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ABSTRACT 
Purpose – The purpose of this study is to test the validity of super-fast development of social media and its wide range of use by even 
professional investors as the new financial contagion which is carried with “Black Noise” tweets. Newly established robotic modern finance 
environment and various news channels provide the necessary infrastructure to utilize a focused and directed market noise. Measuring the 
impact of this noise in the financial market volatility is a crucial and important issue.  
Methodology - In this study, we investigate the news impact of trade wars and monetary policy news on steel industry of US and its reflection 
on Turkish markets utilizing 30 minutes high frequency return data. The novelty is this study is the interaction terms that we generated and 
embedded in the E-GARCH models to test the reactions of steel major listed US steel industry companies such as US Steel, AK Steel, Nucor 
and the pioneer Turkish company Ereğli in this sector. 
Findings- Findings of this study highlights that specific news about trade war and monetary policy have a significant impact on steel company 
returns. For further research papers testing the speculation strength of such tweet can be a beneficial topic for the other researchers. 
Conclusion- As a result of this study, being one the major market makers, Trump’s direct messages to the market via Twitter and such, about 
sanctions, interest rates and monetary policy creates “Black Noise” in financial markets. Even in a durable production industry like steel 
sector this leads to speculation. 
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1. INTRODUCTION 

2008 global financial crisis provides us with a wide range of study field on cross-asset contagion mechanisms in the US 
financial markets. Contagion in the financial markets was one of the most popular research topics in finance literature 
triggered by Forbes and Rigobon (2001). After a decade of the so-called subprime crisis the impact of market news on asset 
volatilities increased significantly.  

Especially after the US elections and Trump era started, trade wars and sanctions declared by US decision makers fueled 
cross-asset contagion. The way in which information is disseminated to the masses has evolved with the introduction of social 
media platforms. During the 2016 presidential election, candidates used the platform to increase their media coverage, 
especially Donald Trump. His current position empowers his tweets to influence public sentiment, decisions of financial 
market actors and even the performance of stock returns. 

With the increasing influence of social media which fuels the information spillover, even Bloomberg L.P. is incorporating 
tweets into its data service, which is widely used in the financial industry. Even two of the largest Wall Street banks are trying 
to measure the market impact of Donald Trump’s tweets. Analysts at JPMorgan Chase & Co. have created an index to quantify 
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what they say are the growing effects on U.S. bond yields. Citigroup Inc.’s foreign exchange team, meanwhile, report that 
these micro-blogging missives are also becoming “increasingly relevant” to foreign-exchange moves1.  

The point is Trump’s tweets are giving the market whiplash which we define as “Black Noise2 ” Black noise is a type of noise 
where the dominant energy level is zero throughout all frequencies, with occasional sudden rises; it is also defined as silence. 
Contrary to general consideration, sound and silence are not each other's opposite, but they are mutually inclusive. Silence 
is used as a verb in western languages with the meaning of “causing to become silent, prohibiting or preventing from 
speaking”. In this context, tweets of Trump, who has the market power as the president of global economy and financial 
markets driving country, creates noise in financial markets while mutually preventing the other actors or indicators from 
speaking.  

Even by the 1980s even reading Wall Street Journal or the availability of watching TV on the trading floor provided significant 
information advantage. In modern financial markets taken over by algorithms and passive manager the impact of available 
information spread out by market makers is uncontrollable. The rise of financial robotization both changes the speed and 
make-up of the stock market and affects the under economy. 

However, humans are not out of the picture entirely since they have a very important role of picking and choosing which data 
to feed in the machine. So, from one point they teach the algorithm what data to look and then manipulate that data by 
creating noise in the markets. Super-fast development of social media and its wide range of use by even professional investor 
now financial contagion is carried even with “Black Noise” tweets. As a result, newly established robotic modern finance 
environment and various news channels provide the necessary infrastructure to utilize a focused and directed market noise. 

