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Abstract
Multicollinearity is considered to be a significant problem in the estimation of parameters
not only in general linear models, but also in generalized linear models (GLMs). Thus,
in order to alleviate the serious effects of multicollinearity a new estimator is proposed
by combining the ridge and PCR estimators in GLMs. This new estimator is called
the r-k class estimator in GLMs. The various comparisons of the new estimator are
made with already existing estimators in the literature, which are maximum likelihood
(ML) estimator, ridge and PCR estimators, respectively. The comparisons are to be
made in terms of scalar MSE criterion. So that, a numerical example and application
through simulation are mentioned in the study for Poisson and Gamma response variables,
respectively. On the basis of results it is found that, the proposed estimator outperforms
all of its competitors comprehensively.
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1. Introduction
Generalized linear models (GLMs) were first introduced by [16], which covered a broad

class of models. These include normal linear model, binary logistic regression model, log-
linear model, etc. GLMs spread the idea of well implicit linear regression models. The
GLMs deal with discrete as well as continuous response variable without making any usual
assumptions which are required in case of GLMs such as normality, constant variance of
the response, etc. Hence, GLMs offer a combined illustration for a huge class of models for
discrete and continuous response variables. Suppose that the sample observations for the
response and explanatory variables are (xi, yi), i = 1, 2, ..., n. Let X = (1, X1, ..., Xq) is
an n × q matrix of explanatory variables having the observations x

T

i = (1, xi1, xi2, ..., xiq)
with i = 1, 2, ..., n, and Y = (y1, ..., yn)

T

is an n × 1 vector of observations on the response
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variable. Every element of Y belongs to the class of exponential family having the following
probability density function,

fYi (yi, θi, ϕ) = exp
[

θiyi − b (θi)
a (ϕ)

+ c(yi, ϕ)
]

, i = 1, 2, ..., n (1.1)

where ϕ is a dispersion parameter considered to be a fixed quantity and does not change as
the values of yi change and a (.) , b (.) and c (.) are known specified functions conforming to
the specific type of the probability density function. A GLM is generally based on three
components. The Yi is a random component, the mean and variance of Yi are defined
as E (Yi) = µi = b

′ (θi) = ∂b(θi)
∂θi

and V ar (Yi) = b
′′ (θi) = ∂2

∂θ2
i
b (θi), where the mean µi is

connected to the set of explanatory variables by a link functiong (µi) = ηi , where ηi = xT
i β

is the systematic part of the linear predictors and the third component link function g (.)
is a differentiable monotonic function, whereas β is a (q + 1) × 1 vector of the parameters
β = (β0, β1, ..., βq)T . In any statistical modeling, one of the major objectives is to find the
better estimates of the parameters. Generally, the method of maximum likelihood (ML)
is used to estimate the parameters in GLMs. Suppose one might want to estimate the
parameter β by using the sample of n independent and random observations. Then by
applying the method of ML, the log likelihood function is obtained from the probability
density function given by Eq.(1.1). Then to estimate the parameters, partial derivatives
of the log likelihood functions are taken, which are set equal to 0 and named as the score
functions. Method of ML solves the nonlinear score equations iteratively, that is by the
method of Fisher’s scoring algorithm. A complete discussion of Fisher’s scoring method
and other iterative methods are established by [4] as follows.

β(t+1) = β(t) +
[
I

(
β(t)

)]−1
U

(
β(t)

)
.

This method of Fisher’s scoring updates the values of parameters at each iterative step
and the procedure continues until the desired convergence criterion is achieved and the
resulting ML estimator is obtained as

β̂(t+1) =
(
XT Ŵ (t)X

)−1
X

T
Ŵ (t)ẑ(t),

where t denotes the iteration step, W (t) = diag(wii) is an n×n diagonal weight matrix with
weights wii =

((
∂µi
∂ηi

)2
/V ar(yi)

)
and z(t) is the n × 1 working response vector having the

elements z
(t)
i = x

T

i β(t) +
(
yi − µ

(t)
i

)
∂η

(t)
i

∂µ
(t)
i

, where µ
(t)
i and ∂η

(t)
i

∂µ
(t)
i

are assessed at β̂(t). Under

slight regularity conditions β̂(t+1) approaches the ML estimator,

β̂ML =
(
XT ŴMLX

)−1
XT ŴMLẑ,

which is normally distributed for large sample (asymptotically) with mean β and variance-
covariance matrix a (ϕ)

(
X

T
ŴMLX

)−1
.

Even though the method of ML is most commonly used for estimating the parameters
in GLMs, this method has drawbacks in some particular circumstances. For example, the
method of ML does not give the precise results when there is a problem of multicollinear-
ity. The multicollinearity severely affects the ML estimator resulting in large variance-
covariance matrix of the ML estimator β̂ML. As a result, the regression coefficients having
large standard error and prediction would be inefficient. Since the estimation of parame-
ters in GLMs is affected by the collinearity among explanatory variables, researchers move
towards the alternative methods of ML estimator which provide better estimates in the
presence of multicollinearity. An overwhelming number of alternative techniques have been
proposed to address multicollinearity problem in GLMs. Smith and Marx [24] developed
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a principal component regression (PCR) estimator to estimate the effects of acid rain.
Nyquist [17] explored ML estimation of the GLMs by using a penalty function approach
under linear restrictions on the parameters. Segerstedt [23] proposed a conventional ridge
regression estimator in GLMs. Marx and Smith [14] explored PCR for GLMs. Kurtoğlu
and Özkale [8] developed a first order approximated Liu estimator in GLMs by considering
a response from the gamma distribution. Kurtoğlu and Özkale [9] established a restricted
ridge estimator in GLMs. Kurtoğlu and Özkale [10] published an iterative restricted Liu
estimator to combat multicollinearity in GLMs by considering response from Gamma and
Poisson distributions. Özkale [18] developed a r−d class estimator in GLMs by combining
Liu and PCR estimators. Özkale and Nyquist [21] presented a stochastic restricted ridge
estimator in GLMs under stochastic restrictions.

