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Abstract

This paper investigates the following Katugampola fractional di�erential equation with Erdelyi-Kober frac-
tional integral boundary conditions:

Dρ,αu(t) + h(t, u(t)) = 0, 0 < t < T,
u(0) = 0,

u′(T ) = λIγ,δη u′(ξ), 0 < ξ < T,

where Dρ,α is the Katugampola derivative of order 1 < α < 2, ρ > 0 and h : [0, T ]× R→ R is a continuous

function, Iγ,δη denotes Erdelyi-Kober fractional integral of order δ > 0, η > 0, λ, γ ∈ R. Some new existence
and uniqueness results are obtained using nonlinear's contraction principal and Krasnoselskii's and Leray-
Schauder's �xed point theorems. Four examples are given in the last section to illustrate the obtained
results.
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1. Introduction

2. Introduction

Fractional calculus is one of the most emerging areas and has attracted the attention of many researchers
over the last few decades [2, 3, 6, 12, 13, 15, 16, 20, 17, 14]. Many researchers have been interested both in
theoretical aspects and in various applications: physics, chemistry, engineering, biology, etc.
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Classical fractional order boundary conditions involve Riemman-Liouville or Katugampola type integral
boundary conditions, which use Erdelyi-Kober fractional integral operators. Introduced by Arther Erdelyi
and Herman Kober in 1940 [19], they play an important role in solving some problems in signal processing,
dual and triple integral equations, and special function in mathematical physics [1, 7, 9, 11, 5, 18, 21].

In [1], the authors investigated the existence of solution of Caputo type fractional di�erential equation
with nonlocal Riemann-Liouville and Erdelyi-Kober type integral boundary conditions, of the form

CDqu(t) = f(t, u(t)), 0 < t < T,

u(0) = αIγ,δη u(ξ), 0 < ξ < T,

u(T ) = βJψη u(ζ), 0 < ζ < T,

where CDα is the Caputo derivative of order 1 < α ≤ 2, f : [0, T ] × R → R is a continuous function, Iγ,δη
denotes Erdelyi-Kober fractional integral of order δ > 0, η > 0, γ ∈ R.

In [10], the authors investigated the existence results for Katugampola fractional di�erential equations
via a measure of noncompactness: {

Dρ,ωu(t) = h(t, u(t)), 0 < t < T,
u(0) = u0, u

′(0) = u1,

where Dρ,ω is Katugampola fractional derivative of order 1 < ρ < 2, h : [0, T ] × R → R is a continuous
function and ω > 0.

In [13], the authors established the fractional order boundary value problems with Katugampola fractional
integral conditions as follow: 

CDqu(t) + f(t, u(t)) = 0, 0 < t < T,
u(T ) = βIρ,q(ε), 0 < ε < T,
u′(T ) = γIρ,qu′(η), 0 < η < T,
u′′(T ) = δIρ,qu′′(ζ), 0 < ζ < T,

where ρIq is the Katugampola integral, q > 0, ρ > 0, and f : [0, T ]× R→ R is a continuous function.
In [19], the authors established the existence of solution for following nonlinear Riemann-Liouville frac-

tional di�erential equation subject to nonlocal Erdelyi-Kober fractional integral conditions:
Dqu(t) + f(t, u(t)) = 0 0 < t < T,
u(0) = 0,

αu(T ) = Σm
i=1βiI

γi,δi
ηi u(ξi), 0 < ξ < T,

where Dq is the standard Riemann-Liouville fractional derivative of order 1 < q ≤ 2, f : [0, T ] × R → R
is a continuous function, Iγi,δiηi denote Erdelyi-Kober fractional integral of order δi > 0, ηi > 0, γi ∈ R and
α, βi ∈ R, ξ ∈ (0, T ), i = 1, 2, ...m are given constants.

In [4] the authors studied the existence and uniqueness of solution for a class nonlinear implicit fractional
di�erential equation via Katugampola fractional derivative:{

Dρ,α
0+
u(t) = f(t, u(t), Dρ,α

0+
u(t)), 0 < t < T,

u(0) = 0,

where 0 < α ≤ 1, ρ > 0 and T ≤ (pc) 1
pc for any 1 < p ≤ ∞, c > 0 is �nite positive constant, p is the

order of Lebesgue integral de�ned on a suitable space, the symbol Dρ,α
0+

presents the Katugampola fractional
derivative operator and f : [0, T ]× R→ R is a continuous function.

Motivated by the above papers, we investigate the existence of solution for the following Katugampola
fractional di�erential equipped with Erdelyi-Kober fractional integral boundary conditions:

Dρ,αu(t) + h(t, u(t)) = 0, 0 < t < T,
u(0) = 0,

u′(T ) = λIγ,δη u′(ξ), 0 < ξ < T,

(1)
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where 1 < α < 2, ρ > 0, δ > 0, η > 0, λ, γ ∈ R, and h : [0, T ]× R→ R is a continuous function.
The paper is organized as the follows. In section 2, we present some preliminaries and lemmas. Sections

3 and 4 are devoted to the existence and uniqueness solution of (1), which are obtained via contraction
mapping principle, Krasnoselskii's �xed point theorem, and Leray-Schauder nonlinear alternative. In section
5, four illustrative examples are detailed.