2. LITERATURE REVIEW 

Previous literature studies focus on firstly to test whether the contagion exits in financial markets after global financial crisis 
and secondly improve the weakness of Forbes and Rigobon’s (2002) methodology. Most researchers focus on cross-country 
relationships (e.g. King and Wadhwani, 1990; Kodres and Pritsker; 1998; Kaminsky et al. 2003, Dungey et al., 2007) while 
Guidolin et. al. (2019) focus on cross-asset contagion mechanism. Based on the results of all these studies we accept that 
contagion exits in the market. Our aim is to question whether the structure of contagion changed recently especially after 
Trump election and his utilization of social media as a financial market speculation tool.  

In this context, recent studies focus on the impact of social media on financial markets, stock returns and company reactions 
more and more. Zheludev et. al (2014) showed that social media message sentiment can contain statistically significant ex-
ante information on the future prices of the S&P 500 Index. Tafti et al. (2016) found a spike in tweets per minute resulted in 
spike in trading activity in the following forty minutes. In their study they evaluate 96 firms on the NASDAQ over 193 trading 
days which were statistically compared with Yahoo! Finance data of the related firms. Most of the studies focus on the 
evaluation of message volumes and retrospective evaluation of trading strategy returns. Cove and Sardy (2019) found that 
Trump tweets have an impact on financial markets even at the level of daily returns. These findings were limited by the nature 
of daily S&P 500 returns and there was a gross mismatch between the timing of tweets and daily results. In our study with 
interaction dummy we were able to more directly see the instantaneous effect of the tweets on the market.         

There two types of specific news subjects in this study. Firstly, news about trade wars mainly about sanctions declared by US 
President to especially China and steel industry is considered. Although export from Turkey does not constitute a significant 
portion of US import, we also tested the impact of sanction declarations against Turkey via Ereğli stock return volatility 
models. Jensen (2006) shows that trade dispute over US steel production provides a case to reconsider the role of World 
Trade Organization (WTO) in settling trade disputes and stabilize the expectations of the market. His study mentions that 
during the 2002 WTO steel case, the WTO dispute mechanism helped market actors stabilize expectations of future trade 
policy. In our case Trump’s tweets serves quite the opposite of WTO dispute mechanism which does not help the market to 
stabilize at all. Lo and MacKinlay (1999) argues that stock prices do not fully adjust immediately to new information while 
Glosten et al. (1993) criticize Efficient Market Hypothesis of Fama (1970) stating that stocks respond asymmetrically to 
positive and negative news.  In our study with interaction dummy variables and using high frequency semi-hourly data we 
test all these criticisms with relevant volatility models.  

Secondly news about monetary policy and FED decisions fueled with the conflicts between Trump and Powell constitutes our 
second dummy variable.  

 
1 Our preliminary analysis of this article was announced a week before these studies in Turkish Economy channels and reputable economics 
news websites 
2 Black Noise term is inspired by a contemporary art exhibition composed of the works of the artists; Burak Arıkan, Servet Cihangiroğlu, 
Didem Erk, Richard Jochum, Cengiz Tekin, Anna Vasof, Mirko Lazović. 
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3. METHODOLOGY 

One model that allows for asymmetric effect of news is the EGARCH model. One problem with a standard GARCH model is 
that it is necessary to ensure that all the estimate coefficients are positive. Nelson (1991) proposed a specification that does 
not require non-negativity constrains.  

Consider: 

      ln(ℎ𝑡) = 𝛼0 + 𝛼1 (
𝜀𝑡−1

ℎ𝑡−1
0.5 ) + 𝜆1│

𝜀𝑡−1

ℎ𝑡−1
0.5 │ + 𝛽1ln⁡(ℎ𝑡−1)                                               [1]  

Equation (3.1) is called the exponential-GARCH or EGARCH model. There are three interesting features to notice about 
EGARCH model:  

1. The equation for the conditional variance is in log-linear form. Regardless of the magnitude of ln(ht), the implied value of ht 

can never be negative. Hence, it is permissible for the coefficients to be negative. 

2. Instead of using the value of 𝜀𝑡−1
2 , the EGARCH model uses the level of standardized value of 𝜀𝑡−1

2  [ i.e., 𝜀𝑡−1
2  divided by 

(ℎ𝑡−1)
0.5 ]. Nelson argues that this standardization allows for a more natural interpretation of the size and persistence of 

shocks. After all, the standardized value of 𝜀𝑡−1
2  is a unit-free measure.  