Many of the authors alleviate multicollinearity by applying some special cases of the
GLMs, for example binary logistic regression, Poisson regression or by combining with
other regression models. Månsson et al. [12] proposed a Liu estimator in logistic regres-
sion model. Inan [7] combined the Liu-type estimator and the PCR estimator in binary
logistic regression. Özkale and Arıcan [20] explored the r − k class estimator in binary
logistic regression model which combines the ridge logistic and principal components lo-
gistic regression. Wu and Asar [28] derived on almost unbiased ridge logistic estimator
for the binary logistic regression model. Varathan and Wijekoon [26] introduced a sto-
chastic restricted logistic estimator. Månsson and Shukur [13] proposed a Poisson ridge
regression estimator to overcome the problem of multicollinearity. Türkan and Özel [25]
presented a new modified jackknifed estimator to handle the problem of multicollinearity
for the Poisson regression model. Batah et al. [2] combined the unbiased ridge and PCR
estimator to alleviate the collinearity problem in the linear regression model. Baye and
Parker [3] jointly presented the ridge and PCR estimators against the multicollinearity
and introduced the r − k class estimator. However, research which combines both the
PCR and ridge regression in GLMs has not been reported in the literature to the best of
our knowledge. Therefore, this is an important gap in the literature and this study is an
effort to fill this gap.

In this study, we propose the r-k class estimator by combining the PCR and ridge
regression to overcome the severe effects of multicollinearity in GLMs. The paper is
structured as follows: In Section 2, we propose the r − k class estimator in GLMs. In
Section 3, mean square error (MSE) of the first-order approximated version of the proposed
estimator is given and its properties are discussed. In Section 4, estimation and selection
of the biasing parameter k are presented. In Section 5, we illustrate the performance of the
r − k class estimator with a numerical example having a response variable which follows
a Poisson distribution. In Section 6, simulation studies are conducted when the response
variable follows Gamma and Poisson distributions, respectively. Finally, we conclude the
study in Section 7.

2. The proposed r-k class estimator in GLMs
Here, we utilize from the singular value decomposition which was used by [24] for

proposing the PCR in GLMs. The linear predictor η = Xβ can be expressed as η =
XMM

T
β = V α, where V = XM , α = M

T
β and M = [m1, ..., mq] is a q × q orthogonal

matrix through V T ŴMLV = Λ = diag(λj) is a q × q diagonal matrix of the eigenvalues of
XT ŴMLX (λ1 = λmax > λ2, ...,> λq = λmin) and mj are the corresponding eigenvectors
accompanied by their eigenvalues λj . The linear predictor for the ith component of the V

matrix can be written as ηi = xT
i MM

T
β = vT

i α where, vT
i = xT

i M is the ith row vector of
the V matrix. To overcome the problem of multicollinearity, sometimes it is worthwhile to
use the reduced set of principal components (PCs). Therefore, V matrix and the α vector
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can be divided into separate parts such as, V =
[

Vr Vq−r
]

and α =
[

αT
r αT

q−r

]
, where

Vr = XMr (r 6 q) consisting of the PCs having large eigenvalues so that it will be retained
in the model. The M and Λ can also similarly be partitioned into separate parts that are

M =
[

Mr Mq−r
]

and Λ =
[

Λr 0
0 Λq−r

]
, where Λr = V

T

r ŴMLVr = M
T

r XT ŴMLXMr

and Λq−r = V
T

q−rŴMLVq−r = M
T

q−rX
T

ŴMLXMq−r. Thus, the linear predictor for the
reduced PCs can be defined as ηr,i = vT

r,iαr, where vT
r,i is the ith row vector of the Vr

matrix.
In order to obtain the r−k class estimator in GLMs, we maximize the following objective

function.

F (αr, k) = Max
αr

{2
k

l (αr) − αT
r αr},

where l (αr) =
n∑

i=1
li is the log-likelihood function of the reduced model.

To find the parameter αr, we differentiate the objective function F (αr, k) with respect
to parameter αr,j , which are the elements of αr. Then, we have

∂F (αr, k)
∂αr,j

= 2
k

n∑
i=1

∂li
∂αr,j

− ∂(αT
r αr)

∂αr,j

= 2
k

n∑
i=1

∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂αr,j
− 2αr,j

= 2
k

1
a (ϕ)

n∑
i=1

yi − µi

V ar (yi)
vr,ij

∂µi

∂ηr,i
− 2αr,j . (2.1)

In matrix notation Eq.(2.1) can be written as

∂F (αr, k)
∂αr,j

= U (αr, k) = 2
k

1
a (ϕ)

V T
r ŴMLD−1(y − µ) − 2αr,

where D = diag
(

∂µi
∂ηi

)
= diag( 1

g′ (µi)
). Differentiate Eq.(2.1) w.r.t. αr,u we get:

∂2F (αr, k)
∂αr,j∂αr,u

= −2
k

1
a (ϕ)

n∑
i=1

( yi − µi

V ar (yi)
vr,ij

∂µi

∂ηr,i
)( yi − µi

V ar (yi)
vr,iu

∂µi

∂ηr,i
) − 2δju, (2.2)

where δju = 1 if j = u and 0 otherwise. Taking the expectation of Eq.(2.2), we have the
following form.

E

[
∂2F (αr, k)
∂αr,j∂αr,u

]
= −2

k

1
a (ϕ)

n∑
i=1

vr,ijvr,iu

V ar(yi)
(∂µi

∂ηi
)2 − 2. (2.3)

Then by virtue of Eq.(2.3), we get:

Q (αr, k) = −E

[
∂2F (αr, k)
∂αr,j∂αr,u

]
= 2

( 1
k

1
a (ϕ)

V T
r ŴMLVr + Ir

)
.

By applying the Fisher’s scoring method, we get the estimator as

α̂
(t+1)
rk = α̂

(t)
rk + {(Q (αr, k))−1 (U (αr, k))(t)}.

