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Equi-Depth Histogram Construction Methodology for Big Data 

Tools 

 

Highlights 

❖ Equi-depth histogram construction with quality guarantees for big data 

❖ Creating histograms and elimination the complex implementation 

❖ Applying new techniques to create histograms using big data 

❖ The capability of writing multiple jobs including histogram construction using Apache Pig 

 

Graphical Abstract 

The system provides the capability of writing multiple jobs using Apache Pig and eliminates the complex 

implementation of Map-Reduce jobs by creating histograms. 

Figure. Flowchart of demonstrations 

Aim 

To build a fast and effective equi-depth histogram with quality guarantees for big data. 

Design & Methodology 

Approximate equi-depth histogram construction for big data and provide easy execution of data processing and 

data management. 

Originality 

Contribute the error-guaranteed equi-depth histogram construction method for big data tools by facilitating high-

level languages. 

Findings 

A successful model is established to provide an easy execution of data processing and to create the histogram of 

unstructured big data.   

Conclusion 

The system provides the capability of writing multiple jobs using Apache Pig, and programmers can make use of 

the advantages of Apache Pig to create histograms and eliminate the complex implementation of Map-Reduce 

jobs. 
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 ABSTRACT 

In recent decades, countless data sources such as social media, machines, and networks are constantly pushing data into the digital 

world. The size of the data has been growing exponentially. To understand the statistical information of data query optimization, 

equi-depth histograms are essential. In this paper, we present approximate equi-depth histogram construction for big data using 

both Apache Pig Scripts and Java Web Interface interacting with Apache Hadoop. We use equi-depth histogram construction with 

quality guarantees for big data approaches and implement them with Apache Hadoop Map-Reduce and Apache Pig user-defined 

functions. We introduce a prototype implementation of the construction of the approximate equi-depth histogram from the Java 

Server Face page using Apache Hadoop jobs and the Hadoop Distributed Files System, and we evaluate these methods using the 

demonstration. We explain Apache Pig Scripts techniques to create equi-depth histograms using big data. The results indicate that 

our system provides the capability of writing multiple jobs using Apache Pig, and programmers can make use of the advantages of 

Apache Pig to create histograms and eliminate the complex implementation of Map-Reduce jobs. 

Keywords: Approximate histogram, merging histograms, big data, log files, hadoop distributed file system. 

Büyük Veri Araçları için Eş-Derinlikli Histogram 

Oluşturma Metodolojisi 

ÖZ 

Son yıllarda, verileri sürekli olarak dijital dünyaya aktaran ağlar, makinalar ve sosyal medya gibi bir çok data kaynağı vardır. Bu 

kaynaklardan üretilen datanın boyutu eksponansiyel olarak artmaktadır. Hali hazırda elde bulunan datanın istatistiki bilgisini 

anlamak ve sorgu optimizasyonu sağlamak için eş-derinlikli histogram vazgeçilmez bir araçtır. Bu makalede, büyük veriler için 

hem Apache Pig betiklerini hem de Apache Hadoop ile etkileşimli Java Web Arayüzü kullanılarak yaklaşık eş-derinlikli histogram 

oluşturulması gösterilmektedir. Büyük veriler için, kalite garantisiyle birlikte, eş-derinlikli histogram oluşturma metotları 

kullanılmakta, bu metotların teknik yönlerden deneysel sunumları ortaya konulmakta ve yine bu metotlar Apache Hadoop Map-

Reduce ve Apache Pig User Defined Functions ile uygulanmaktadır. Arka planda Apache Hadoop Map-Reduce işleri (Apache 

Hadoop Map-Reduce jobs) ve Hadoop Distributed Files System kullanılarak Java Server Face sayfasından kalitesi garantilenmiş 

eş-derinlikli histogram oluşturulmasının prototip uygulaması ve bu uygulamaların kullanılmasıyla metotların değerlendirilmesi 

sunulmaktadır. Ayrıca büyük verileri kullanarak eş-derinlikli histogram oluşturmak için Apache Pig betiklerinin teknikleri izah 

edilmektedir. Sonuçlar gösteriyor ki; sistemimiz Apache Pig kullanılarak, histogram kullanımını da gerektiren çoklu iş yazma 

yeteneğini basit bir şekilde sağlamaktadır. Programcılar, histogram oluşturmak ve Map-Reduce işlerinin karmaşık 

uygulamalarından kaçınmak için Apache Pig’in avantajlarından faydalanabilmektedir. 