3. The EGARCH model allows the leverage effects. If 𝜀𝑡−1
2 /(ℎ𝑡−1)

0.5 is positive, the effect of the shock on the log of conditional 

variance is 𝛼1 + 𝜆1 . If 𝜀𝑡−1
2 /(ℎ𝑡−1)

0.5 is negative, the effect of the shock on the log of the conditional variance is −𝛼1 + 𝜆1.  

The trade-off between future risks and asset returns are the essence of most financial decisions. Risk mainly composes of 
two factors such as volatilities and correlations of financial assets. Since the economy changes frequently and new 
information is distributed in the markets second moments evolve over-time. Consequently, if methods are not carefully 
established to update estimates rapidly then volatilities and correlations measured using historical data may not be able to 
catch differentiation in risk (Cappiello et. all, 2006).  

If we consider EGARCH models, the news impact curve has its minimum at ԑt-1=0 and is exponentially increasing in both 
directions but with different parameters. The news impact curves are made up by using the estimated conditional variances 
equation for the related model as such the given coefficient estimates and with the lagged conditional variance set to the 
unconditional variance. 

Consider EGARCH (1,1) 

        ⁡⁡⁡⁡⁡⁡⁡ln(ℎ𝑡) = 𝛼0 + 𝛽 ln(ℎ𝑡−1) + 𝛼1𝑧𝑡−1 + 𝛾(|𝑧𝑡−1|) − 𝐸(|𝑧𝑡−1|)                       [2] 

where 𝑧𝑡 =
𝜀𝑡

𝜎𝑡⁄  . The news impact curve is 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ℎ𝑡 = {
𝐴𝑒𝑥𝑝
𝐴𝑒𝑥𝑝

⌈

𝛼1+𝛾

√ℎ𝑡
𝛼1−𝛾

√ℎ𝑡

⌉}⁡
𝑓𝑜𝑟⁡𝜀𝑡−1 > 0⁡
𝑓𝑜𝑟⁡𝜀𝑡−1 < 0⁡

                 [3] 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐴 ≡ ℎ𝑡
𝛽
𝑒𝑥𝑝[𝛼0 − 𝛾√2/𝜋]         [4] 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼1 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼1 + 𝛾 > 0         [5] 

An important characteristic of asset prices is that “bad” news has more persistent impact on volatility than “good” news has. 
Most of the stocks has a strong negative correlation between the current return and the future volatility. In this context we 
can define leverage effect as such volatility tends to decrease when returns increase and to increase when returns decrease.  

The idea of the leverage effect is exhibited in the figure below, where “new information” is defined and measured by the size 
of ԑt-1 . If ԑt-1=0, expected volatility (ht) is 0. Actually, any news increases volatility but if the news is “good” (i.e., if ԑt is positive), 
volatility rises from point a to point b along ab curve (or abᶦ for EGARCH model). However, if the news is “bad”, volatility rises 
from point a to point c along ac curve (or acᶦ for EGARCH model). Since ac and acᶦ are steeper than ab and abᶦ, a positive ԑt 

shock will have a lower impact on volatility than a negative shock of these same magnitude (Figure 1).  

Asymmetric volatility models are the most interesting approaches in the literature since good news and bad news have 
different predictability for the future volatility. Overall, Chen and Ghysels (2010) found that partly good (intra-daily) news 
decreases volatility (the next day), while both very good news which is unusual high intra-daily positive returns, and bad news 
which is negative returns increase volatility. However, the latter has a more severe impact over longer horizons the 
asymmetries fade away. 



 

 

Journal of Business, Economics and Finance -JBEF (2020), Vol.9(1). p.52-61                                                              Ozdurak, Ulusoy 

 

 
_____________________________________________________________________________________________________ 
 DOI: 10.17261/Pressacademia.2020.1192                                         55 
 
 
 

The news impact curve illustrates the impact of previous return shocks on the return volatility which is implicit in a volatility 
model.  