On making substitution, we have
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α̂
(t+1)
rk = α̂

(t)
rk + 1

2
(1
k

1
a (ϕ)

V T
r ŴMLVr + Ir)−1( 2

k

1
a (ϕ)

V T
r ŴML(D(t))−1

×(y − µ(t)) − 2α̂
(t)
rk )

= α̂
(t)
rk + (1

k
V T

r ŴMLVr + Ir)−1[ 1
k

V T
r ŴML(D(t))−1(y − µ(t)) − α̂

(t)
rk ]

=
[
I − ( 1

k
V T

r ŴMLVr + Ir)−1
]

α̂
(t)
rk + (1

k
V T

r ŴMLVr + Ir)−1

×( 1
k

V T
r ŴML(D(t))−1(y − µ(t)).

Using the fact ( 1
k V T

r ŴMLVr + Ir)−1( 1
k V T

r ŴMLVr + Ir) = I, which gives

I − ( 1
k

V T
r ŴMLVr + Ir)−1 = (1

k
V T

r ŴMLVr + Ir)−1 1
k

V T
r ŴMLVr,

we obtain

α̂
(t+1)
rk = (1

k
V T

r ŴMLVr + Ir)−1 1
k

V T
r ŴMLVrα̂

(t)
rk + (1

k
V T

r ŴMLVr + Ir)−1

×1
k

V T
r ŴML(D(t))−1(y − µ(t))

= (V T
r ŴMLVr + kIr)−1

[
V T

r ŴMLVrα̂
(t)
rk + V T

r ŴML(D(t))−1(y − µ(t))
]

= (V T
r ŴMLVr + kIr)−1V T

r ŴML

[
Vrα̂

(t)
rk + (D(t))−1(y − µ(t))

]
,

where D and µ are evaluated at α̂
(t)
rk . Converting back to the original parameters, given

as β̂
(t+1)
rk = Mrα̂

(t+1)
rk , we obtain the r − k class estimator in GLMs as

β̂
(t+1)
rk = Mr(MT

r XT ŴMLXMr + kIr)−1MT
r XT ŴML

×
(

XMrMT
r β̂

(t)
rk +

(
D(t)

)−1 (
y − µ(t)

))
= Mr

(
MT

r XT ŴMLXMr + kIr

)−1
MT

r XT ŴMLz
(t)
rk , (2.4)

where z
(t)
rk = XMrMT

r β̂
(t)
rk + (D(t))−1(y − µ(t)). The iteration proceeds until the dif-

ference between successive values of the estimates is sufficiently small. The inequal-
ity ||β̂(t+1)

rk − β̂
(t)
rk || ≤ δ can be selected as a convergence criterion where δ is some

small number, say 1 × 10−6. Let us denote the r − k class estimator in GLMs as
β̂rk = Mr

(
MT

r XT ŴMLXMr + kIr

)−1
MT

r XT ŴMLẑrk.

When, k = 0, β̂
(t+1)
rk in Eq.(2.4) gives the iterative PCR estimator given by [24] as

β̂(t+1)
r = Mr

(
MT

r XT ŴMLXMr

)−1
MT

r XT ŴMLz(t)
r ,

where z
(t)
r = XMrMT

r β̂
(t)
r + (D(t))−1(y − µ(t)).

The first order approximated form of Eq.(2.4) is

β̂
(1)
rk = Mr(MT

r XT Ŵ (0)XMr + kIr)−1MT
r XT Ŵ (0)z(0)

r , (2.5)



The r-k class estimator in generalized linear models 599

where z
(0)
r = XMrMT

r β(0) + (D(0))−1(y − µ(0)), with β(0) as the initial value of the regres-
sion coefficients and D(0) and µ(0) are evaluated at β(0)†. We call the estimator in Eq.(2.5)
as the first order approximated r − k class estimator in GLMs.
Eq.(2.5) implies that:

(1) The first-order approximated ML estimator:

β̂
(1)
r=p,k=0 = β̂(1) =

(
XT W (0)X

)−1
XT W (0)z(0),

where z(0) = Xβ(0) + (D(0))−1
(
y − µ(0)

)
.

(2) The first-order approximated PCR estimator:

β̂
(1)
r,k=0 = β̂(1)

r = Mr

(
MT

r XT W (0)XMr

)−1
MT

r XT W (0)z(0)
r = MrMT

r β̂(1). (2.6)

(3) The first-order approximated ridge estimator:

β̂
(1)
r=p,k = β̂(1)(k) =

(
XT W (0)X + kIp

)−1
XT W (0)z(0).

β̂
(1)
rk can also be written in terms of β̂(1) defined by Eq.(2.6):

β̂
(1)
rk = Mr

(
MT

r XT W (0)XMr + kIr

)−1
MT

r XT W (0)XMrMT
r β̂(1)

r . (2.7)

3. Mean square error of the first order approximated r-k class estimator
There are many criteria to assess the performance of a good estimator, among those the

most widely used criterion is the MSE. In this section, we develop the MSE of proposed
r − k class estimator. As, we know from the literature that asymptotically (by [1])

E
(
β̂(1)

)
= β(0), V ar(β̂(1)) = a (ϕ)

(
XT W (0)X

)−1
.

From [24], we approximately write the expected value and variance of the first-order
approximated PCR estimator as

E(β̂(1)
r ) = Mrα(0), V ar(β̂(1)

r ) = a (ϕ)
(
MrΛ−1

r MT
r

)
,

where α(0) = MT
r β(0). Then, by Eq. (2.7), the asymptotic bias and variance of β̂

(1)
rk can

be found. Since
E(β̂(1)

rk ) = Mr(Λ(0)
r + kIr)−1Λ(0)

r MT
r β(0),

where Λ(0)
r = MT

r XT W (0)XMr, we obtain

Bias(β̂(1)
rk ) = E(β̂(1)

rk ) − β(0) = [Mr

(
Λ(0)

r + kIr

)−1
Λ(0)

r MT
r − Ip]β(0).

Since Ip = MrMT
r + Mp−rMT

p−r, on making substitution and simplifying we get:

Bias(β̂(1)
rk ) =

[
−kMr

(
Λ(0)

r + kIr

)−1
MT

r − Mp−rMT
p−r

]
β(0).