3. Preliminaries

We recall here some basic de�nitions of fractional integral calculus and some auxiliary lemmas which will
be needed later.

Consider the space Xp
c [0, T ], (c ∈ R, 1 ≤ p ≤ ∞) of complex-valued Lebesgue measurable functions h on

[0, T ] for which ‖h‖Xp
c
<∞, where the norm is de�ned by

‖h‖Xp
c

=

(∫ T

0
|sch(s)|pds

s
)

) 1
P

<∞,

for c ∈ R, 1 ≤ p ≤ ∞. For p =∞, we have

‖h‖X∞c = ess sup
0≤t≤T

|sch(s)| .

By X = C[0, T ] we denote the Banach space of all continuous functions x : [0, T ]→ R with the norm

‖x‖C = sup
t∈[0,T ]

|x(t)|.

Remark 3.1. [4] Let p, c, T ∈ R?+ be such that p ≥ 1, c > 0 and T ≤ (pc)
1
pc . One can easily see that

∀h ∈ C[0, T ]

‖h‖Xp
c

=

(∫ T

0
|sch(s)|pds

s

) 1
P

≤
(
‖h‖pc

∫ T

0
spc−1ds

) 1
P

=
TC

(pc)
1
p

‖h‖C ,

and if p =∞
‖h‖Xp

c
= ess sup

0≤t≤T
(tc|h(t)|) ≤ T c‖h‖C ,

which implies that C[0, T ] ↪→ Xp
c [0, T ], and ‖h‖Xp

c
≤ ‖h‖C for all T ≤ (pc) 1

pc .

De�nition 3.1. [13] The Riemann-Liouville fractional integral of order α > 0 of continuous function h :
(0,∞)→ R is de�ned by

Jαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

where Γ(·) is the gamma function, de�ned by

Γ(α) =

∫ ∞
0

tα−1e−tdt.

De�nition 3.2. [1] The Riemann-Liouville fractional derivative of order α > 0, n− 1 < α < n, n ∈ N of a
continuous function h : (0,∞)→ R is de�ned by

Dα
0+h(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1h(s)ds,

where the function h has absolutely continuous derivative up to order (n− 1).
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De�nition 3.3. [4] The left-sided Hadamard fractional derivative of order α > 0 of a continuous function
h : (0,∞)→ R is de�ned by

HDα
0+h(t) =

1

Γ(n− α)

(
t
d

dt

)n ∫ t

0

(
log

t

s

)n−α−1

h(s)
ds

s
, n = [α] + 1.

De�nition 3.4. [4] The left-sided Hadamard fractional integral of order α > 0 of a continuous function
h : [0, T ]→ R is de�ned by

HJα0+h(t) =
1

Γ(α)

∫ t

0

(
log

t

s

)α−1

h(s)
ds

s
.

De�nition 3.5. [13] The Katugampola fractional integral of order α > 0 and ρ > 0 of a function h(t) for
all 0 < t <∞, is de�ned by

Jρ,α
0+
h(t) =

ρ1−α

Γ(α)

∫ t

0

sρ−1

(tρ − sρ)1−αh(s)ds, t ∈ [0, T ],

for ρ > 0. This integral is called left-sided integral.

Lemma 3.1. [13] Let be the constants ρ, q > 0 and p > 0. Then the following formula holds:

Jρ,qtp =
Γ(p+ρρ )

Γ(p+ρq+ρρ )

tp+ρq

ρq
.

Remark 3.2. [13] The above de�nition (3.5) of Katugampola fractional integral corresponds to the Riemann-
Liouville fractional integral of order α > 0, when ρ = 1, while the famous Hadamard fractional integral follows
for ρ→ 0; that is:

lim
ρ→0

Jρ,α
0+
h(t) =

1

Γ(α)

∫ t

0

(
log

t

s

)α−1 h(s)

s
ds.

De�nition 3.6. [4] The generalized fractional derivative of order α > 0 corresponding to the Katugampola
fractional integral is de�ned for any 0 < t <∞ by:

Dρ,α
0+
h(t) =

(
t1−ρ

d

dt

)n (
Jρ,n−α

0+
h
)

(t),

=
ρα−n+1

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ−1

(tρ − sρ)α−n+1
h(s)ds, t ∈ [0, T ],

where n = [α] + 1 and ρ > 0 (when the integral exists).

Remark 3.3. [4] As a basic example, we quote for α, ρ > 0 and µ > −ρ

Dρ,α
0+
tµ =

ρα−1Γ(1 + µ
ρ )

Γ(1− α+ µ
ρ )
tµ−αρ.