Figure 1: News Impact Curves 

 

4. DATA AND PRELIMINARY ANALYSIS 

The study considers semi-hourly closing prices for Crude Oil (CRUDE), S&P 500 Index (SPX), S&P Metals and Mining Select 
Industry Index (SPXSMM), Borsa Istanbul 100 Index (XU100), Borsa Istanbul Industrial Index (XUSIN), AK Steel3  (AKSTEEL), US 
Steel4  (USSTEEL), Nucor5  (NUCOR) and Ereğli6  (EREGLI) stock prices to explore the impact of trade war, monetary policy and 
FED decision news on the returns and volatility of steel industry. Semi-hourly data for all assets has been taken from 
Thompson Reuters Eikon. The time span for the study runs from 16 October 2018 to 16 October 2019 based on the availability 
of trade war, monetary policy and FED decision news. If we briefly describe the selected companies: 

AK Steel Holding Corporation (AK Steel) is a producer of flat-rolled carbon, stainless and electrical steels, and tubular 
products through its subsidiary, AK Steel Corporation (AK Steel). 

United States Steel Corporation (US Steel) is an integrated steel producer of flat-rolled and tubular products with major 
production operations in the United States and Europe 

Nucor Corporation (Nucor) manufactures steel and steel products. 

Ereğli Demir ve Celik Fabrikalari TAS (Ereğli) is a Turkey-based company, which is engaged in the production of iron and steel 
rolled products, alloyed and non-alloyed iron, steel and pig iron castings, cast and pressed products, coke and their by-
products 

 

 
3 The Company also operates blast furnaces and electric arc furnaces. As of December 31, 2016, its operations included eight steelmaking 
and finishing plants, two coke plants and two tube manufacturing plants. These operations produce flat-rolled carbon, specialty stainless and 
electrical steels that it sells in sheet and strip form, and carbon and stainless steel that it finishes into welded steel tubing. It also produces 
metallurgical coal through its subsidiary, AK Coal Resources, Inc. In addition, the Company operates trading companies in Mexico and Europe 
that buy and sell steel and steel products and other materials. 
4 US. Steel has annual raw steel production capability of 22.0 million net tons (17.0 million tons in the United States and 5.0 million tons in 
Europe). According to World Steel Association’s latest published statistics, in 2017 U. S. Steel was the third largest steel producer in the 
United States and the twenty-sixth largest steel producer in the world. 
5 The Company produces direct reduced iron (DRI) for use in its steel mills. It operates in three segments: steel mills, steel products and raw 
materials. The steel mills segment produces and distributes sheet steel (hot-rolled, cold-rolled and galvanized), plate steel, structural steel 
(wide-flange beams, beam blanks, H-piling and sheet piling) and bar steel (blooms, billets, concrete reinforcing bar, merchant bar, wire rod 
and special bar quality). 
6 The Company produces plates, hot and cold rolled, tin, chromium and zinc coated flat steel and supplies basic inputs to automotive, white 
goods, pipes and tubes, rolling, manufacturing, electrics-electronics, mechanical engineering, energy, heating equipment, shipbuilding, 
defense, and packaging industries. 
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Figure 1: Graphs of Selected Companies vs Industry Indices 

 

Figure 1 provides plot of selected companies versus industry indices and market indices that they are listed in. The visual 
inspection of the plot reveals that steel company stocks drives the performance of industry index in US while they diverge 
from the whole market index time by time. However, in Turkish markets company stock vs industry index and market index 
behave in them same way.  

Table 1 illustrates descriptive statistics of return of the series. As evident from Table 1, returns of all series are negatively 
skewed and the kurthosis is much higher than 3 for all the cases. This is indicative of the deviation of series from the normal 
distribution which is also supported with Jarque-Bera statistics. Further the stationarity of the variables has been examined 
using Augmented Dickey-Fuller (ADF) unit root test. The null hypothesis of the unit root is rejected for all return series. 
Returns of all series are calculated by taking the first differences of the logarithm of the two successive prices i.e. 𝑟𝑡 =
log(𝑃𝑡 − 𝑃𝑡−1) which are RCRUDE, RSPX, RSPXSMM, RXU100, RXUSIN, RNUCOR, RAKSTEEL, RUSSTEEL, and REREGLI. Time 
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series graphs of the returns have been illustrated which exhibits vividly how volatility has varied in the last one year while we 
experienced many twitter cases of Trump in Figure 2. It is visible that industry indices (SPXSMM and XUSIN) experience more 
volatility clustering than the whole market indices (SPX and XU100).  