The asymptotic variance of β̂
(1)
rk is given as

V ar(β̂(1)
rk ) = a (ϕ) Mr

(
Λ(0)

r + kIr

)−1
Λ(0)

r

(
Λ(0)

r + kIr

)−1
MT

r .

Then by using

MSE(β̂(1)
rk ) = V ar

(
β̂

(1)
rk

)
+ [Bias

(
β̂

(1)
rk

)
][Bias

(
β̂

(1)
rk

)
]T ,

the asymptotic matrix mean square error (MMSE) of β̂
(1)
rk is defined as

†One can also use ŴML instead of Ŵ (0) which was used by [20]
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MSE(β̂(1)
rk ) = a (ϕ) Mr

(
Λ(0)

r + kIr

)−1
Λ(0)

r

(
Λ(0)

r + kIr

)−1
MT

r

+[−kMr

(
Λ(0)

r + kIr

)−1
MT

r − Mp−rMT
p−r]β(0)

×(β(0))T [−kMr

(
Λ(0)

r + kIr

)−1
MT

r − Mp−rMT
p−r]. (3.1)

As we know that the scalar MSE is obtained from mse(β̂(1)
rk ) = tr(MSE(β̂(1)

rk )) and also
MT

r Mp−r = 0, by using these results and properties of trace, we get the scalar MSE as

mse(β̂(1)
rk ) =

r∑
i=1

a (ϕ) λi + k2
(
α

(0)
i

)2

(λi + k)2 +
p∑

i=r+1

(
α

(0)
i

)2
. (3.2)

Here, we discuss some of the special cases of the r − k class estimator. It can be seen that
if we replace r = p in Eqs.(3.1) and (3.2), the matrix MSE and scalar MSE of the first
order approximated ridge estimator β̂(1)(k) are obtained, respectively as

MSE(β̂(1)(k)) = a (ϕ) M
(
Λ(0) + kIp

)−1
Λ(0)

(
Λ(0) + kIp

)−1
MT (3.3)

+k2M
(
Λ(0) + kIp

)−1
MT β(0)

(
β(0)

)T
M

(
Λ(0) + kIp

)−1
MT ,

and

mse(β̂(1)(k)) =
p∑

i=1

a (ϕ) λi + k2
(
α

(0)
i

)2

(λi + k)2 . (3.4)

Similarly, the matrix MSE and scalar MSE for the first order approximated PCR estimator
β̂

(1)
r can be obtained by substituting k = 0 in Eqs.(3.1) and (3.2); that is:

MSE(β̂(1)
r ) = a (ϕ) Mr(Λ(0)

r )−1MT
r + Mp−rMT

p−rβ(0)(β(0))T Mp−rMT
p−r, (3.5)

and

mse(β̂(1)
r ) =

r∑
i=1

a (ϕ)
λi

+
p∑

i=r+1

(
α

(0)
i

)2
. (3.6)

Whereas, the scalar MSE for the first order approximated ML estimator is given below.

mse(β̂(1)
ML) =

p∑
i=1

1
λi

. (3.7)

4. Estimation of the parameter k

In this section, we estimate the value of parameter k in the r − k class estimator. A
plausible value of k can be obtained from the scalar MSE of β̂

(1)
rk . Thus, to find the value

of k by differentiating Eq.(3.2) with respect to k for a specified r, we get:

dmse(β̂(1)
rk )

dk
=

r∑
i=1

−2a (ϕ) λi + 2λik
(
α

(0)
i

)2

(λi + k)3 = 0. (4.1)

Considering the right hand side of Eq.(4.1) and solving it for k, we get the required
value of k for i = 1, 2, ..., r, as k = a(ϕ)(

α
(0)
i

)2 , which is minimum at that value of k.
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It is to be noted that αi = mT
i β is not fixed, but k should be fixed, therefore to choose

the value of k in r − k class estimator we can adopt any of the procedure from the list
given in [29]. Although an overwhelming number of choices are available in the literature
for the selection of ridge parameter k, we might use the same procedure suggested by [5]
and [6]; the value of k in r − k class estimator can be found by using k = 1

max(mT
i β(0))2 or

by taking the harmonic mean of a(ϕ)
(α(0)

i )2
for i = 1, 2, ..., r, that is k = ra(ϕ)

β(0)MrMT
r β(0) .

5. Numerical example
In this section, we illustrate the application of ML, ridge, PCR and r−k class estimators

to a real life data set. We consider the Swedish football data set, which is obtained on
request from [22]. There are 242 observations in the data set. This data set includes
two response variables: the number of full-time home team goals (y1) and the number
of full-time away team goals (y2) and six explanatory variables, which are pinnacle home
win odds (x1), pinnacle away win odds (x2), maximum oddsportal maximum home win
(x3), oddsportal maximum away win (x4), average oddsportal home win (x5) and average
oddsportal away win (x6). Qasim et al. [22] showed that each of the response variable
follows a Poisson distribution. Therefore, the log link function is to be considered and
the regression model is log (µ̂i) = β̂1x1i + β̂2x2i + β̂3x3i + β̂4x4i + β̂5x5i + β̂6x6i. Our
computations were carried out by using MATLAB programing language.

Before computations, we standardized the explanatory variables by unit length stan-
dardization to avoid any difficulty regarding comparisons of the regression estimates. As
a result of standardization, the intercept term is also vanished. Therefore, the standard-
ization is also helpful in reducing an ill-conditioned situation which may arise because
of the intercept term and the standardizing also increases the speed of convergence. The
standardization is also very useful in order to achieve the desired convergence rapidly. The
number of full-time home team goals (y1) is considered as a response variable.

We first obtained the ML estimator by an iterative procedure. We used the convergence
criterion 1 × 10−6 as a rule of thumb, which is close enough to zero. The iteration carries
on until the absolute value of the difference of parameter estimates smaller than 1 × 10−6

is achieved. As an initial estimate, the ordinary least square estimator (OLS) is used; that
is β̂ols =

(
XT X

)−1
XT y, having values:

β̂ols = [13.8992, 2.0119, − 18.8602, − 20.2691, 3.0540, 24.1594]T .

It is observed that the iterative ML estimates are obtained at the 3rd iteration and given
in Table 1.

