

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

Equi-depth histogram construction

methodology for big data tools

Büyük veri araçları için eş derinlikli histogram

oluşturma metodolojisi

Yazar(lar) (Author(s)): Tolga BUYUKTANIR1, Ahmet Ercan TOPCU2

ORCID1: 0000-0001-5317-0028

ORCID2: 0000-0003-1929-5358

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Büyüktanır T. ve Topcu A. E.,

“Equi-depth histogram construction methodology for big data tools”, Politeknik Dergisi, 23(3): 859-865,

(2020).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.620198

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

Equi-Depth Histogram Construction Methodology for Big Data

Tools

Highlights

❖ Equi-depth histogram construction with quality guarantees for big data

❖ Creating histograms and elimination the complex implementation

❖ Applying new techniques to create histograms using big data

❖ The capability of writing multiple jobs including histogram construction using Apache Pig

Graphical Abstract

The system provides the capability of writing multiple jobs using Apache Pig and eliminates the complex

implementation of Map-Reduce jobs by creating histograms.

Figure. Flowchart of demonstrations

Aim

To build a fast and effective equi-depth histogram with quality guarantees for big data.

Design & Methodology

Approximate equi-depth histogram construction for big data and provide easy execution of data processing and

data management.

Originality

Contribute the error-guaranteed equi-depth histogram construction method for big data tools by facilitating high-

level languages.

Findings

A successful model is established to provide an easy execution of data processing and to create the histogram of

unstructured big data.

Conclusion

The system provides the capability of writing multiple jobs using Apache Pig, and programmers can make use of

the advantages of Apache Pig to create histograms and eliminate the complex implementation of Map-Reduce

jobs.

Declaration of Ethical Standards

The author(s) of this article declare that the materials and methods used in this study do not require ethical

committee permission and/or legal-special permission.

Politeknik Dergisi, 2020; 23(3) : 859-865 Journal of Polytechnic, 2020; 23 (3): 859-865

859

Equi-Depth Histogram Construction Methodology for

Big Data Tools
Araştırma Makalesi / Research Article

Tolga BUYUKTANIR1, 3*, Ahmet Ercan TOPCU2, 3
1Idea Technology Solutions, R&D Center, Turkey

2College of Engineering and Technology, American University of the Middle East, Kuwait
3Faculty of Engineering and Natural Sciences Department of Computer Engineering, Ankara Yildirim Beyazit University, Turkey

 (Geliş/Received : 13.09.2019 ; Kabul/Accepted : 01.04.2020)

 ABSTRACT

In recent decades, countless data sources such as social media, machines, and networks are constantly pushing data into the digital

world. The size of the data has been growing exponentially. To understand the statistical information of data query optimization,

equi-depth histograms are essential. In this paper, we present approximate equi-depth histogram construction for big data using

both Apache Pig Scripts and Java Web Interface interacting with Apache Hadoop. We use equi-depth histogram construction with

quality guarantees for big data approaches and implement them with Apache Hadoop Map-Reduce and Apache Pig user-defined

functions. We introduce a prototype implementation of the construction of the approximate equi-depth histogram from the Java

Server Face page using Apache Hadoop jobs and the Hadoop Distributed Files System, and we evaluate these methods using the

demonstration. We explain Apache Pig Scripts techniques to create equi-depth histograms using big data. The results indicate that

our system provides the capability of writing multiple jobs using Apache Pig, and programmers can make use of the advantages of

Apache Pig to create histograms and eliminate the complex implementation of Map-Reduce jobs.

Keywords: Approximate histogram, merging histograms, big data, log files, hadoop distributed file system.