 

Dummy variables for trade war and monetary policy and FED decision news are created based on 584 individual news about 
trade war and 88 individual news for monetary policy and FED by matching them semi-hourly asset data one by one. 
Whenever there is news in the market about trade wars and monetary policy the dummy variables takes the value of “1” and 
otherwise “0”. With the interaction dummy variables we test the impact of cross-asset returns on both return and volatilities 
of steel industry companies when news about trade war and monetary policy is spread out in the market. 

Figure 2: Graphs of Returns of Selected Companies and Market Indices 

 

Table 1:

Descriptive statistics of Return Series

RAKSTEEL RCRUDE RNUCOR RSPX RSPXSMM RUSSTEEL REREGLI RXU100 RXUSIN

 Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Maximum 0.068 0.092 0.040 0.020 0.033 0.085 0.031 0.022 0.012

 Minimum -0.150 -0.062 -0.050 -0.021 -0.035 -0.088 -0.031 -0.024 -0.029

 Std. Dev. 0.011 0.006 0.005 0.003 0.004 0.009 0.005 0.003 0.003

 Skewness -0.817 0.522 -0.392 -0.454 -0.202 -0.699 0.118 -0.455 -1.057

 Kurtosis 17.66 29.41 16.89 14.03 12.67 21.63 7.75 10.23 12.55

 Jarque-Bera 32064.92 103007 28553.25 18056.09 13813.9 51473.64 4207.938 9896.132 17829.99

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ADF Test (Level) -61.970 -59.081 -62.987 -57.762 -59.128 -60.428 -65.254 -64.594 -65.2365

[0.0001] [0.0001] [0.0001] [0.0001] [0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Notes: between parantheses: p-values. The number of observations is 3539 for RAKSTEEL, RCRUDE, RNUCOR, RSPX, 

RSPXSMM, RUSSTEEL and  4417 for REREGLI, RXUSIN and RXU100. JB are the empirical statistics for Jarque-Bera test for 

normality based on skewness and excess kurtosis. 
ADF Test refers to Augemented Dickey Fuller test for the presence of unit root for log differences (returns). 
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5. EMPIRICAL RESULTS 

Having performed unit root tests next step is to run different versions of GARCH models for major steel companies in US, S&P 
500 index and Ereğli stocks to test the news spillover impact in Turkish financial markets. In Table 2-Panel A, the results of 
multivariate GARCH models indicate that coefficients of interaction variables are all positive and significant at %1 significance 
level in the mean equation. For the variance equation the interaction variables are still valid and significant at %1 level 
however their volatility varies due to the related asset. We will analyze Panel B results one by one for the selected companies. 
Results from GARCH models delineate that whenever there is a news about trade wars and FED interest rate decisions or 
monetary policy of FED in the markets, it is expected to increase the return of AK Steel, US Steel, Nucor and S&P 500. For 
Ereğli only trade war news seems valid for the same hypothesis.  

In Table 3-Panel A results of the multivariate EGARCH models also indicate the same results with Table 2-Panel A with only 
Ereğli is an exception. Only the sign of tradewar*rereğli interaction term changes in EGARCH models for the mean equations. 
However, more significant difference is observed in the variance equation in which the impact of interaction terms 
significantly increased in EGARCH models.  

Panel B of Table 2 summarizes the results of GARCH models for the selected companies and S&P 500 index. The sum of the 
coefficients of the lagged squared error and the lagged conditional variance are close to unity (0.99) for S&P 500 index 
implying that shocks to conditional variance are highly persistent. For AK Steel, US Steel, Nucor and Ereğli the impact of 
persistency is lower compared to S&P 500. Interaction terms have a volatility reducing impact for AK Steel, Nucor, and S&P 
500 index while for US Steel and Ereğli the interaction terms have a positive impact on volatility. 