After obtaining the ML estimator, the collinearity diagnostics are applied by follow-
ing [19], who investigated the effects of centering and scaling the information matrix
on the sensitivity of the collinearity diagnostics. She found that when the columns
of X∗ = ˆWML

1/2
X have been centered and scaled, where ˆWML is the weight matrix

at final iteration of ML estimation, the collinearity in such a coordinate system will
be meaningful. Therefore, after getting ˆWML, we centered and scaled the columns of
X∗. Following [11] and [27], the condition number, ςmax =

(
υmax
υmin

)1/2
, is computed as

k = (4623.714059)1/2 = 67.997897, which is large enough to confirm that there exists a
strong multicollinearity problem among the explanatory variables. Here, υmax and υmin
denote respectively the maximum and minimum eigenvalues of X∗T X∗. Furthermore,
the values of variance inflation factor (VIF) are obtained as 357.9890, 90.7073, 596.7983,
205.6173, 432.4859 and 211.3393, which are all greater than 10 and revealed that there
exists a severe problem of multicollinearity among all the explanatory variables.
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Table 1. Results of Swedish football data estimated coefficients and the scalar
MSE values for k1 and k2

β̂ML β̂r β̂ (k1) β̂r (k1) β̂ (k2) β̂r (k2)
x1 44.5967 -2.3055 -1.0360 -2.2614 39.3589 -2.3054
x2 2.27943 0.7011 0.7788 0.7154 2.0959 0.7011
x3 -60.9131 -2.2586 -3.3571 -2.2154 -52.2539 -2.2585
x4 -11.6586 0.5974 -0.7965 0.6144 -11.0773 0.5974
x5 9.3973 -2.3201 -2.5623 -2.2762 6.0965 -2.3199
x6 12.3219 0.79224 2.1481 0.8042 11.8368 0.7923
SMSE 2975.6742 1546.0270 1299.9149 1545.9282 2336.2812 1546.0267

As it is well known that for selecting the number of PCs, numerous strategies have been
proposed in the literature. Among those one of the most commonly used strategy is the
percentage of total variation (PTV), which we used in this example and defined as

PTV =

r∑
i=1

λi

p∑
i=1

λi

× 100,

where r denotes the number of PCs, there is no rule existing in the literature for selecting
the cut-off point for the value of PTV.

By using this method, the number of PCs retained in the model were r = 2, which
explained almost 95% of the total variation. There is no hard and fast rule for selecting
the cut-off point for PTV value so, it is arbitrarily chosen as 0.95‡.

The value of k is found by using the formula k1 = r
β̂T

ols
MrMT

r β̂ols
= 0.0325 and another

value of k is also chosen arbitrarily as k2 = 0.0001. The results of the parameter esti-
mates corresponding to iterative procedure are shown in Table 1 for both the values of
k. Whereas, scalar MSE values of the estimators given in Table 1 are attained in their
first-order approximated form, because of comparative purpose.

Table 1 shows the effects of multicollinearity on the ML estimates. The signs and mag-
nitude of some of the ML estimates coefficients become unstable by making comparisons
with ridge, PCR and r − k class estimators. The signs of the coefficients of x1, x4 and
x5 are changed from positive to negative and negative to positive when ridge, PCR and
r − k class estimators are used. It can be seen that both the k values and the estimator
are affecting this change. By making comparisons of the estimators on the basis of scalar
MSE values, it is clear that all of the biased estimators have smaller scalar MSE value
than the ML estimator so, it is evident that all the biased estimators are superior to the
ML estimator, particularly when there is a problem of multicollinearity. Moreover, it is
perceived that the ridge estimator has smaller scalar MSE value as compared to all other
estimators for k1. However, it is important to note that the value of k also has a significant
impact on the performance of estimators. As, it could be shown that for k2, the proposed
r−k class estimator outperformed all its competitors in terms of the scalar MSE criterion,
because it contained smallest scalar MSE value when compared to its counterparts.

Table 1 presents the performance of estimators only for particular values of k as dis-
cussed above. To make comparisons for other values of k, Figures 1 and 2 are provided.
Figure 1 displays the performance of PCR and r −k class estimators on the basis of scalar
MSE for different values of k. It is examined that the r − k class estimator outperformed
the PCR estimator for small values of k. However, when the values of k are increased that
is when k is greater than approximately 2.5, then the PCR estimator performed better
‡0.90 and 0.99 also gave the same number of PCs for this data set
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than the r − k class estimator. Similarly, Figure 2 expresses the performance of ridge
estimator and the ML estimator on the basis of scalar MSE criterion for different values
of k. It is to be noted that the scalar MSE values of ridge estimator decreased as k value
shifted a bit far from 0 and then increased gradually. Nevertheless, regardless of the values
of k it is clear that the ridge estimator dominated over the ML estimator comprehensively.
Thus, the graphical results confirm the tabular results.

Figure 1. Graph of scalar MSE values against k for PCR and r − k class estimators

Figure 2. Graph of scalar MSE values against k for ML and ridge estimators

This numerical example indicates that there is always a prevailing value of k for which
the proposed r − k class estimator is superior to all of its counterparts and performs
efficiently, particularly for small values of k in terms of scalar MSE criterion. However,
for larger values of k results may be reverse.

6. Simulation studies
This section provides a brief overview about Monte Carlo simulation studies having

response variables from Poisson and Gamma distributions respectively, for making com-
parisons of the proposed r − k class estimator to its counterparts that are ML, ridge, and
PCR estimators, respectively. The comparison is provided under different conditions such
as various levels of multicollinearity, choices about the number of explanatory variables
as well as for various sample sizes. The simulation results are done by using MATLAB
programming language.

6.1. Simulation study with Poisson response
In this experimental set up the response variable follows a Poisson distribution with

the log link function. The procedure for achieving the Monte Carlo simulation results are
discussed under the following scenarios:
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(1) To perceive the impact of the sample sizes on the performance of the estimators, we
selected n = 200, 400, 600 and 800, whereas the number of explanatory variables
are to be selected as p = 8, 10 and 12.