Büyük Veri Araçları için Eş-Derinlikli Histogram

Oluşturma Metodolojisi

ÖZ

Son yıllarda, verileri sürekli olarak dijital dünyaya aktaran ağlar, makinalar ve sosyal medya gibi bir çok data kaynağı vardır. Bu

kaynaklardan üretilen datanın boyutu eksponansiyel olarak artmaktadır. Hali hazırda elde bulunan datanın istatistiki bilgisini

anlamak ve sorgu optimizasyonu sağlamak için eş-derinlikli histogram vazgeçilmez bir araçtır. Bu makalede, büyük veriler için

hem Apache Pig betiklerini hem de Apache Hadoop ile etkileşimli Java Web Arayüzü kullanılarak yaklaşık eş-derinlikli histogram

oluşturulması gösterilmektedir. Büyük veriler için, kalite garantisiyle birlikte, eş-derinlikli histogram oluşturma metotları

kullanılmakta, bu metotların teknik yönlerden deneysel sunumları ortaya konulmakta ve yine bu metotlar Apache Hadoop Map-

Reduce ve Apache Pig User Defined Functions ile uygulanmaktadır. Arka planda Apache Hadoop Map-Reduce işleri (Apache

Hadoop Map-Reduce jobs) ve Hadoop Distributed Files System kullanılarak Java Server Face sayfasından kalitesi garantilenmiş

eş-derinlikli histogram oluşturulmasının prototip uygulaması ve bu uygulamaların kullanılmasıyla metotların değerlendirilmesi

sunulmaktadır. Ayrıca büyük verileri kullanarak eş-derinlikli histogram oluşturmak için Apache Pig betiklerinin teknikleri izah

edilmektedir. Sonuçlar gösteriyor ki; sistemimiz Apache Pig kullanılarak, histogram kullanımını da gerektiren çoklu iş yazma

yeteneğini basit bir şekilde sağlamaktadır. Programcılar, histogram oluşturmak ve Map-Reduce işlerinin karmaşık

uygulamalarından kaçınmak için Apache Pig’in avantajlarından faydalanabilmektedir.

Anahtar Kelimeler: Yaklaşık histogram, histogram birleştirme, büyük veri, log dosyaları, hadoop distributed file system.
1. INTRODUCTION

The size of generated and stored data in industry is of

terabytes or even petabytes and is growing bigger every

day [1-3]. These data are obtained from machines (logs),

social media, and medical and wearable devices. The

processing of data and the deriving of meaningful results

are crucial to improve the decision-making skills of the

data owner. This means that there is a clear need for

efficiently handling obtained datasets. There are several

tools and technologies to meet this need, and almost all

of them are based on the Map-Reduce paradigm, which

is a type of distributed computing that splits input data

into chunks and processes them independently. Apache

Hadoop is the most popular big data tool that comes with

the Map-Reduce framework and a distributed system

called the Hadoop Distributed File System (HDFS).

Apache Hadoop [5, 6] has standard methods to process

enormous datasets in industry and academia [3, 7-11].

Other reasons for its popularity are its ease of use, open-

source nature, failover, high performance, scalability,

and reliability. Many researchers and academics have

focused on improving Hadoop’s Map-Reduce job

performance in different high-level languages [3, 8, 11,

12], together with query optimization and indexing

techniques [7, 13-18] and join algorithms and data

structures [9, 19, 20]. In today’s business environment,
*Sorumlu Yazar (Corresponding Author)

e-posta : tolga.buyuktanir@ideateknoloji.com.tr

Tolga BÜYÜKTANIR, Ahmet Ercan TOPCU / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2020;23(3): 859-865

860

where needs and desires change rapidly, it is necessary to

get results quickly from big data for big data analytics

[9]. To obtain fast results from large datasets, sampling

from datasets or computing previous results provides

approximate results within the predefined rate of

accuracy. These are the most efficient ways to solve

problems. For example, consider big companies such as

Google, Yahoo, or Wikipedia. The Google web engine

processes over 40000 search queries every second on

average, which translates to 3.5 billion searches per day

[21]. The Yahoo website has one billion active users per

month on average, which translates to nearly 40000

requests per second [22]. Wikipedia has a maximum of

30000 requests per second. Therefore, there are different

data with different data sources, and they require

different algorithmic approaches that take into

consideration performance and accuracy criteria.