Anahtar Kelimeler: Yaklaşık histogram, histogram birleştirme, büyük veri, log dosyaları, hadoop distributed file system.   
1. INTRODUCTION 

The size of generated and stored data in industry is of 

terabytes or even petabytes and is growing bigger every 

day [1-3]. These data are obtained from machines (logs), 

social media, and medical and wearable devices. The 

processing of data and the deriving of meaningful results 

are crucial to improve the decision-making skills of the 

data owner. This means that there is a clear need for 

efficiently handling obtained datasets. There are several 

tools and technologies to meet this need, and almost all 

of them are based on the Map-Reduce paradigm, which 

is a type of distributed computing that splits input data 

into chunks and processes them independently. Apache 

Hadoop is the most popular big data tool that comes with 

the Map-Reduce framework and a distributed system 

called the Hadoop Distributed File System (HDFS). 

Apache Hadoop [5, 6] has standard methods to process 

enormous datasets in industry and academia [3, 7-11]. 

Other reasons for its popularity are its ease of use, open-

source nature, failover, high performance, scalability, 

and reliability. Many researchers and academics have 

focused on improving Hadoop’s Map-Reduce job 

performance in different high-level languages [3, 8, 11, 

12], together with query optimization and indexing 

techniques [7, 13-18] and join algorithms and data 

structures [9, 19, 20]. In today’s business environment, 
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where needs and desires change rapidly, it is necessary to 

get results quickly from big data for big data analytics 

[9]. To obtain fast results from large datasets, sampling 

from datasets or computing previous results provides 

approximate results within the predefined rate of 

accuracy. These are the most efficient ways to solve 

problems. For example, consider big companies such as 

Google, Yahoo, or Wikipedia. The Google web engine 

processes over 40000 search queries every second on 

average, which translates to 3.5 billion searches per day 

[21]. The Yahoo website has one billion active users per 

month on average, which translates to nearly 40000 

requests per second [22]. Wikipedia has a maximum of 

30000 requests per second. Therefore, there are different 

data with different data sources, and they require 

different algorithmic approaches that take into 

consideration performance and accuracy criteria.  

Histogram construction is one way to obtain statistical 

information from data, as histograms give information 

about data distribution and represent a summary of all of 

the data. Moreover, a histogram provides quick query 

optimization, approximate results, distribution fitting, 

and parallel data partitioning [23]. The most used 

histogram type is the equi-depth histogram, also known 

as a height-balanced histogram. In an equi-depth 

histogram generated by β buckets of data chunks 

containing N elements, every bucket contains N/β 

elements. Yildiz et al. [4] proposed a histogram merging 

algorithm with quality guarantees. According to the 

algorithm, they merged pre-calculated equi-depth 

histograms of partitioned data with user-specified error 

bounds. More specifically, pre-computed equi-depth 

histograms of data with T buckets are merged to build a 

β-buckets histogram with the desired error bound and 

quality guarantees. Apache Hadoop is an easily scalable 

distributed tool, but the solution to a big data problem 

requires multiple skills and tasks, and it may be necessary 

to write more than one Hadoop Map-Reduce job. This 

may be troublesome. Instead of writing multiple jobs, it 

makes sense to use a high-level language such as Apache 

Pig, which is an SQL-like scripting language [12, 24], 

which translates scripts into optimized sequences of 

Map-Reduce jobs. It also saves time for developers in 

terms of writing a lot of code and the trouble of Hadoop 

tuning. In this paper, we apply the histogram construction 

method proposed in [4] to Apache Pig and explain how 

to use the implementation of it in Hadoop Map-Reduce 

in web applications. Accordingly, we present two 

demonstrations. The first one is a web interface that 

merges equi-depth histograms and builds a new one using 

Apache Hadoop Map-Reduce jobs. The purpose of this 

first application is to show that the quality-guaranteed 

histogram generation method can be used in web tools. 

Moreover, it facilitates the connection of big data and 

enterprise applications. The second application is written 

in Pig Latin with the same goals because of its ease of 

use. In  the s econd  application,  the  quality-guaranteed  

 

approximate histogram generation method is presented as 

a contribution to the Apache Pig tool. The purpose of this 

application is to show that this generation method is 

easily implemented for big data applications by taking 

advantage of Apache Pig. 