(2) The explanatory variables are produced by using the equation given by [15] as
xij =

(
1 − γ2)1/2

zij + γzi,(p+1), i = 1, 2, ..., n, j = 1, 2, ..., p, where zij are
independent standard normal pseudo-random numbers and γ is specified by which
the correlation among any of two explanatory variables is assumed to be γ2. Then
explanatory variables are standardized by using unit length standardization scheme
for the purpose that XT X becomes a matrix of correlation.

(3) To examine the influence of the correlation in the simulation study, we considered
the values γ2 = 0.90, 0.95 and 0.99.

(4) For every set of explanatory variables, parameter vector β is selected as an eigen-
vector corresponding to the substantially large eigenvalue of XT X matrix.

(5) By using the pseudo-random numbers the response variable is generated from a
Poisson distribution that is yi ∼ P (µi) having the log-link function, which might
be expressed as µi = exp (β1xi1 + β2xi2 + ... + βpxip), where i = 1, 2, ..., n and
βj , j = 1, ..., p.

(6) The initial values are set to be µ
(0)
i = exp(Xβ̂ols), where β̂ols is the OLS estimator.

And the initial working response for the ith observation is considered as z
(0)
i =

Xβ̂ols +(W (0))−1
(
yi − µ

(0)
i

)
for the Poisson distribution, whereas W (0) is a weight

matrix and calculated as diagonal elements of
(
µ

(0)
i

)
.

(7) The ML estimator is acquired by using an iterative algorithm along with the weight
matrix Ŵ , which remains to be fixed at final iteration during the process of finding
the iterative estimators. The value 1×10−6 is to be used as a convergence criterion
for achieving the ML estimator and the iteration is carried on until the desired
convergence criterion is met, that is ||β̂(t+1) − β̂(t)|| ≤ 1 × 10−6.

(8) For selecting the number of PCs we used the method of PTV. An arbitrarily
selected cut-off point value is chosen as 0.90.

(9) The value of k for the first order approximated ridge estimator is to be found by
using k = r

β̂T
ols

MrMT
r β̂ols

.
(10) In the Monte Carlo simulation study the estimated MSE (EMSE) characteristics of

the estimators are found for every choice of n, p and γ2 and a program to evaluate
the EMSE characteristics is made in MATLAB programming language which is
replicated up to 1000 times. The formula for calculating the EMSE is given below:

EMSE
(
β̃

)
= 1

1000

1000∑
i=1

(
β̃(r) − β

)T (
β̃(r) − β

)
,

where the subscript r denotes the rth replication and β̃(r) is the estimate of β in
the aforementioned replication.

The simulated results of the EMSE are shown in Tables 2, 3 and 4. Tables 2-4 reveal
the performance of ML, ridge, PCR and r − k class estimators in terms of their EMSE
values. Reduction rate (RR) is also computed with respect to the r − k class estimator
which is computed as

RR = EMSE(β̃) − EMSE(β̂rk)
EMSE(β̃)

,

where β̃ is any estimator to be compared with the r − k class estimator. RR is used to
quantify the strength of the r − k class estimator over the competitors.
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Table 2. RR, EMSE values of the ML, ridge, PCR and r − k class estimators
when p = 8 and Poisson response

n γ2 ML Ridge PCR r − k

200 0.90 37.525551600 6.634948370 14.816844830 3.620857272
RR 0.903509552 0.454274989 0.755625620 —
0.95 74.898961730 9.025821874 1.134143020 1.126853379
RR 0.984955020 0.875152269 0.006427444 —
0.99 357.633127400 12.956143160 1.125907322 1.122861521
RR 0.996860298 0.913333659 0.002705197 —

400 0.90 36.757518980 6.475868688 14.669363070 3.652012230
RR 0.900645845 0.436058326 0.751044936 —
0.95 75.525567000 9.015851375 1.143600032 1.133592781
RR 0.984990595 0.874266696 0.008750657 —
0.99 358.991520900 13.734417470 1.124515272 1.120107231
RR 0.99687985 0.918445232 0.003919948 —

600 0.90 37.379177570 6.320171343 16.199015530 3.360099991
RR 0.910107707 0.468353023 0.792573815 —
0.95 74.889655430 8.413768773 1.142149944 1.140927777
RR 0.984765215 0.864397536 0.001070059 —
0.99 373.446567200 13.571149240 1.132983179 1.128861009
RR 0.996977182 0.916819056 0.003638333 —

800 0.90 36.430436340 6.212917176 15.0342819700 3.378795924
RR 0.907253487 0.456165948 0.7752605720 —
0.95 69.644517380 7.633279444 1.137273251 1.124261111
RR 0.983857148 0.852715845 0.011441525 —
0.99 344.454171700 12.227834970 1.120663201 1.119735478
RR 0.996749247 0.908427331 0.000827834 —

Table 3. RR, EMSE values of the ML, ridge, PCR and r − k class estimators
when p = 10 and Poisson response

n γ2 ML Ridge PCR r − k

200 0.90 46.450003420 8.207749747 18.066915660 4.316719839
RR 0.907067395 0.474067805 0.761070460 —
0.95 88.607949890 10.529122080 1.113766959 1.107497599
RR 0.987501149 0.894815770 0.005628969 —
0.99 428.426512200 16.199528900 1.104810291 1.102194135
RR 0.997427344 0.931961346 0.002367968 —

400 0.90 49.314254300 9.062197277 15.740118510 4.047476215
RR 0.917924822 0.553367016 0.742856052 —
0.95 94.107980950 11.422366900 1.110830353 1.104596150
RR 0.988262460 0.903295336 0.005612202 —
0.99 459.319592000 17.9122536100 1.099700932 1.097529787
RR 0.997610531 0.938727431 0.001974305 —

600 0.90 51.333409800 8.852738585 18.092092880 4.196684320
RR 0.918246531 0.525945076 0.768037653 —
0.95 99.445072440 11.649305330 1.106013423 1.100245662
RR 0.988936147 0.905552681 0.0052149110 —
0.99 480.176492300 17.885007240 1.100365920 1.097872610
RR 0.997713606 0.938614919 0.002265891 —