Histogram construction is one way to obtain statistical

information from data, as histograms give information

about data distribution and represent a summary of all of

the data. Moreover, a histogram provides quick query

optimization, approximate results, distribution fitting,

and parallel data partitioning [23]. The most used

histogram type is the equi-depth histogram, also known

as a height-balanced histogram. In an equi-depth

histogram generated by β buckets of data chunks

containing N elements, every bucket contains N/β

elements. Yildiz et al. [4] proposed a histogram merging

algorithm with quality guarantees. According to the

algorithm, they merged pre-calculated equi-depth

histograms of partitioned data with user-specified error

bounds. More specifically, pre-computed equi-depth

histograms of data with T buckets are merged to build a

β-buckets histogram with the desired error bound and

quality guarantees. Apache Hadoop is an easily scalable

distributed tool, but the solution to a big data problem

requires multiple skills and tasks, and it may be necessary

to write more than one Hadoop Map-Reduce job. This

may be troublesome. Instead of writing multiple jobs, it

makes sense to use a high-level language such as Apache

Pig, which is an SQL-like scripting language [12, 24],

which translates scripts into optimized sequences of

Map-Reduce jobs. It also saves time for developers in

terms of writing a lot of code and the trouble of Hadoop

tuning. In this paper, we apply the histogram construction

method proposed in [4] to Apache Pig and explain how

to use the implementation of it in Hadoop Map-Reduce

in web applications. Accordingly, we present two

demonstrations. The first one is a web interface that

merges equi-depth histograms and builds a new one using

Apache Hadoop Map-Reduce jobs. The purpose of this

first application is to show that the quality-guaranteed

histogram generation method can be used in web tools.

Moreover, it facilitates the connection of big data and

enterprise applications. The second application is written

in Pig Latin with the same goals because of its ease of

use. In the s econd application, the quality-guaranteed

approximate histogram generation method is presented as

a contribution to the Apache Pig tool. The purpose of this

application is to show that this generation method is

easily implemented for big data applications by taking

advantage of Apache Pig.

The rest of this paper is organized as follows: In Section

2, we define the histogram construction problem for big

data. We explain our demonstrations with

implementation details and give future works in Section

3, followed by conclusions in Section 4.

2. PROBLEM DEFINITION

Machine-generated data, also known as logs, are

automatically produced by machines. To be informed of

machine activity, logs are traditionally stored daily in

W3C format [25]. When we consider the web servers of

big systems, all servers write requests and responses data

to log files. Some engineers may need to analyze these.

For example, business intelligence specialists derive

intelligence (top-rated pages, top users, gender of top

users, time spent online). To respond to user demands,

companies need to develop log management and

analytical tools. A medium-sized Internet business may

have thousands of web servers logging all activity.

Moreover, there are ETL processes incrementally

collecting, cleaning, and storing the logs in big data

storage. The quantity of data to the ETL and to be

analyzed is enormous and rapidly growing. Therefore, it

is important to get as accurate intelligence from it as

possible. In this regard, the equi-depth histogram is a

quick and reliable way to understand data statistics. In

this paper, we create two applications to create an on-

demand equi-depth histogram of desired data within a

time interval. Daily logs are kept on web servers. At the

end of the day, all logs of this day are pushed to the

HDFS. As soon as new log files are available in the

HDFS, an exact or daily equi-depth histogram is

constructed with the Summarizer and stored in the

HDFS. If a user wants to construct an approximate equi-

depth histogram of any time interval, such as the last

week, Merger gets daily equi-depth histograms in a time

interval as input, merges them, and creates an

approximate equi-depth histogram with quality

guarantees. A more detailed problem definition is

available in [4].

3. OVERVIEW OF DEMONSTRATIONS

In this section, we will explain our demonstrations with

implementation details. We have two demonstrations.

One of them consists of two Pig Latin scripts, which are

called SummarizerPig and MergerPig, respectively.