De�nition 3.7. [1] The Erdelyi-Kober fractional integral of order δ > 0 with η > 0 and γ ∈ R, of a
continuous function f : (0,∞)→ R is de�ned by:

Iγ,δη h(t) =
ηt−η(δ+γ)

Γ(δ)

∫ t

0

sηγ+η−1

(tη − sη)1−δ h(s)ds,

provided that the right side is pointwise de�ned on R+.
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Remark 3.4. [1] For η = 1 the above operator is reduced to the Kober operator

Iγ,δ1 h(t) =
t−(δ+γ)

Γ(δ)

∫ t

0

sγ

(t− s)1−δ h(s)ds.

That was introduced for the �rst time by Kober. For γ = 0, the Kober operator is reduced to the Riemann-
Liouville fractional integral with a power weight

I0,δ
1 h(t) =

t−δ

Γ(δ)

∫ t

0

h(s)

(t− s)1−δ ds, δ > 0.

Lemma 3.2. [1] Let δ, η > 0 and γ, q ∈ R . Then we have

Iγ,δη tq =
tqΓ(γ + ( qη ) + 1)

Γ(γ + ( qη ) + δ + 1)
.

Theorem 3.1. The operator Jρ,α
a+

is linear and bounded from C([a, b]) to C([a, b]), then

‖Jρ,α
a+
x‖C ≤ Kα,ρ‖x‖C ,

with Kα,ρ = ρ−α

Γ(α+1)(bρ − aρ)α.

Proof. For any x ∈ C[0, T ]; one has∣∣∣∣ρ1−α

Γ(α)

∫ t

a
(tρ − sρ)α−1sρ−1x(s)ds

∣∣∣∣ ≤ ρ1−α

Γ(α)
‖x‖C

∫ t

a
(tρ − sρ)α−1sρ−1ds,

≤ ρ−α

Γ(α+ 1)
(bρ − aρ)α‖x‖C .

4. Main Results

Lemma 4.1. [10] Let α, ρ > 0, if u ∈ C[0, T ], then we have the following properties.

(i) The fractional di�erential equation Dρ,α
0+
u(t) = 0 admits a solution de�ned by:

u(t) = c0 + c1t
ρ + c2t

2ρ + ...+ cnt
(n−1)ρ,

where ci ∈ R, with i = 0, 1, 2, ..., n, n = [α] + 1.

(ii) Let α > 0, then
Jρ,αDρ,α

0+
u(t) = u(t) + c0 + c1t

ρ + c2t
2ρ + ...+ cnt

(n−1)ρ,

where ci ∈ R and n = [α] + 1.

Lemma 4.2. Let 1 < α < 2 and λ ∈ R. A function u ∈ C([0, T ],R) is a solution of nonlinear Katugampola
fractional integral equation

u(t) =
tρ

A
Jρ,α−1g(T )− tρλ

A
Iγ,δη Jρ,α−1g(ξ)− Jρ,αg(t), (2)

if and only if u is a solution of the katugampola fractional di�erential equation with Erdelyi-Kober fractional
integral conditions 

Dρ,αu(t) + g(t) = 0, 0 < t < T,
u(0) = u(0) = 0,

u′(T ) = λIγ,δη u′(ξ), 0 < ξ < T.

(3)
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Proof. Applying Lemma (4.1) to equation (3), we obtain

u(t) = −c0 − c1t
ρ − Jρ,αg(t), (4)

with c0, c1 ∈ R. The condition u(0) = 0 implies that c0 = 0.
Thus

u′(t) = −ρc1t
ρ−1 − Jρ,α−1g(t). (3.4)

Combining the Erdelyi-Kober fractional integral with (3.4), we get

λIγ,δη Jρ,α−1u′(ξ) = −ρc1λξ
ρ−1

Γ(γ + (ρ−1
η ) + 1)

Γ(γ + (ρ−1
η ) + δ + 1)

− λIγ,δη Jρ,α−1g(ξ).

u′(T ) = −ρc1T
ρ−1 − Jρ,α−1g(T ),

= −ρc1λξ
ρ−1

Γ(γ + (ρ−1
η ) + 1)

Γ(γ + (ρ−1
η ) + δ + 1)

− λIγ,δη Jρ,α−1g(ξ).

Solving the above equation for c1 and choosing

A = −ρλξρ−1
Γ(γ + (ρ−1

η ) + 1)

Γ(γ + (ρ−1
η ) + δ + 1)

− T ρ−1,

we obtain

c1 =
1

A
Jρ,α−1g(T )− λ

A
Iγ,δη Jρ,α−1g(ξ).

Substituting the constant c1 into (4), we �nd (2).

Also, we consider the notations:

φ =
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ +
ρ−α

Γ(α+ 1)
T ρα, (3.5)

Ω1 =
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ. (3.6)

In the following section, we investigate existence and uniqueness results for the boundary value problem
(1).