The rest of this paper is organized as follows: In Section 

2, we define the histogram construction problem for big 

data. We explain our demonstrations with 

implementation details and give future works in Section 

3, followed by conclusions in Section 4. 

 

2. PROBLEM DEFINITION 

Machine-generated data, also known as logs, are 

automatically produced by machines. To be informed of 

machine activity, logs are traditionally stored daily in 

W3C format [25]. When we consider the web servers of 

big systems, all servers write requests and responses data 

to log files. Some engineers may need to analyze these. 

For example, business intelligence specialists derive 

intelligence (top-rated pages, top users, gender of top 

users, time spent online). To respond to user demands, 

companies need to develop log management and 

analytical tools. A medium-sized Internet business may 

have thousands of web servers logging all activity. 

Moreover, there are ETL processes incrementally 

collecting, cleaning, and storing the logs in big data 

storage. The quantity of data to the ETL and to be 

analyzed is enormous and rapidly growing. Therefore, it 

is important to get as accurate intelligence from it as 

possible. In this regard, the equi-depth histogram is a 

quick and reliable way to understand data statistics. In 

this paper, we create two applications to create an on-

demand equi-depth histogram of desired data within a 

time interval. Daily logs are kept on web servers. At the 

end of the day, all logs of this day are pushed to the 

HDFS. As soon as new log files are available in the 

HDFS, an exact or daily equi-depth histogram is 

constructed with the Summarizer and stored in the 

HDFS. If a user wants to construct an approximate equi-

depth histogram of any time interval, such as the last 

week, Merger gets daily equi-depth histograms in a time 

interval as input, merges them, and creates an 

approximate equi-depth histogram with quality 

guarantees. A more detailed problem definition is 

available in [4]. 

 

3. OVERVIEW OF DEMONSTRATIONS 

In this section, we will explain our demonstrations with 

implementation details. We have two demonstrations. 

One of them consists of two Pig Latin scripts, which are 

called SummarizerPig and MergerPig, respectively. 

SummarizerPig runs offline and is used to construct an 

exact equi-depth histogram of new data coming to the 

HDFS with a number of buckets pre-specified by the 

user. The output of SummarizerPig, which can be called 

the summary, is also stored in the HDFS. The other 
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script, MergerPig, runs online with the desired query 

request by the user. It merges SummarizerPig’s desired 

outputs considering a specified query and builds the final 

approximate equi-depth histogram. The second 

demonstration is used for the same goals as MergerPig, 

but there are minor differences. We call this application 

MergerWeb because a Map-Reduce job works in the 

background of the Java Server Face (JSF) web page. In 

MergerWeb, the user prepares a query and sends it to the 

Map-Reduce job. The job gets inputs, which are 

summaries from the HDFS according to the query, and 

builds an approximate equi-depth histogram as 

MergerPig. This scenario is explained in Figure 1. In 

Figure 2, an overview of the demonstration processing is 

given. The online and offline parts can be seen on the 

right side of the figure. Raw data, summary files, and 

final approximate histograms constructed according to 

user demands stored in the HDFS are displayed on the 

left of the figure. When new data are pushed to the HDFS, 

SummarizerPig works, constructing its summary and 

storing it in the HDFS again. The constructed T-buckets 

equi-depth histogram is the exact histogram. Whenever a 

user requests an equi-depth histogram of desired data 

partitions, MergerPig gets summaries of related data 

partitions, computes the approximate β-buckets equi-

depth histogram, and saves the output, which is the final 

merged histogram, to the HDFS. In this research, we have 

two Hadoop Map-Reduce job alternatives of 

SummarizerPig and MergerPig. The first job can be used 

instead of SummarizerPig, which works offline. The 

second job, which is an alternative of MergerPig, works 

on demand. In our work, we provide a web application to 

get queries from the user and run the Map-Reduce jobs 

using this query. As a result, it merges exact histograms 

and builds an approximate equi-depth histogram. 

3.1. Bucket Number Calculations 

In this research, we demonstrate the quality-guaranteed 

approximate equi-depth histogram construction by 

merging exact equi-depth histograms. The bucket 

number of the exact equi-depth histogram T is defined by 

the user. The bucket number of the approximate 

histogram β is constructed by merging exact histograms. 