SummarizerPig runs offline and is used to construct an

exact equi-depth histogram of new data coming to the

HDFS with a number of buckets pre-specified by the

user. The output of SummarizerPig, which can be called

the summary, is also stored in the HDFS. The other

 EQUI-DEPTH HISTOGRAM CONSTRUCTION METHODOLOGY FOR BIG DATA TOOLS … Politeknik Dergisi, 2020; 23 (3) : 859-865

861

script, MergerPig, runs online with the desired query

request by the user. It merges SummarizerPig’s desired

outputs considering a specified query and builds the final

approximate equi-depth histogram. The second

demonstration is used for the same goals as MergerPig,

but there are minor differences. We call this application

MergerWeb because a Map-Reduce job works in the

background of the Java Server Face (JSF) web page. In

MergerWeb, the user prepares a query and sends it to the

Map-Reduce job. The job gets inputs, which are

summaries from the HDFS according to the query, and

builds an approximate equi-depth histogram as

MergerPig. This scenario is explained in Figure 1. In

Figure 2, an overview of the demonstration processing is

given. The online and offline parts can be seen on the

right side of the figure. Raw data, summary files, and

final approximate histograms constructed according to

user demands stored in the HDFS are displayed on the

left of the figure. When new data are pushed to the HDFS,

SummarizerPig works, constructing its summary and

storing it in the HDFS again. The constructed T-buckets

equi-depth histogram is the exact histogram. Whenever a

user requests an equi-depth histogram of desired data

partitions, MergerPig gets summaries of related data

partitions, computes the approximate β-buckets equi-

depth histogram, and saves the output, which is the final

merged histogram, to the HDFS. In this research, we have

two Hadoop Map-Reduce job alternatives of

SummarizerPig and MergerPig. The first job can be used

instead of SummarizerPig, which works offline. The

second job, which is an alternative of MergerPig, works

on demand. In our work, we provide a web application to

get queries from the user and run the Map-Reduce jobs

using this query. As a result, it merges exact histograms

and builds an approximate equi-depth histogram.

3.1. Bucket Number Calculations

In this research, we demonstrate the quality-guaranteed

approximate equi-depth histogram construction by

merging exact equi-depth histograms. The bucket

number of the exact equi-depth histogram T is defined by

the user. The bucket number of the approximate

histogram β is constructed by merging exact histograms.

This is also determined by the user. However, there is a

relationship between T and β for the quality guarantee.

The relationship between T and β is shown in Equation

1.

𝑒𝑚𝑎𝑥 < 2β /𝑇 ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (1)

Figure 1. Flowchart of demonstrations.

Tolga BÜYÜKTANIR, Ahmet Ercan TOPCU / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2020;23(3): 859-865

862

For example, we assume that we have 10% tolerable error

using Equation 1. We calculate the relationship between

T and β as follows:

𝑒𝑚𝑎𝑥 < 2𝛽 /𝑇 ≤ 0.1

20 β ≤ 𝑇

As a result, the required bucket size of exact histograms

T should be at least 20 times more than the required

bucket size of approximate histogram β. The Oracle

database uses the number 254 as a histogram bucket size

[26], so in this study, we also use 254. The T values are

shown in Table 1 according to the desired β and the

tolerable maximum percentage error using Equation 1.

Table 1. Sample β and T values according to the tolerable

maximum percentage error rate.

𝒆𝒎𝒂𝒙 (%) 𝜷 T

5 10 400

5 254 10160

10 5 100

10 254 5080

20 254 2540

3.2. Demonstration Examples

We now present our applications using hourly page view

statistics data of Wikipedia in this section. We also tested

our application on skewed data produced by the Gumbel

distribution, and we described the operational logic of the

demonstrations in Section 2. Here we explain our

demonstration examples. In Table 2 and Table 3, the first

application scripts are displayed. We implement the

HistogramSummarizer user-defined function (UDF) and

register it in line 1 of Table 2 to create an exact equi-

depth histogram. The number of buckets shown as ‘T’ is

defined in line 2 of Table 2. In the other part of the script,

data are loaded, the histogram is generated, and the daily

histogram is stored in the HDFS under the ‘Summaries’

directory.