Figure 3: News Impact Curves of Selected Assets 

 

Hence EGARCH models are important for us to obtain News Impact Curves (NICs) and test the leverage effect (Figure 3). Any 
news increases volatility however if the news is “good” volatility increases along the right side of the curve. If the news is 
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“bad” volatility increases along the left side of the curve. Since for AK Steel, US Steel and Nucor right side of the NICs is steeper 
than the left side, a positive 𝜀𝑡 shock will have a bigger effect on volatility than a negative shock of the same magnitude.  

For Ereğli stocks the NIC is nearly symmetric which suggests that any news good or bad has the same impact on the volatility 
of returns. Finally, S&P 500 index, since the left side of the curve is steeper than the right side, a negative 𝜀𝑡 shock will have 
bigger effect on volatility than a negative shock of the same magnitude which is quite consistent with an approach that S&P 
500 index represents the whole financial markets.    

 

Also when we compare R2 values, it is clear that the logic of our GARCH models for selected companies are much more 
successful than S&P 500 index referring that specific news such as trade wars, FED decisions and monetary policy are more 
significant for individual company stocks.  

As a result, we can conclude that tweets and specific news about trade wars and monetary policy as well as FED decisions 
have an impact on the volatility of steel companies. Since those new shocks are created mostly by the actors who have the 
market power, their impact should be analyzed more carefully from a market speculation perspective.  

Panel A-Mean Equation

Parameters
GARCH (AK Steel) GARCH (US Steel) GARCH (Nucor) GARCH (Ereğli) GARCH (SPX)

c NA* NA* NA* NA* 0.0000 [0.00143]

russteel 0.3265 [0.0000] 0.1082 [0.0000]

rspxsmm 1.1332 [0.0000] 1.0467 [0.0000] 0.6918 [0.0000]

tradewarraksteel 0.4872[0.0000]

monetary*raksteel 0.4798 [0.0000]

rxusin 1.2819 [0.0000]

rcrude 0.0418 [0.0000] 0.1240 [0.0000]

tradewar*rnucor 0.2578 [0.0001]

monetary*rnucor 0.2968 [0.0000]

raksteel 0.1979 [0.0000]

tradewar*russteel 0.4476 [0.0000]

monetary*russteel 0.2923 [0.0000]

monetary*rpsx 0.7063 [0.0000]

tradewar*rspx 0.8857 [0.0000]

tradewar*reregli -0.6017 [0.0000]

Panel B-Variance 

Equation
GARCH (AK Steel) GARCH (US Steel) GARCH (Nucor) GARCH (Ereğli) GARCH (SPX)

ω 0.0000 [0.0006] 0.0000 [0.0000] 0.0000 [0.0000] 0.0000 [0.0000] 0.0000 [0.0000]

α 0.0121 [0.0344] 0.2473 [0.0010] 0.1343 [0.0000] 0.0711 [0.0000] 0.0178 [0.0000]

β 0.5798 [0.0000] 0.0726 [0.0000] 0.1945 [0.0000] 0.5549 [0.0000] 0.9791 [0.0000]

raksteel -0.0000 [0.0000] 0.0066 [0.0000]

monetary*raksteel -0.0032 [0.0000]

tradewar*raksteel -0.0010 [0.0031]

rcrude 0.0000 [0.0000]

rnucor 0.0000 [0.0000]

tradewar*rnucor -0.0002 [0.0000]

rspxsmm -0.0000 [0.0000]

russteel -0.0004 [0.0013]

tradewar*russteel 0.0001 [0.0000]

monetary*rpsx -0.0003 [0.0000]

tradewar*rspx -0.0001 [0.0000]

monetary*reregli 0.0008 [0.0000]

tradewar*reregli 0.0006 [0.0000]

rxusin -0.0003 [0.0000]

R2 0.5231 0.5829 0.6473 0.4902 0.2274

DW 2.2490 2.0872 2.2845 1.9970 1.9318

Table 2: 

GARCH Models

Notes: Between parantheses: p-values.