5. Existence and uniqueness results

We de�ned the operator H : X → X associated to the problem (1) as

(Hu)(x) = − t
ρ

A
Jρ,α−1h(s, u(s))(T ) +

tρλ

A
Iγ,δη Jρ,α−1h(s, u(s))(ξ)− Jρ,αh(s, u(s))(t). (4.1)

We use the following expressions:

Jρ,αh(s, u(s))(z) =
ρα

Γ(α)

∫ z

0
(zρ − sρ)α−1sρ−1h(s, u(s))ds,

Iγ,δη Jρ,αh(s, u(s))(ξ) =
ηξ−η(γ+δ)ρ1−α

Γ(α)Γ(γ)

∫ z

0

∫ r

0

rηγ+η+1(rρ − sρ)α−2sρ−1

(ξρ − rρ)α−1sρ−1
h(s, u(s))drds,

where ξ ∈ [0, T ].
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Theorem 5.1. Let h : [0, T ]→ R be a continuous function. Assume that:

(H1) there exists a positive constant L such that

|h(t, u)− h(t, v)| ≤ L‖u− v‖,

for each t ∈ [0, T ] and u, v ∈ R.

(H2) Lφ < 1, where φ is de�ned by (3.5).

Then the boundary value problem (1) has a unique solution on [0, T ].

Proof. By using the operator H de�ned by the formula (4.1) and applying the Banach contraction mapping
principle, we will show that the operator H has a unique �xed point.

For any u, v ∈ X and for each t ∈ [0, T ], we have

|Hu(t)−Hv(t)| ≤ T ρ

A
Jρ,α−1|h(s, u(s))− h(s, v(s))|(T )

+
T ρ|λ|
A

Iγ,δη Jρ,α−1|h(s, u(s))− h(s, v(s))|(ξ)

+ Jρ,α|h(s, u(s))− h(s, v(s))|(t),

≤ L‖u− v‖T ρ

A
Jρ,α−1(1)(T )

+
L‖u− v‖T ρ|λ|

A
Iγ,δη Jρ,α−1(1)(ξ)

+ L‖u− v‖Jρ,α(1)(T ),

≤ L‖u− v‖

{
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ +
ρ−α

Γ(α+ 1)
T ρα

}
,

= Lφ‖u− v‖.

This implies that ‖Hu−Hv‖ ≤ Lφ‖u− v‖ because Lφ < 1.
The operator H : X → X is a contraction mapping, therefore, we deduce by Banach's contraction

principle mapping, that the operator H has a �xed point which is the unique solution of problem (1) on
[0, T ].

De�nition 5.1. [1] Let X be a Banach space and let H : X → X be a mapping. H is called a nonlinear
contraction if there exists a continuous nondecreasing function ϕ : R+ → R+ such that ϕ(0) = 0 and ϕ(r) < r
for all r > 0, with the property

‖Hu−Hv‖ ≤ ϕ(‖u− v‖),∀u, v ∈ E.

Lemma 5.1. [1] (Boy and Wong) Let X be a Banach space and let H : X → X be a nonlinear contraction.
Then H has a �xed point in X.

Theorem 5.2. [1] Let h : [0, T ]× R→ R be a continuous function such that the following condition holds:

(H3) |h(t, u)− h(t, v)| ≤ k(t) ‖u−v‖
B+‖u−v‖ , for t ∈ [0, T ], where k : [0, T ]→ R+ is a given function.

Then the problem (1) has a unique solution on [0, T ].

Proof. Let us de�ne the continuous and nondecreasing function, ϕ : R+ → R+ by{
ϕ(r) = Br

B+r , ∀r > 0,

ϕ(0) = 0, ϕ(r) < r,
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where B := T ρ

A J
ρ,α−1k(T ) + T ρ|λ|

A Iγ,δη Jρ,α−1k(ξ) + Jρ,αk(T ).

For any u, v ∈ X and for each t ∈ [0, T ], one has

|Hu(t)−Hv(t)| ≤ T ρ

A
Jρ,α−1|h(s, u(s))− h(s, v(s))|(T )

+
T ρ|λ|
A

Iγ,δη Jρ,α−1|h(s, u(s))− h(s, v(s))|(ξ)

+ Jρ,α|h(s, u(s))− h(s, v(s))|(t),

≤ T ρ

A
Jρ,α−1

(
k(s)

‖u− v‖
B + ‖u− v‖

)
(T )

+
T ρ|λ|
A

Iγ,δη Jρ,α−1

(
k(s)

‖u− v‖
B + ‖u− v‖

)
(ξ)

+ Jρ,α
(
k(s)

‖u− v‖
B + ‖u− v‖

)
(T ),

≤ ϕ(‖u− v‖)
B

{
T ρ

A
Jρ,α−1k(T ) +

T ρ|λ|
A

Iγ,δη Jρ,α−1k(ξ) + Jρ,αk(T )

}
,

= ϕ(‖u− v‖).

This implies that ‖Tu− Tv‖ ≤ ϕ(‖u− v‖). Therefore T is a nonlinear contractions. Hence by Lemma(5.1)
the operator T has a �xed point which is solution of the problem (1), which completes the proof.