MergerPig 2 merges the desired daily exact equi-depth

histograms. To use this method in Apache Pig, we write

another UDF registered in 1 of Table 3. As we can see in

this script, the number of buckets of the approximate

histogram is defined in line 2 of Table 3. The merged

histogram data of the desired time interval (time interval

is a week in the following example) are loaded in line 3

of the following table. In the rest of the script, the

approximate equi-depth histogram is built and stored in

the HDFS.

Table 2. Script of SummarizerPig.

register HistogramSummarize.jar;

define Hist HistogramSummarize('254');

A = load 'pagestat/20160101' using PigStorage(' ')

as (lang:chararray,url:chararray,req:long,byte:long);

B = foreach A generate byte as (byte:long);

C = group B all;

D = foreach C {

sorted = order B by byte;

generate Hist(sorted);

};

store D into 'Summaries/20160101';

Table 3. Script of MergerPig.

register HistogramEstimate.jar;

define Hist HistogramEstimate('254');

A = load 'Summaries/2016010[1-7]/*' as

(B: bag {T:

tuple(bound:long,numberOfTuple:long)});

B = foreach A generate flatten(B);

C = group B all;

D = foreach C{

sorted = order B by bound;

generate Hist(sorted);

};

store D into output;

We implement two Hadoop Map-Reduce jobs for the

second demonstration. The first job constructs the exact

equi-depth histogram as SummarizerPig. However, we

Figure 2. Overview of demonstrations.

 EQUI-DEPTH HISTOGRAM CONSTRUCTION METHODOLOGY FOR BIG DATA TOOLS … Politeknik Dergisi, 2020; 23 (3) : 859-865

863

do not present it in Figure 2 because SummarizerPig has

enough working logic to construct an exact equi-depth

histogram. The second job works as MergerPig. The

required command to run this job is shown in Table 4.

 Table 4. Command of Hadoop histogram merger.

hadoop jar HistogramEstimate.jar

edu.tou.HistogramEstimate

$numberOfBuckets($\beta$)

$startdate $enddate $Summaries $output

We only use this job in MergerWeb, which is written in

the JSF and Maven frameworks. The user interface is

shown in Figure 3. In order to use this application, input

fields, which are the number of buckets (β), start date,

end date, input files path, and output file path, must be

filled in, and then the ‘Merge’ button is clicked. As the

job is finished, the constructed approximate equi-depth

histogram of the time interval is obtained as

demonstrated as Figure 4.

3.3. Comparison of Demonstrations

In this section, we present the comparison results of

applications implemented with Apache Pig UDFs and

Apache Hadoop Map-Reduce. For the testing, we created

a Hadoop ecosystem with 2 machines running on

DigitalOcean standard droplets. One of them has 8 GB

memory, 4 vCPUs, and 160 GB SSD. We composed a

master and slave on it. The other machine, which is a

slave, has 4 GB memory, 2 vCPUs, and 80 GB SSD. We

utilized Hadoop 2.7 and Apache Pig 0.16.0 for our

experiments. We used 6 days of data from the hourly

page view statistics dataset of Wikipedia, which is an

uncompressed 60 GB and consists of language,

pagename, pageviews, and pagesize columns. It includes

the first 6 days of January 2016 and approximately

952686335 tuples. We operate pagesize for histogram

constructions.

In order to obtain the comparison results, we run

SummarizerPig and SummarizerWeb for the data of each

day and we construct daily exact histograms. The

Hadoop History Server was run at the same time while

running the tests. In Figure 5, we display elapsed times

(taken from the History Server) to construct a daily exact

equi-depth histogram with SummarizerPig (blue line)

and Apache Hadoop Summarizer (orange line). After

daily histograms are obtained, MergerWeb and

MergerPig are run to create an approximate histogram of

one-day, two-day, three-day etc. intervals. One-day

histogram merging may be confusing, which is related to

the number of buckets. There is no merging, but the

bucket number is reduced. In Figure 6, a chart of elapsed

time is provided to compare MergerWeb (orange line)

and MergerPig (blue line).

