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ABSTRACT 

This paper investigates the buckling analysis of simply supported symmetrically thin and thick composite plates. Using the 

Hamilton’s principle, the governing equation for thin and thick composite plates is derived. The equation of motion for thin 

and thick laminated rectangular plates subjected to in-plane loads is obtained with the help of Hamilton’s principle. The 

loading conditions of rectangular plate are uniaxial and biaxial compression. Considering the Navier solution technique, 

closed form solutions are attained and buckling loads are found by solving the eigenvalue problems. In this study, the effect 

of edge ratios and anisotropy on the buckling analysis of rectangular plate was investigated. The computer programs have 

been written separately with the help of Mathematica (MATHEMATICA 2017) program for the solution of the buckling 

analysis of laminated composite plates. Results of the numerical studies for the buckling of laminated composite plates 

(LCP) are demonstrated and benchmarked with former studies in the literature and ANSYS finite element methods.  
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1. INTRODUCTION 
 

Recently, due to the many paramount properties 

advanced composite materials such as laminated plates 

are found an application area in the engineering projects. 

Tremendous researches have been performed on the LCP 

to clarify the advantages of using these types of materials. 

One of the focused topics in research subject is the 

buckling analysis of the composite plates.  

Reissner theory (1945) is one of the theories which 

include the shear deformation effect and many 

researchers have studied on the buckling analysis of LCP 

by using Reissner theory. Noor (1975) examined the 

stability and vibration analysis of the composite plates. 

Qatu used energy function to develop governing 

equations of LCP. Phan and Reddy (1985) are analyzed 

of laminated composite plates using a higher-order shear 

deformation theory. Reddy and Khdeir (1989) 

investigated buckling and vibration analysis of LCP. 

Some studies have been performed on characteristics of 

plates by Qatu (1991-2004) using different plate theories. 

Dogan et al. (2010) have analyzed the effects of 

anisotropy and curvature on vibration characteristics of 

laminated shallow shells using shear deformation theory. 

Dogan (2012) investigated the effect of dimension on 

mode-shapes of composite shells. Akavci (2007) 

presented buckling and free vibration analysis of 

symmetric and antisymmetric laminated composite plates 

on an elastic foundation. Akavci et al. (2007) examined 

buckling and free vibration behavior of LCP on elastic 

foundation by using first order shear deformation theory 

(FSDT). Functionally graded plates thermal buckling 

analysis have been investigated by Akavci (2014) using 

the theory of hyperbolic shear deformation. Phan and 

Reddy (1985) analyzed laminated composite plates by 

using a higher-order shear deformation theory. 

Setodehand Karami (2004) studied on buckling analysis 

of laminated composite plates of elastic foundation. 

Sophy (2013) studied buckling and free vibration of 

exponentially graded sandwich plates resting on elastic 

foundations under various boundary conditions. Dogan 

(2019) investigated buckling analysis of symmetric 

laminated composite thick plates. Sayyad and Ghuga 

(2014) presented a study about buckling and free 

vibration analysis of orthotropic plates by using 

exponential shear deformation theory. 

In this research, buckling analysis of symmetric LCP 

are investigated using various of number of layers, plate 

edge ratio and anisotropy ratio. This study might be a 

pioneer work in terms of laminated composite plates and 

experimental studies. 

 

2. EQUATIONS  
 

A lamina is produced with the isotropic homogenous 

fibers and matrix materials (Fig. 1). Any point on a fiber, 

and/or on matrix and/or on matrix-fiber interface has 

crucial effect on the stiffness of the lamina. Due to the big 

variation on the properties of lamina from point to point, 

macro-mechanical properties of lamina are determined 

based on the statistical approach.  

 
 
Fig. 1. Fiber and matrix materials in laminated composite 

plate 

 

According to FSDT, the transverse normal does not 

cease perpendicular to the mid-surface after deformation. 

It will be assumed that the deformation of the plates is 

completely determined by the displacement of its middle 

surface. Using the given equation below (Eq.1) nth layer 

lamina plate stress-strain relationship can be defined in 

lamina coordinates (Qatu 2004). 
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The displacement based on plate theory can be 

written as 
 

u(x, y, z, t)=u0(x, y, t)+z 𝜑𝑥 (x, y, t) 

v(x, y, z, t)=v0(x, y, t)+z 𝜑𝑦 (x, y, t)    (2) 

w(x, y, z, t)=w0(x, y, t) 

 

where u, v, w, φx and φy are displacements and 

rotations in x, y, z direction, orderly. uo, vo and wo are 

mid-plane displacements. 

Equation of motion for plate structures can be derived 

by Hamilton’s principle 
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where T is the kinetic energy of the structure 
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W is the work of the external forces 

 

dxdymmwqvquqW

x y

yyxxzyx  ++++= )(  (5) 

in which, qx , qy ,qz ,mx, my  are the external forces and 

moments per unit length, respectively. U is the strain 

energy and defined as, 

 

𝑈 =
1

2
∫(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑧𝜀𝑧 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛾𝑥𝑧 +

               𝜏𝑦𝑧𝛾𝑦𝑧)𝑑𝑥𝑑𝑦𝑑𝑧     (6) 
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Solving equation 3 gives set of equations called equations 

of motion for plate structures. This gives equation 7 in 

simplified form as, 
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Equation 7 is defined as equation of motion for thick 

plates. Where I1, I2 and I3 are mass moment inertia. Based 

on the FSDT plate, moment resultants are Mx, My and Mxy, 

in plane force resultants are Nx, Ny, Nxy and transverse 

shearing force resultants are Qx and Qy. The force and 

moment resultants are defined as 
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Where the parameter Ks is the shear correction factor. 