Theorem 5.3. [13] (Krassnoselski) Let M be a closed bounded, convex and nonempty subset of a Banach
space X. Let A,B be two operators such that,

(a) Ax+By ∈M , whenever x, y ∈M ,

(b) A is compact and continuous,

(c) B is a contraction mapping.
Then there exists z ∈M such that z = Az +Bz.

Theorem 5.4. Let h : [0, T ] × R → R be a continuous function and suppose that the condition (H1) holds
and the function h satis�es the assumptions:

(H4) There exists a nonnegative function Θ ∈ (C[0, T ],R) such that |h(t, u(t))| ≤ Θ(t) for any (t, u) ∈
[0, T ]× R,

(H5) LΩ1 < 1, where Ω1 is de�ned by (3.6).

Then the boundary value problem (1) has a least one solution in [0, T ].

Proof. We �rst de�ne two new operators T1 and T2 as

(T1u)(t) = − t
ρ

A
Jρ,α−1h(s, u(s))(T ), (9)

(T2u)(t) = − t
ρλ

A
Iγ,δη Jρ,α−1h(s, u(s))(ξ)− Jρ,αh(s, u(s))(t), t ∈ [0, T ]. (10)

Then we consider a closed, bounded, convex and nonempty subset of the Banach space X as Bd = {u ∈
X, ‖u‖ ≤ d} with, ‖Θ‖φ ≤ d, where φ is de�ned by (3.5).
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Now for any u, v ∈ Bd, we have

|T1u(t) + T2v(t)| ≤ T ρ

A
Jρ,α−1|h(s, u(s))|(T )

+
T ρ|λ|
A

Iγ,δη Jρ,α−1|h(s, u(s))|(ξ)

+ Jρ,α|h(s, u(s))|(T ),

≤ T ρ‖Θ‖
A

Jρ,α−1(1)(T )

+
T ρ|λ|‖Θ‖

A
Iγ,δη Jρ,α−1(1)(ξ)

+ ‖Θ‖Jρ,α(1)(T ),

≤ ‖Θ‖

{
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ +
ρ−α

Γ(α+ 1)
T ρα

}
,

= ‖Θ‖φ ≤ d.

Therefore, it's clear that ‖T1u(t) + T2v(t)‖ ≤ d. Hence T1u(t) + T2v(t) ∈ Bd.
The next step concerns the compactness and continuity of the operator T1. Continuity of h implies that

the operator T1 is continuous and uniformly bounded on Bd as

‖T1‖ ≤ ‖Θ‖
ρ−αT ρα

Γ(α+ 1)
.

Now we prove the compactness of the operator T1. For t1, t2 ∈ [0, T ], t1 < t2, we have

|T1u(t2)− T1u(t1)| ≤ ‖Θ‖ρ
1−α

Γ(α)
|tα2 − tα1 |,

which is independent of u and tends to zero when t2 − t1 → 0. Thus T1 is equicontinuous. By Arzela-Ascoli
theorem, T1 is compact on Bd.

Now, we prove that T2 is a contraction mapping. For u, v ∈ X and for each t ∈ [0, T ], we have

|T2u(t)− T2v(t)| ≤ Jρ,α−1|h(s, u(s))− h(s, v(s))|(T )

+
T ρ|λ|
A

Iγ,δη Jρ,α−1|h(s, u(s))− h(s, v(s))|(ξ),

≤ L‖u− v‖Jρ,α−1(1)(T )

+
T ρ|λ| ≤ L‖u− v‖

A
Iγ,δη Jρ,α−1(1)(ξ),

≤ ρ1−αL‖u− v‖
AΓ(α)

T ρ(α−1) + L‖u− v‖
ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1

η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ,

= L‖u− v‖

{
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ

}
,

which implies that ‖T2u(t) − T2v(t)‖ ≤ LΩ1‖u − v‖. As LΩ1‖u − v‖ < 1, the operator T2 is a contraction.
Thus all the assumption of Theorem (5.3) are satis�ed. So this implies that the problem (1) has at least one
solution on [0, T ].

Theorem 5.5. [13] (Leray-Schauder's nonlinear alternative). Let X be a Banach space, C a closed, convex
subset of X and U an open subset of C such that 0 ∈ U . Let's assume that A : U → C is a continuous
compact map. Then either
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(i) A has a �xed point in U , or

(ii) There exists u ∈ ∂U(the boundary of U in C) and λ ∈ (0, 1); witch satis�es u = λA(u).

Theorem 5.6. Let f : [0, T ]× R→ R be continuous function. Assume that

(H6) There exist a nonnegative function z ∈ C([0, T ],R) and a continuous nondecreasing function Θ :
[0,∞)→ [0,∞) such that |f(t, u)| ≤ z(t)Θ(‖u‖), for all (t, u) ∈ [0, T ]× R,

(H7) There exists a constant N > 0 such that

N

φ‖z‖Θ(N)
> 1,

where φ is de�ned as in (3.5).

Then the problem (1) has a least one solution on [0, T ].