This is also determined by the user. However, there is a 

relationship between T and β for the quality guarantee. 

The relationship between T and β is shown in Equation 

1.  

𝑒𝑚𝑎𝑥  <  2β /𝑇 ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟       (1) 

 

 

 

Figure 1. Flowchart of demonstrations. 
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For example, we assume that we have 10% tolerable error 

using Equation 1. We calculate the relationship between 

T and β as follows: 

 
𝑒𝑚𝑎𝑥  <  2𝛽 /𝑇 ≤ 0.1  

20 β ≤  𝑇 

As a result, the required bucket size of exact histograms 

T should be at least 20 times more than the required 

bucket size of approximate histogram β. The Oracle 

database uses the number 254 as a histogram bucket size 

[26], so in this study, we also use 254. The T values are 

shown in Table 1 according to the desired β and the 

tolerable maximum percentage error using Equation 1. 

 

Table 1. Sample β and T values according to the tolerable 

maximum percentage error rate. 

𝒆𝒎𝒂𝒙 (%) 𝜷 T 

5 10 400 

5 254 10160 

10 5 100 

10 254 5080 

20 254 2540 

3.2. Demonstration Examples 

We now present our applications using hourly page view 

statistics data of Wikipedia in this section. We also tested 

our application on skewed data produced by the Gumbel 

distribution, and we described the operational logic of the 

demonstrations in Section 2. Here we explain our 

demonstration examples. In Table 2 and Table 3, the first 

application scripts are displayed. We implement the 

HistogramSummarizer user-defined function (UDF) and 

register it in line 1 of Table 2 to create an exact equi-

depth histogram. The number of buckets shown as ‘T’ is 

defined in line 2 of Table 2. In the other part of the script, 

data are loaded, the histogram is generated, and the daily 

histogram is stored in the HDFS under the ‘Summaries’ 

directory.  

MergerPig 2 merges the desired daily exact equi-depth 

histograms. To use this method in Apache Pig, we write 

another UDF registered in 1 of Table 3. As we can see in 

this script, the number of buckets of the approximate 

histogram is defined in line 2 of Table 3. The merged 

histogram data of the desired time interval (time interval 

is a week in the following example) are loaded in line 3 

of the following table. In the rest of the script, the 

approximate equi-depth histogram is built and stored in 

the HDFS.  

 

Table 2. Script of SummarizerPig. 

register HistogramSummarize.jar; 

define Hist HistogramSummarize('254'); 

A = load 'pagestat/20160101' using PigStorage(' ') 

as (lang:chararray,url:chararray,req:long,byte:long); 

B = foreach A generate byte as (byte:long); 

C = group B all; 

D = foreach C { 

sorted = order B by byte; 

generate Hist(sorted); 

}; 

store D into 'Summaries/20160101'; 

 

Table 3. Script of MergerPig. 

register HistogramEstimate.jar; 

define Hist HistogramEstimate('254'); 

A = load 'Summaries/2016010[1-7]/*' as 

(B: bag {T: 

tuple(bound:long,numberOfTuple:long)}); 

B = foreach A generate flatten(B); 

C = group B all; 

D = foreach C{ 

sorted = order B by bound; 

generate Hist(sorted); 

}; 

store D into output; 

We implement two Hadoop Map-Reduce jobs for the 

second demonstration. The first job constructs the exact 

equi-depth histogram as SummarizerPig. However, we 

Figure 2. Overview of demonstrations. 
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do not present it in Figure 2 because SummarizerPig has 

enough working logic to construct an exact equi-depth 

histogram. The second job works as MergerPig. The 

required command to run this job is shown in Table 4. 

                                                      

 Table 4. Command of Hadoop histogram merger.  

hadoop jar HistogramEstimate.jar   

edu.tou.HistogramEstimate 

$numberOfBuckets($\beta$) 

$startdate $enddate $Summaries $output   

 

We only use this job in MergerWeb, which is written in 

the JSF and Maven frameworks. The user interface is 

shown in Figure 3. In order to use this application, input 

fields, which are the number of buckets (β), start date, 

end date, input files path, and output file path, must be 

filled in, and then the ‘Merge’ button is clicked. As the 

job is finished, the constructed approximate equi-depth 

histogram of the time interval is obtained as 

demonstrated as Figure 4.  