The graphs depicted in Figure 5 show that Apache

Hadoop Map-Reduce is nearly 2.5 times faster than

Apache Pig when exact histogram constructions are

considered. If the number of daily equi-depth histograms

to be merged is increased, the difference between the

elapsed times for MergerWeb and MergerPig increases.

The results presented here are not different from other big

data problems implemented in Apache Pig and Apache

Hadoop. Figures 5 and 6 illustrate the characteristics of

Apache Hadoop Map-Reduce and Apache Pig. When

comparing Apache Hadoop and Apache Pig, Apache

Hadoop is more efficient. However, Apache Pig requires

less effort when developing software.

Figure 3. MergerWeb form.

Figure 4. Equi-depth histogram constructed by MergerWeb.

Tolga BÜYÜKTANIR, Ahmet Ercan TOPCU / POLİTEKNİK DERGİSİ, Politeknik Dergisi,2020;23(3): 859-865

864

3.4. Future Works

We have presented our implementations for Apache Pig

and Apache Hadoop with demonstrations in this paper.

However, this method can also be implemented in other

big data ecosystem tools such as Apache Spark and

Apache Hive with UDFs.

4. CONCLUSION

In this paper, we have implemented a novel approximate

equi-depth histogram method on Apache Pig using

Apache Pig UDFs and have developed a web interface to

create approximate histograms using Hadoop Map-

Reduce jobs, which is also an implementation of this

method on the back-end. The proposed method is more

accurate and faster than the tuple-level sampling method.

We have shown that the advantages of Hadoop jobs, i.e.

Hadoop Map-Reduce, and the quality-guaranteed equi-

depth histogram construction method can be used in web

applications with our demonstration of MergerWeb. By

utilizing the extensibility property of Apache Pig, we

showed that our Apache Pig Scripts (SummarizerPig and

MergerPig) can be used to construct exact and quality-

guaranteed equi-depth histograms. Although Apache

Hadoop is an easily scalable distributed big data tool, the

solutions of big data problems usually require multiple

skills and tasks, such as creating multiple jobs. Instead of

these job operations, using high-level languages such as

Apache Pig allows for the easy execution of big data

processing and data management for unstructured data

models. Hence, programmers have advantages in using

Apache Pig to create histograms that eliminate the need

for the implementation of Map-Reduce jobs.

Consequently, the same approximate histogram

construction method has been implemented in a web

interface using Apache Hadoop Map-Reduce in the

background and has also been implemented in Apache

Pig with UDFs. It was found that the method

implemented in Apache Hadoop Map-Reduce yields

faster results than the method implemented in Apache Pig

UDFs.

REFERENCES

[1] Logothetis D., Olston C., Reed B., Webb K. C., and

Yocum K. , "Stateful bulk processing for incremental

analytics", In Proceedings of the 1st ACM symposium on

Cloud computing, 51-62, (2010).

[2] Thusoo A., Shao Z., Anthony S., Borthakur D., Jain N.,

Sen Sarma J., ... and Liu H. , "Data warehousing and

analytics infrastructure at facebook", In Proceedings of

the 2010 ACM SIGMOD International Conference on

Management of data, 1013-1020, (2010).

[3] Thusoo A., Sarma J. S., Jain N., Shao Z., Chakka P., Zhang

N., ... and Murthy R. , "Hive-a petabyte scale data

warehouse using hadoop", In 2010 IEEE 26th

international conference on data engineering (ICDE

2010), 996-1005, (2010).

[4] Yıldız B., Büyüktanır T., and Emekci F. , "Equi-depth

histogram construction for big data with quality

guarantees", arXiv preprint arXiv:1606.05633, (2016).

[5] https://hadoop.apache.org, “A. S. Foundation Apache

Hadoop”, (2008).

[6] Dean J., and Ghemawat S., "MapReduce: a flexible data

processing tool", Communications of the ACM, 53(1):

72-77, (2010).

[7] Dittrich J., Quiané-Ruiz J. A., Jindal A., Kargin Y., Setty

V., and Schad J., , "Hadoop++: Making a yellow elephant

run like a cheetah (without it even noticing)", Proceedings

of the VLDB Endowment, 3(1-2): 515-529, (2010).