Proof. Let BR = {u ∈ X/‖u‖ ≤ R} be a closed bounded subset in X = C([0, T ],R). Let H be the operator
de�ned by (4.1). As a �rst step, we show that the operator H maps bounded sets into bounded sets in
C([0, T ],R). Then for t ∈ [0, T ], we have

|Hu(t)| ≤ T ρ

A
Jρ,α−1|h(s, u(s))|(T )

+
T ρ|λ|
A

Iγ,δη Jρ,α−1|h(s, u(s))|(ξ)

+ Jρ,α|h(s, u(s))|(T ),

≤ T ρΘ(‖u‖)
A

Jρ,α−1z(s)(T )

+
T ρ|λ|Θ(‖u‖)

A
Iγ,δη Jρ,α−1z(s)(ξ)

+ Θ(‖u‖)Jρ,αz(s)(T ),

≤ T ρΘ(‖u‖)
A

Jρ,α−1‖z‖(T )

+
T ρ|λ|Θ(‖u‖)

A
Iγ,δη Jρ,α−1‖z‖(ξ)

+ Θ(‖u‖)Jρ,α‖z‖(T ),

≤ Θ(‖u‖)‖z‖

{
ρ1−α

AΓ(α)
T ρα +

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

AΓ(α)Γ(γ + (ρ−1
η ) + δ + 1)

T ρ +
ρ−α

Γ(α+ 1)
T ρα

}
,

= φΘ(‖u‖)‖z‖.

Consequently, ‖Hu(t)‖ ≤ φΘ(‖u‖)‖z‖.
Next, we show that the map H : X → X is completely continuous. Therefore, we will prove that the

operator H maps bounded sets into equicontinuous sets of X = C([0, T ],R). Indeed let t1, t2 ∈ [0, T ], with
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t1 < t2 and u ∈ BR, then we have

|Hu(t2)−Hu(t1)| ≤ |t
ρ
1 − t

ρ
2|

A
Jρ,α−1|h(s, u(s))|(T ) + |Jρ,αh(s, u(s))(t2)− Jρ,αh(s, u(s))(t1)|

+
|λ||tρ1 − t

ρ
2|

A
Iγ,δη Jρ,α−1|h(s, u(s))|(ξ),

≤ |t
ρ
1 − t

ρ
2|

A
Θ(‖u‖)z(s)Jρ,α−1(1)(T ) + Θ(‖u‖)z(s)|Jρ,α(1)(t2)− Jρ,α(1)(t1)|

+
|λ||tρ1 − t

ρ
2|

A
Θ(‖u‖)z(s)Iγ,δη Jρ,α−1(1)(ξ),

≤ |t
ρ
1 − t

ρ
2|

A
Θ(‖u‖)‖z‖ρ

1−α

Γ(α)
T ρ(α−1) + Θ(‖u‖)‖z‖ρ

1−α

Γ(α)
|(tρ(α−1)

2 − tρ(α−1)
1 )|

+
|λ||tρ1 − t

ρ
2|

A
Θ(‖u‖)‖z‖

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

Γ(α)Γ(γ + (ρ−1
η ) + δ + 1)

,

≤ |t
ρ
1 − t

ρ
2|

A
Θ(R)‖z‖ρ

1−α

Γ(α)
T ρ(α−1) + Θ(R)‖z‖ρ

1−α

Γ(α)
|(tρ(α−1)

2 − tρ(α−1)
1 )|

+
|λ||tρ1 − t

ρ
2|

A
Θ(R)‖z‖

ρ1−α|λ|ξρ(α−1)Γ(γ + (ρ−1
η ) + 1)

Γ(α)Γ(γ + (ρ−1
η ) + δ + 1)

.

It is clear that the right-hand side of above inequality tends to zero independently of u ∈ BR as t2− t1 → 0.
Therefore by the Ascoli-Arzela theorem, the operator H : X → X is completely continuous.

In the last step we show that the operator H has a �xed point. Let u be a solution of H(u) = u, then
for each t ∈ [0, T ],

‖Hu‖ = ‖u‖ ≤ φ‖z‖Θ(‖u‖),

which implies that
‖u‖

φ‖z‖Θ(‖u‖)
≤ 1.

From (H7), there exists N > 0 such that ‖u‖ 6= N . Let us set G = {u ∈ X : ‖u| < N}.
Then the operator H : G → X is continuous and completely continuous. Consequently, there doesn't

exist any u ∈ ∂G such that u = µHu for some µ ∈ (0, 1). Assume that there exists u ∈ ∂G such that
u = µHu for some µ ∈ (0, 1). Then

‖u‖ = ‖µHu‖ ≤ ‖Hu‖ ≤ φ‖z‖Θ(‖u‖),

‖u‖
φ‖z‖Θ(‖u‖)

≤ 1.

This contradicts ‖u‖
φ‖z‖Θ(‖u‖) > 1. Consequently, by nonlinear alternative Leray-Schauder principal, we con-

clude, that H has a �xed point u ∈ G, which is a solution of problem (1), this completes the proof.