3.3. Comparison of Demonstrations 

In this section, we present the comparison results of 

applications implemented with Apache Pig UDFs and 

Apache Hadoop Map-Reduce. For the testing, we created 

a Hadoop ecosystem with 2 machines running on 

DigitalOcean standard droplets. One of them has 8 GB 

memory, 4 vCPUs, and 160 GB SSD. We composed a 

master and slave on it. The other machine, which is a 

slave, has 4 GB memory, 2 vCPUs, and 80 GB SSD. We 

utilized Hadoop 2.7 and Apache Pig 0.16.0 for our 

experiments. We used 6 days of data from the hourly 

page view statistics dataset of Wikipedia, which is an  

 

 

uncompressed 60 GB and consists of language, 

pagename, pageviews, and pagesize columns. It includes 

the first 6 days of January 2016 and approximately 

952686335 tuples. We operate pagesize for histogram 

constructions. 

In order to obtain the comparison results, we run 

SummarizerPig and SummarizerWeb for the data of each 

day and we construct daily exact histograms. The 

Hadoop History Server was run at the same time while 

running the tests. In Figure 5, we display elapsed times 

(taken from the History Server) to construct a daily exact 

equi-depth histogram with SummarizerPig (blue line) 

and Apache Hadoop Summarizer (orange line). After 

daily histograms are obtained, MergerWeb and 

MergerPig are run to create an approximate histogram of 

one-day, two-day, three-day etc. intervals. One-day 

histogram merging may be confusing, which is related to  

the number of buckets. There is no merging, but the 

bucket number is reduced. In Figure 6, a chart of elapsed 

time is provided to compare MergerWeb (orange line) 

and MergerPig (blue line). 

The graphs depicted in Figure 5 show that Apache 

Hadoop Map-Reduce is nearly 2.5 times faster than 

Apache Pig when exact histogram constructions are 

considered. If the number of daily equi-depth histograms 

to be merged is increased, the difference between the 

elapsed times for MergerWeb and MergerPig increases.  

The results presented here are not different from other big 

data problems implemented in Apache Pig and Apache 

Hadoop. Figures 5 and 6 illustrate the characteristics of 

Apache Hadoop Map-Reduce and Apache Pig. When 

comparing Apache Hadoop and Apache Pig, Apache 

Hadoop is more efficient. However, Apache Pig requires 

less effort when developing software. 

 

 

 

Figure 3. MergerWeb form. 

Figure 4. Equi-depth histogram constructed by MergerWeb. 
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3.4. Future Works 

We have presented our implementations for Apache Pig 

and Apache Hadoop with demonstrations in this paper. 

However, this method can also be implemented in other 

big data ecosystem tools such as Apache Spark and 

Apache Hive with UDFs. 

 

4. CONCLUSION 

In this paper, we have implemented a novel approximate 

equi-depth histogram method on Apache Pig using 

Apache Pig UDFs and have developed a web interface to 

create approximate histograms using Hadoop Map-

Reduce jobs, which is also an implementation of this 

method on the back-end. The proposed method is more 

accurate and faster than the tuple-level sampling method. 

We have shown that the advantages of Hadoop jobs, i.e. 

Hadoop Map-Reduce, and the quality-guaranteed equi-

depth histogram construction method can be used in web 

applications with our demonstration of MergerWeb. By 

utilizing the extensibility property of Apache Pig, we 

showed that our Apache Pig Scripts (SummarizerPig and 

MergerPig) can be used to construct exact and quality-

guaranteed equi-depth histograms. Although Apache 

Hadoop is an easily scalable distributed big data tool, the 

solutions of big data problems usually require multiple 

skills and tasks, such as creating multiple jobs. Instead of 

these job operations, using high-level languages such as 

Apache Pig allows for the easy execution of big data 

processing and data management for unstructured data 

models. Hence, programmers have advantages in using 

Apache Pig to create histograms that eliminate the need 

for the implementation of Map-Reduce jobs. 

Consequently, the same approximate histogram 

construction method has been implemented in a web 

interface using Apache Hadoop Map-Reduce in the 

background and has also been implemented in Apache 

Pig with UDFs. It was found that the method 

implemented in Apache Hadoop Map-Reduce yields 

faster results than the method implemented in Apache Pig 

UDFs. 
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