2, we deduce following.

Corollary 4.1. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. The natural lift C(t) = (x(t), ẋ(t)) of any geodesic x(t) on (M, g) is a geodesic on (TM, gf ).

Corollary 4.2. Let (M, g) be a Riemannian manifold, (TM, gf ) its tangent bundle equipped with the twisted-Sasaki metric.
The horizontal lift C(t) = (x(t), y(t)) of the curve x(t) is a geodesic on (TM, gf ) if and only if x(t) is a geodesic on (M, g).

Remark 4.1. Let (Mm, g) be an m-dimensional Riemannian manifold. If C(t) = (x(t), y(t)) horizontal lift of the
curve x(t), locally we have

∇ẋy = 0 ⇔ dyk

dt
+ Γkijy

i dx
j

dt
= 0

⇔ y′(t) = A(t).y(t),

where, A(t) = [akj ] , akj =

m∑
i=1

−Γkij
dxj

dt
.

Remark 4.2.
Using the Remark 4.1, we can construct an infinity of examples of geodesics on (TM, gf ).

Example 4.1. We consider on R the metric g = exdx2.
The Christoffel symbols of the Levi-cita connection associated with g are

Γ1
11 =

1

2
g11(

∂g11
∂x1

+
∂g11
∂x1

− ∂g11
∂x1

) =
1

2
.

1)The geodesics x(t) such that x(0) = a ∈ R, x′(0) = v ∈ R of g satisfies the equation

d2xs

dt2
+

n∑
i,j=1

dxi

dt

dxj

dt
Γsij = 0⇔ x′′ +

1

2
(x′)2 = 0.
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Hence, we get x′(t) =
2v

2 + vt
and x(t) = a+ 2 ln(1 +

vt

2
).

Then, the natural lift

C1(t) = (x(t), x′(t)) =
(
a+ 2 ln(1 +

vt

2
),

2v

2 + vt

)
is a geodesic on TR.
2) The curve C2(t) = (x(t), y(t)) such ∇ẋy = 0 satisfies the equation

dys

dt
+ yiΓsij

dxj

dt
= 0⇔ y′ +

1

2
yx′ = 0,

after that y(t) = k. exp(− v

2 + tv
) , k ∈ R.

Then, the horizontal lift

C2(t) = (x(t), y(t)) =
(
a+ 2 ln(1 +

vt

2
), k. exp(− v

2 + tv
)
)

is a geodesic on TR.

Corollary 4.3. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If f be a constant function, then the curve C(t) = (x(t), y(t)) is a geodesic on (TM, gf ) if and only if

∇ẋẋ = −R(y,∇ẋy)ẋ

∇ẋ∇ẋy = −f
α
‖∇ẋy‖

2y.

(4.4)

Proof. The statement is a direct consequence of Theorem 4.2.

Theorem 4.3.
Let (M, g) be a Riemannian manifold, (TM, gf ) its tangent bundle equipped with the twisted-Sasaki metric and x(t) be a
geodesic on M . If C(t) = (x(t), y(t)) is a geodesic on TM such that ‖y(t)‖ is not a constant, then f is a constant along the
curve x(t).

Proof. Let x(t) be a geodesic on M , then∇ẋẋ = 0. Using the first equation of formula (4.3), we obtain

g(∇ẋẋ, ẋ) = 0 ⇒ 1

2
g(∇ẋy, y)2g(grad f, ẋ)− g(R(y,∇ẋy)ẋ, ẋ) = 0

⇒ 1

2
g(∇ẋy, y)2ẋ(f) = 0

⇒ ẋ(f) = 0,

as ‖y(t)‖ is a constant⇔ ẋg(y, y) = 0⇔ g(∇ẋy, y) = 0.

Corollary 4.4. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If C(t) = (x(t), y(t)) is the cure on (TM, gf ) such ‖y(t)‖ is a constant, then the curve C(t) = (x(t), y(t)) is a
geodesic on (TM, gf ) if and only if 

∇ẋẋ = −R(y,∇ẋy)ẋ

∇ẋ∇ẋy = −f
α
‖∇ẋy‖

2y.

(4.5)

Proof. The statement is a direct consequence of Theorem 4.2, and we have
‖y(t)‖ is a constant⇔ ẋg(y, y) = 0⇔ g(∇ẋy, y) = 0.

Theorem 4.4. Let (M, g) be a flat Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. Then, the cure C(t) = (x(t), y(t)) is a geodesic on TM if and only if

∇ẋẋ =
1

2
g(∇ẋy, y)2grad f

∇ẋ∇ẋy = − 1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
y.

(4.6)
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Proof. The statement is a direct consequence of Theorem 4.1.

Corollary 4.5. Let (M, g) be a flat Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If f is a constant function, then the curve C(t) = (x(t), y(t)) is a geodesic on TM implies that x(t) is a geodesic on
M .

Proof. The statement is a direct consequence of Theorem 4.4.
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