800 0.90 47.878570820 8.2520536760 21.898757710 4.482281784
RR 0.906382298 0.456828329 0.795317988 —
0.95 94.975872200 11.138258900 1.108479909 1.104095402
RR 0.988374991 0.900873609 0.003955424 —
0.99 468.697664700 17.957672400 1.098806610 1.096708442
RR 0.997660094 0.938928141 0.001909497 —

Tables 2-4, demonstrated that the ML estimator β̂ML have largest EMSE values for all
the sample sizes, as well as for all levels of the multicollinearity and number of explanatory
variables when compared to the other biased estimators. It is to be noted that, as the levels
of multicollinearity increased the EMSE values of the ML estimator also increased. This
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Table 4. RR, EMSE values of the ML, ridge, PCR and r − k class estimators
when p = 12 and Poisson response

γ2 ML Ridge PCR r − k

200 0.90 61.515596600 11.760815610 20.006249900 5.743763706
RR 0.906629147 0.511618590 0.712901532 —
0.95 118.990357100 15.455487480 1.094932081 1.09167392
RR 0.990825526 0.929366581 0.002975674 —
0.99 597.959631000 25.211374200 1.088032985 1.086625068
RR 0.998182779 0.956899411 0.001294002 —

400 0.90 58.598507160 11.383937040 19.626232310 5.331225031
RR 0.909021146 0.531688816 0.728362278 —
0.95 112.529613400 14.439576700 1.090225373 1.086905414
RR 0.990341161 0.924727335 0.003045205 —
0.99 551.727960700 23.056078060 1.082692108 1.081275818
RR 0.998040201 0.953102353 0.001308119 —

600 0.90 56.206296330 11.507211350 26.659439460 6.593502267
RR 0.882691038 0.427011283 0.752676635 —
0.95 112.478571500 15.6504103500 1.097124998 1.093592122
RR 0.990277329 0.930123741 0.003220122 —
0.99 537.647396700 24.231441960 1.076318516 1.075055926
RR 0.998000444 0.955633844 0.001173064 —

800 0.90 57.145665640 10.889680990 27.232295920 6.190831589
RR 0.891665772 0.431495597 0.772665823 —
0.95 111.711436400 13.8972465400 1.096952756 1.092815095
RR 0.990217518 0.921364632 0.003771959 —
0.99 554.175703600 23.293587300 1.077799657 1.076469580
RR 0.998057530 0.953786870 0.001234067 —

dramatic change in the EMSE values of ML estimator can also be observed as the number
of explanatory variables increased. This shows that ML estimator is positively related with
levels of multicollinearity and the number of explanatory variables. However, the role of
the sample size is not considered to be a significant factor in affecting the performance
of ML estimator. Although, a small amount of difference in the EMSE values of the ML
estimator is observed by a change of sample size. This difference is to be seen either
in increasing or decreasing form. Likewise, RR of the ML estimator is observed to be
almost 90% at lowest level of multicollinearity that is 0.90, and it increased as the levels
of multicollinearity, the number of explanatory variables and sample size are increased.
This increment almost reached a value of 100% RR as the level of multicollinearity moved
from 0.90 to 0.99. Therefore, RR of ML estimator is positively related with the levels of
multicollinearity, number of explanatory and the sample size. Moreover, the RR of ML
estimator is seen to be highest as compared to ridge and PCR estimators in all aspects.

Similarly, the ridge estimator is also affected by changing the levels of multicollinearity
and the number of explanatory variables. It is to be perceived that as the levels of
multicollinearity increased, the EMSE values of the ridge estimator increased as well. This
increment can also be noticed as the number of explanatory variables increased. In so far
as a ridge estimator is to be concerned it reacted almost very similar to the ML estimator
against multicollinearity, regardless the number of explanatory variables and the sample
size as well. That is the EMSE values of β̂ (k) are seen to be increased as the number of
explanatory variables and the levels of multicollinearity increased. Thus, EMSE of β̂ (k)
is observed to be positively related with the levels of multicollinearity and the number of
explanatory variables. Whereas, the effect of sample size is to be monitored either in the
increasing or decreasing form as in the case of ML estimator. As long as, the RR of ridge
estimator is to be concerned, it is a bit low at lowest level of multicollinearity and then
increased gradually as the number of explanatory variables and levels of multicollinearity
are increased. It is to be noticed that the RR is approximately 95%, in the presence of
high multicollinearity and large number of explanatory variables. Nevertheless, the sample
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size is not considered to be as an important factor in affecting the RR of ridge estimator.
Although, a minor change is to be observed in RR either in increasing or decreasing form
by change of a sample size.

For the PCR estimator, it is conceived that at lowest level of multicollinearity the
EMSE values of the PCR estimator are high. Furthermore, as the number of explanatory
variables and sample size increased the EMSE of the PCR estimator increased as well
at the aforementioned level of multicollinearity. So, the number of explanatory variables
and sample size are positively related to the EMSE of PCR estimator at that point of
collinearity. As, the levels of multicollinearity and the number of explanatory variables
increased the EMSE values of the PCR estimator decreased quickly. Therefore, an inverse
relationship is to be investigated between the EMSE values of PCR estimator with high
levels of multicollinearity and large number of explanatory variables. Similarly, the RR
for PCR estimator is seemed to be high at lowest level of multicollinearity and it increased
as the sample size and the explanatory variables are increased at this level, and showed
almost 77% level of RR. But, as the levels of multicollinearity and number of explanatory
variables increased, the RR of PCR estimator became very low, which means that it did
not differ very much from r − k class estimator in the presence of high multicollinearity
and large number of explanatory variables. The role of sample size is again not considered
to be significant in affecting the RR, although a small change, either in increasing or
deceasing form is to be observed in RR.

Here, we are discussing the behavior of our new proposed r − k class estimator under
different scenarios. From the tabular results, it is explored that at the lowest level of
multicollinearity the values of EMSE of β̂rk are high and seemed to be gradually increased
as the number of explanatory variables increased. Thus, β̂rk is positively related to the
number of explanatory variables at that particular point of multicollinearity. Nevertheless,
as the levels of multicollinearity and number of explanatory variables increased, the EMSE
values of β̂rk decreased rapidly which displays that the high levels of multicollinearity and
large number of explanatory variables are inversely related to the EMSE of β̂rk. Beside
this, no serious effect of the sample size is realized on the behavior of β̂rk.