6. Examples

Example 6.1. Consider the following nonlinear Katugampola fractional di�erential equation with Erdelyi-
Kober fractional integral conditions:

D1, 3
2u(t) =

(
|u|
|u|+1

)
e− sin t

π+2 + 1
2 , t ∈ [0, 1],

u(0) = 0 ,

u′(1) = 3
5I

3
4
,
√
2

2
1
5

u′(1
2).

(5)
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Here, α = 3
2 , ρ = 1, γ = 3

4 , η = 1
5 , δ =

√
2

2 , ξ = 1
2 , λ = 3

5 .

f(t, u) =

(
|u|
|u|+ 1

)
e− sin t

π + 2
+

1

2
.

Hence, we have

|f(t, u)− f(t, v)| ≤ 1

π + 2
‖u− v‖.

Assumption (H1) is satis�ed with L = 1
π+2 . Using the given value, we get φ = 1, 4701. Therefore Lφ =

0, 2859 < 1, which implies that assumption (H2) holds. Using theorem (5.1), we deduce that the boundary
value problem (5) has a unique solution on [0, 1].

Example 6.2. Consider the following nonlinear Katugampola fractional di�erential equation with Erdelyi-
Kober fractional integral conditions:

D1, 7
4u(t) = t2

π
√
t2+9

(
|u|
|u|+5

)
+ et+t

2 , t ∈ [0, 1
2 ],

u(0) = 0 ,

u′(1
2) = 8

3I

√
5

3
, 1√

6
12
7

u′( 3
11) ,

(6)

Here, α = 7
4 , ρ = 1, γ =

√
5

3 , η = 12
7 , δ = 1√

6
, ξ = 3

11 , λ = 8
3 , B = 0, 0751 and

f(t, u) =
t2

π
√
t2 + 9

(
|u|
|u|+ 5

)
+
et + t

2
.

Choosing k(t) = t2

3π , we get

|f(t, u)− f(t, v)| ≤ t2

3π

(
|u− v|

0, 0751 + |u− v|

)
+
et + t

2
.

Clearly, all the assumptions of Theorem (5.2) are satis�ed, which implies that the problem (6) has at least
one solution on [0, 1

2 ].

Example 6.3. Consider the following nonlinear Katugampola fractional di�erential equation with Erdelyi-
Kober fractional integral conditions:

D2, 9
5u(t) = sin

(
|u|
|u|+1

)
e−2t

3(π+7) + t2+1
2 , t ∈ [0, 2]

u(0) = 0,

u′(2) = 3
8I

√
2
2
, 1
4

7
3

u′(3
2).

(7)

Here, α = 9
5 , ρ = 2, γ =

√
2

2 , η = 7
3 , δ = 1

4 , ξ = 3
2 , λ = 3

8 , and

|f(t, u)− f(t, v)| ≤ 1

3(π + 7)
|u− v|,

|f(t, u)| ≤ e−2t

3(π + 7)
+
t2 + 1

2
,

with L = 1
3(π+7) , φ = 4, 6905, Lφ = 0, 1542, Ω1 = 2, 6134, LΩ1 = 0, 0859 < 1.

Again, the hypothesis of Theorem (5.4) are satis�ed and, as a consequence, the problem (7) has at least
one solution on [0, 2].
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Example 6.4. Consider the following nonlinear Katugampola fractional di�erential equation with Erdelyi-
Kober fractional integral conditions :

D3, 11
6 u(t) =

(
u2(t)
|u|+1 + 1

)(√
t+1
8

)
, t ∈ [0, 9

16 ],

u(0) = 0,

u′( 9
16) = 5

11I
4
13
, 1
5

1
9

u′(3
7).

(8)

Here α = 11
6 , ρ = 3 , γ = 4

13 , η = 1
9 , δ = 1

5 , ξ = 3
8 ,λ = 5

11 .
Moreover

|f(t, u)| =
∣∣∣∣( u2(t)

|u|+ 1
+ 1

)(√
t+ 1

8

)∣∣∣∣ ≤ √t+ 1

8
(|u|+ 1).

We choose z(t) =
√
t+1
8 and Θ(‖u‖) = ‖u‖ + 1. We have ‖z‖ = 7

32 and φ = 0, 0442. Now, we need to
show that there exists N > 0 such that

N

Θ(N)‖z‖φ
> 1,

and such N > 0 exists if 1− ‖z‖φ > 0. A straightforward calculus give ‖z‖φ = 0, 0097 < 1, assumption H7

is satis�ed. Hence using Theorem (5.6), the boundary value problem (8) has at least one solution on [0, 9
16 ].

7. Conclusion

In this paper, with the help of standard �xed point theorems type, we obtained conditions for existence of
at least one solution of a Katugampola fractional di�erential equation with Erdelyi-Kober fractional integral
boundary conditions. In the future it seems interesting to obtain su�cient conditions to ensure Ulam-Hyers
and Ulam-Hyers-Rassias stabilities.