NA* refers to the omitted constants in the models since they were statistically insignificant for the related models.
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5. CONCLUSION 

During his election campaign, Trump made several references to the US steel industry and vowed to protect US steel jobs, 
which are under threat due to higher imports. After Trump’s election in 2016, we saw a rally in equity markets. Trump was 
expected to protect steel companies from the onslaught of steel imports. Recent trade war news and monetary policy news 
mainly including Trump and Powell (and/or China) conflicts brought a new dimension to the news effect approach in volatility 
modeling. As one the major market makers, Trump’s direct messages to the market via Twitter and such, about sanctions, 
interest rates and monetary policy creates “Black Noise” in financial markets. Even in a durable production industry like steel 
sector this leads to speculation. Although there are recent studies which claim that Trump's tweets carry transitory impact, 
but it's very short-term and doesn't appear to last, Analysts at JPMorgan Chase have created an index7 to gauge the impact 
of Donald Trump’s tweets on US interest rates. In order to test this impact more efficiently our approach was to utilize high  
frequency semi-hourly data and related news but matching them exactly on the time they are announced.  

For further research papers testing the speculation strength of such tweet can be a beneficial topic for the other researchers. 

 

 

 
7 Analysts at JPMorgan Chase have created an index to gauge the impact of Donald Trump’s tweets on US interest rates 

Panel A-Mean Equation

Parameters
EGARCH (AK Steel) EGARCH (US Steel) EGARCH (Nucor) EGARCH (Ereğli) EGARCH (SPX)

c 0.0004 [0.0003] NA* NA* NA* 0.0000 [0.1594]

russteel 0.3191 [0.0000] 0.1112 [0.0000]

rspxsmm 1.1464 [0.0000] 1.0344 [0.0000] 0.6957 [0.0000]

tradewarraksteel 0.4697 [0.0000]

monetary*raksteel 0.4674 [0.0000]

rxusin 1.2375 [0.0000]

rcrude 0.0398 [0.0000] 0.1049 [0.0000]

tradewar*rnucor 0.2399 [0.0000]

monetary*rnucor 0.2620 [0.0001]

raksteel 0.2023 [0.0000]

tradewar*russteel 0.4599 [0.0000]

monetary*russteel 0.3159 [0.0048]

monetary*rpsx 0.7400 [0.0000]

tradewar*rspx 0.8897 [0.0000]

tradewar*reregli 0.55060 [0.0000]

Panel B-Variance 

Equation
EGARCH (AK Steel) EGARCH (US Steel) EGARCH (Nucor) EGARCH (Ereğli) EGARCH (SPX)

ω -5.2092 [0.0000] -7.2433 [0.0000] -7.2713 [0.0000] -0.3041 [0.0000] -0.0908 [0.0000]

α 0.3126 [0.0000] 0.4559 [0.0000] 0.2657 [0.0000] 0.0860 [0.0000] 0.0309 [0.0000]

λ 0.0289 [0.0000] 0.0709 [0.0000] 0.0604 [0.0000] -0.0011 [0.7907] -0.0502 [0.0000]

β 0.4936 [0.0000] 0.3330 [0.0000] 0.3921 [0.0000] 0.9785 [0.0000] 0.9943 [0.0000]

raksteel -8.4595 [0.0000] 5.9383 [0.0000]

monetary*raksteel -25.701 [0.1229]

tradewar*raksteel -13.849 [0.0000]

rcrude 5.1207 [0.0000] -1.8468 [0.0000]

rnucor 6.1879 [0.0000]

tradewar*rnucor -53.7627 [0.0000]

rspxsmm -17.559 [0.0000]

russteel -10.543 [0.0000]

tradewar*russteel -19.546 [0.0059]

monetary*rpsx -43.977 [0.0000]

tradewar*rspx -19.765 [0.0000]

monetary*reregli 34.838 [0.0000]

tradewar*reregli -1.2168 [0.5768]

rxusin -14.177 [0.0000]

R2 0.5212 0.5829 0.6461 0.4908 0.2091

DW 2.2406 2.0871 2.2857 1.9970 1.9309

Table 3: 

EGARCH Models

Notes: Between parantheses: p-values.

NA* refers to the omitted constants in the models since they were statistically insignificant for the related models.
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