[8] Gates A. F., Natkovich O., Chopra S., Kamath P.,

Narayanamurthy S. M., Olston C., ... and Srivastava U.,

"Building a high-level dataflow system on top of Map-

Reduce: the Pig experience", Proceedings of the VLDB

Endowment, 2(2): 1414-1425, (2009).

[9] Jindal A., Quiané-Ruiz J. A., and Dittrich J. , "Trojan data

layouts: right shoes for a running elephant", In

Proceedings of the 2nd ACM Symposium on Cloud

Computing, 1-14, (2011).

[10] Zaharia M., Konwinski A., Joseph A. D., Katz R. H., and

Stoica I., "Improving MapReduce performance in

heterogeneous environments", In Osdi, 8(4): 7, (2008).

[11] Isard M., Budiu M., Yu Y., Birrell A., and Fetterly D.,

"Dryad: distributed data-parallel programs from sequential

building blocks", In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer

Systems 2007, 59-72, (2007).

[12] Schumacher A., Pireddu L., Niemenmaa M., Kallio A.,

Korpelainen E., Zanetti G., and Heljanko K., "SeqPig:

simple and scalable scripting for large sequencing data sets

in Hadoop", Bioinformatics, 30(1): 119-120, (2014).

Figure 5. Comparison of the histogram summarization jobs.

Figure 6. Comparison of the histogram estimation jobs.

 EQUI-DEPTH HISTOGRAM CONSTRUCTION METHODOLOGY FOR BIG DATA TOOLS … Politeknik Dergisi, 2020; 23 (3) : 859-865

865

[13] Wu S., Li F., Mehrotra S., and Ooi B. C., "Query

optimization for massively parallel data processing", In

Proceedings of the 2nd ACM Symposium on Cloud

Computing, 1-13, (2011).

[14] Babu S., "Towards automatic optimization of MapReduce

programs", In Proceedings of the 1st ACM symposium on

Cloud computing, 137-142, (2010).

[15] Herodotou H., and Babu S., "Profiling, what-if analysis,

and cost-based optimization of mapreduce programs",

Proceedings of the VLDB Endowment, 4(11): 1111-1122,

(2011).

[16] Jahani E., Cafarella M. J., and Ré C., "Automatic

optimization for MapReduce programs", arXiv preprint

arXiv:1104.3217, (2011).

[17] Jiang D., Ooi B. C., Shi L., and Wu S., "The performance

of mapreduce: An in-depth study", Proceedings of the

VLDB Endowment, 3(1-2): 472-483, (2010).

[18] Dittrich J., Quiané-Ruiz J. A., Richter S., Schuh S., Jindal

A., and Schad J., "Only aggressive elephants are fast

elephants", arXiv preprint arXiv:1208.0287, (2012).

[19] Floratou A., Patel J., Shekita E., and Tata S., "Column-

oriented storage techniques for MapReduce", arXiv

preprint arXiv:1105.4252, (2011).

[20] Lin Y., Agrawal D., Chen C., Ooi B. C., and Wu S.,

"Llama: leveraging columnar storage for scalable join

processing in the MapReduce framework", In

Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, 961-972, (2011).

[21] http://www.internetlivestats.com/google-search-

statistics, Google search statistics.

[22] https://advertising.yahoo.com/yahoo-

sites/Homepage/index.htm, Yahoo advertising.

[23] Ioannidis Y., "The history of histograms (abridged)", In

Proceedings 2003 VLDB Conference, 19-30, (2003).

[24] Olston C., Reed B., Srivastava U., Kumar R., and Tomkins

A., "Pig latin: a not-so-foreign language for data

processing", In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, 1099-

1110, (2008).

[25] Hallam-Baker P. M., "Extended log file format", WWW

Journal, (1996).

[26] https://docs.oracle.com/database/121/TGSQL/tgsql_hist

o.htm#TGSQL380, Oracle Database Histograms.