Here, Ks is taken as 5/6.  

The Navier type solution might be implemented to 

thick and thin plates. This type solution assumes that the 

displacement section of the plates can be denoted as sine 

and cosine trigonometric functions. A plate with shear 

diaphragm boundaries on all edges is assumed. For 

simply supported thick plates, boundary conditions can 

be arranged as follows: 
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The displacement functions of the satisfied the boundary 

conditions are applied; 
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where xm=mπ/a, yn=nπ/b. and ωmn is the naturel frequency. 

The loads are defined as, 

 

( ) ( ) ( )


=



=

=
1m 1n

nmmn yyCosxxSin)(ty,x, tQq  (12) 

 

where 

( ) ( ) ( ) =

a b

dydxq
ab

tQ
0 0

nmmn yyCosxxSinty,x,
4

)(
(13) 

 

Substituting the above equations into the equation of 

motion in matrix form, 
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Equation 12 can be arranged in a closed form as follows: 
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 ( ) 0][ =− NKmn 
   (17) 

 

where [Kmn], stiffness matrices, [N] is buckling load. 

 

3. NUMERICAL SOLUTIONS AND   

DISCUSSIONS   
 

In current research, buckling analyses of symmetric 

LCP are investigated. Navier solution procedure for 

buckling analysis of LCP is obtained. The computer 

programs have been prepared using Mathematica 

program separately for the solution of the buckling 

analysis of LCP. The results were compared with the 

semi-analytical method and the ANSYS finite element 

software and previous studies in the literature. The effects 

of the E1/E2, and a/b ratio are also investigated.  

In numerical calculations, the material and 

geometrical properties are defined as: 

 a = 1m (a/b = 1, 2; a/h = 10, ρ = 2000 kg/m3, E1 = 40×103 

MPa (E1/E2 =3, 10, 20, 30, 40), G12/E2 = G13/E2 = 0.6, 

G23/E2 = 0.5, υ = 0.25. In the analysis, following 

parameter is studied for non-dimensional buckling load 

as; 

3

2

2

hE

a
N x=    (18) 

 

It can be seen from Tables 1 that the non-dimensional 

buckling load factors increase when the ratio of E1/E2 

change from 3 to 40 (Fig. 3). The non-dimensional 

buckling load factors decrease when the ratio of a/b 

change from 1 to 2 for Table 2 and Fig 4-5. Also, the non-

dimensional buckling load factors obtained for present 

study seem to be compatible with other study. Buckling 

analysis results showed that when the number of layer 

increases, the non-dimensional buckling load factors 

obtained by present study increase as well (Fig. 6-7).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The loading conditions of plate 

 

Table 1. Unaxial non-dimensional buckling load factors of (0/90/90/0) laminate for different orthotropy ratios 

(a/b=1 and a/h=10) 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Unaxial and biaxial non-dimensional buckling load factors of (0/90/0) rectangular plate (b/h= 10 and E1/E2=40) 

 

 

 

 

 

 

 

 

 

 

Method 

  E1/E2   

3 10 20 30 40 

CLPT [Phan etc.] 

HSDT[Phan etc. ] 

3DElasticity[Noor] 

ANSYS (FEM) 

Akavci 

Present Study 

5.7538 

5.1143 

5.2944 

7.2290 

5.4192 

5.4550 

11.4920 

9.7740 

9.7621 

11.2470 

10.0671 

10.0056 

19.7120 

15.2980 

15.0191 

16.2720 

16.6358 

15.3828 

27.9360 

19.9570 

19.3040 

19.4090 

19.3040 

19.7824 

36.1600 

23.3400 

22.8807 

23.8800 

24.1601 

23.4746 

 

a/b 

 Unaxial    Biaxial   

Setodeh Akavci Ansys 

[Fem] 

Present 

Study 

Setodeh Akavci Ansys 

[Fem] 

Present 

Study 

1 22.234 22.115 22.514 22.334 9.942 9.953 9.955 10.208 

2 16.424 16.308 18.122 16.450 3.269 3.261 3.328 3.290 

x 

y 

b 

a 

N0 N0 

(a) Uniaxial compression along x-axis 

x 

y 

b 

a 

N0 

N0 

(b) Biaxial compression 
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Fig. 3. Effect of orthotropy ratio on the uniaxal buckling load factor of a square symmetrically [0/90/90/0] 

laminated plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Effect of edge ratio on the uniaxal buckling load factor of [0/90/0] laminated plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Effect of edge ratio on the biaxal buckling load factor of [0/90/0] laminated plate. 
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Fig. 6. Effect of edge ratio on the uniaxial and biaxal buckling load factor of various laminated sequence. 
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Fig. 7. Effect of anisotropy ratio on the uniaxial and biaxal buckling load factor of various laminated  sequence
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4. CONCLUSION  
 

In this study, buckling analysis of symmetrically 

(LCP) resting is theoretically investigated. By applying 

Hamilton’s principle, the governing equation for thick 

LCP is obtained. The solutions are gathered by using 

Navier solution method. The effects of a/b, E1/E2 ratios 

on buckling loads are examined. The most important 

observations and results are summarized as follows: 

• The non-dimensional buckling load factors 

obtained for present study seem to be compatible 

with other study. 

• The a/b, E1/E2 ratios, are playing a crucial role on 

buckling loads. 

• The non-dimensional buckling load factors 

generally decrease when the ratio of a/b change 

from 1 to 2. 

• The non-dimensional buckling load factors 

increase when the ratio of E1/E2 change from 3 to 

40.  

• The number of layer increases, the non-

dimensional buckling load factors obtained by 

present study increase as well.  
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