References

[1] B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi: Caputo type fractional di�erential equations with nonlocal Riemann-
Liouville and Erdelyi-Kober integral boundary conditions, Filomat (2017), 4515-4529.

[2] B. Ahmad, S.K. Ntouyas, A. Alsaedi: New existence results for nonlinear fractional di�erential equations with three-point
integral boundary conditions, Adv. Di�erence Equ., 2011, Art. ID 107384, 11 pp.

[3] B. Ahmad, S.K. Ntouyas: A four-point nonlocal integral boundary value problem for fractional di�erential equations of
arbitrary order, Electron. J. Qual. Theory Di�er. Equ. 22(2011), pp. 1-15.

[4] Y. Arioua, B. Basti and N. Benhamidouche: Initial value problem for nonlinear implicit fractional di�erential equation
with Katugampola derivative. Appl. Math. E-Notes, 19(2019), 397-412.

[5] B. Basti, Y. Arioua, N. Benhamidouche: Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional
Di�erential Equations, Journal of Mathematics and Applications, No 42, pp 35-61 (2019).

[6] M. Benchohra, S. Hammani and S.K. Ntouyas: Boundary value problems for di�erential equation with fractional order
and nonlocal conditions, Nonlinear Anal. TMA 71 (2009), 2391-2396.

[7] A. Boutiara, M. Benbachir, K. Guerbati: Boundary value problems for hilfer fractional di�erential equations with katugam-
pola fractional integral and anti-periodic conditions, to appear (http://math.ubbcluj.ro/ mathjour/accepted.html).

[8] D.W. Boyd and J.S.W. Wong: On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
[9] M. Janaki, E. M. Elsayed, K. Kanagarajan: Katugampola-type fractional di�erential equations with delay and impulses,

Open Access Journal of Mathematical and Theoretical Physics, Volume 1 Issue 3 - 2018.
[10] M. Janaki, K. kanagarajan, D. Viek: Existence results for Katugampola fractional di�erential equations via measure of

noncompactness, Journal nonlinear Analysis and Applications 2018, No.2(2018)184-191.
[11] S.L. Kalla, V.S. Kiryakova: An H-function generalized fractional calculus based upon compositions of Erdelyi-Kober

operators in LP; Math. Japonica 35 (1990), 1-21.
[12] K. Logeswari, C. Ravichandran: A new exploration on existence of fractional neutral integro- di�erential equations in the

concept of Atangana-Baleanu derivative, Physica A: Statistical Mechanics and its Applications, Volume 544, 15 April 2020,
123454.

[13] N.I. Mahmudov, S. Emin: Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv
Di�er Equ 2018, 81 (2018).

[14] K. Rajendra Prasad , L. D and M. Khuddush , "Existence and Uniqueness of Positive Solutions for System of (p,q,r)-
Laplacian Fractional Order Boundary Value Problems", Advances in the Theory of Nonlinear Analysis and its Application,
vol. 5, no. 1, pp. 138-157, Mar. 2021, doi:10.31197/atnaa.703304



N. Adjimi, M. Benbachir, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 215�228. 228

[15] C. Ravichandran, N. Valliammal, Juan J. Nieto: New results on exact controllability of a class of fractional neutral
integro-di�erential systems with state-dependent delay in Banach spaces, Journal of the Franklin Institute, 356(3), 2019,
1535-1565.

[16] A. Saadi and M. Benbachir: Positive solutions for three-point nonlinear fractional boundary value problems, Electron. J.
Qual. Theory Di�er. Equ. 2011, No. 2, 1-19.

[17] F. Si Bachir , A. Said , M. Benbachir and M. Benchohra , "Hilfer-Hadamard Fractional Di�erential Equations; Existence
and Attractivity", Advances in the Theory of Nonlinear Analysis and its Application, vol. 5, no. 1, pp. 49-57, Mar. 2021,
doi:10.31197/atnaa.848928

[18] I.N. Sneddon, The use in mathematical analysis of Erdelyi-Kober operators and some of their applications, pp. 37-79 in
Fractional calculus and its applications (West Haven, Connecticut, 1974), Lecture Notes in Math.

[19] N. Thongsalee, S.K. Ntouyas, J. Tariboon: Nonlinear Riemann-Liouville fractional di�erential equations with nonlocal
Erdelyi-Kober fractional integral conditions, Frac. Calc. Appl. Anal. Volume 19, Issue 2 (2016).

[20] N. Valliammal, C. Ravichandran, Ju H. Park: On the controllability of fractional neutral integrodi�erential delay equations
with nonlocal conditions, Math. Methods Appl. Sci. 40 (14) (2017), 5044-5055.

[21] S. Zeng, D. Baleanu, Y. Bai, G. Wu: Fractional di�erential equations of Caputo-Katugampola type and numerical solutions,
Applied Mathematics and computation 315(2017) 549-554.


	1 Introduction
	2 Introduction
	3 Preliminaries
	4 Main Results
	5 Existence and uniqueness results
	6 Examples
	7 Conclusion