Now, we make comparisons of the newly proposed r − k class estimator against its
counterparts, which are β̂ML, β̂ (k) and β̂r respectively in terms of EMSE criterion. It
is apparent that, the r − k class estimator performed efficiently as compared to all of
its competitors regardless of the level of multicollinearity, the number of explanatory
variables and the sample size. The proposed estimator β̂rk contains smallest EMSE values
as compared to its counterparts. Hence, the newly proposed estimator outclasses all of its
contestants.

6.2. Simulation study with Gamma response
In this experiment, response variable follows a gamma distribution with a reciprocal

link function. While, the rest of the procedure is illustrated underneath:

(1) To monitor the impact regarding number of observations on the estimators, we
take the same sample sizes as in the case of Poisson response.

(2) The explanatory variables are produced by using the equation given by [15] as
xij =

(
1 − γ2)1/2

zij + γzi,(p+1), i = 1, 2, ..., n, j = 1, 2, ..., p,, where zij are
independent standard normal pseudo-random numbers.

(3) The same set of correlation values are to be considered as in the Poisson response
to observe the effects of multicollinearity.

(4) For every set of explanatory variables, parameter vector β is selected as an eigen-
vector corresponding to the substantially large eigenvalue of XT X matrix.
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(5) By applying the pseudo-random number, the response variable of the gamma model
is generated as Gamma

(
v = µ2/var, u = var/µ

)
, where µ = exp (Xβ), and var

denotes µ2.
(6) The initial fitted values are set to be as: µ

(0)
i = (y+ȳ)

2 to compute IRLS, and then
computed the weight matrix W (0) that is Ŵ (0) = diag

(
µ

(0)
i

)2
. In addition to this,

the initial working response z for the ith observation is considered as:

z
(0)
i = 1

µ
(0)
i

−
(
W (0)

)−1 (
yi − µ

(0)
i

)
.

The rest of steps are followed similarly as in the case of Poisson response considered in
Section 6.1 except that cut-off point value, which is arbitrarily chosen as 0.80 instead of
0.90.

The simulated results for the Gamma distribution are reported in Tables 5-7. These
results showed that the ML estimator has larger EMSE values as compared to other biased
estimators for all the aspects that are considered. The values of RR for ML estimator
are also higher as compared to ridge and PCR estimators, which means that it differs
substantially from proposed r − k class estimator. The ridge estimator also contained
large EMSE values as compared to PCR and r − k class estimators. The RR values of
the ridge estimator are also higher than the PCR estimator. Furthermore, it is evident
that the proposed r − k class estimator consisted of smallest EMSE values as compared
to its counterparts for all the different scenarios, which are considered in the simulation
study. Although, the RR values of PCR estimator are seemed to be small, which means
that the EMSE values of PCR estimator are not much deviated from the EMSE values of
r − k class estimator. Nevertheless, the newly developed r − k class estimator performed
efficiently as compared to its counterparts according to the EMSE criterion at all levels of
multicollinearity, number of explanatory variables as well as for each sample size.

Table 5. RR, EMSE values of the ML, ridge, PCR and r − k class estimators
when p = 8 and Gamma response

n γ2 ML Ridge PCR r − k

200 0.90 6.470187 5.26132 1.694170 1.692702
RR 0.738384 0.678277 0.000867 —
0.95 7.037896 5.259769 2.509046 2.505413
RR 0.644011 0.523665 0.001448 —
0.99 8.937555 4.320989 1.856880 1.854712
RR 0.792481 0.570767 0.00116 —

400 0.90 4.840330 4.533189 3.360391 3.357198
RR 0.306411 0.259418 0.000950 —
0.95 4.816353 4.414173 3.690117 3.684973
RR 0.234904 0.165195 0.001394 —
0.99 10.250065 6.677664 2.659756 2.655296
RR 0.740948 0.602362 0.001677 —

600 0.90 4.557798 4.390382 2.563674 2.563325
RR 0.437596 0.416150 0.000136 —
0.95 5.223324 4.923769 4.841758 4.837445
RR 0.073876 0.017532 0.000891 —
0.99 8.053276 7.299779 6.891482 6.879726
RR 0.145723 0.057543 0.001706 —

800 0.90 4.119247 4.029864 3.217761 3.217077
RR 0.219013 0.201691 0.000212 —
0.95 5.379205 5.146413 3.689900 3.688674
RR 0.314272 0.283253 0.000332 —
0.99 11.442052 9.059892 3.385485 3.383178
RR 0.704321 0.626576 0.000681 —
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Table 6. RR, EMSE values of the ML, ridge, PCR and r − k class estimators
when p = 10 and Gamma response

n γ2 ML Ridge PCR r − k

200 0.90 6.725315 4.879247 2.012484 2.011344
RR 0.700929 0.587776 0.000566 —
0.95 10.996022 6.556518 1.919557 1.916631
RR 0.825698 0.707675 0.001524 —
0.99 18.696256 6.604226 1.355227 1.355139
RR 0.927518 0.794807 0.000065 —

400 0.90 4.660879 4.350649 2.347800 2.347003
RR 0.496446 0.460540 0.000340 —
0.95 5.345370 4.782703 3.523911 3.520888
RR 0.341320 0.263829 0.000858 —
0.99 8.580232 5.563526 3.445426 3.439806
RR 0.599101 0.381722 0.001631 —

600 0.90 4.650520 4.458327 2.596699 2.596115
RR 0.441758 0.417693 0.000225 —
0.95 5.316252 4.933863 3.463860 3.461015
RR 0.348975 0.298518 0.000821 —
0.99 10.645504 7.741610 2.947297 2.943354
RR 0.723512 0.619801 0.001338 —

800 0.90 4.655214 4.508783 3.186016 3.185615
RR 0.315689 0.293465 0.000126 —
0.95 5.402928 5.113568 3.857560 3.855624
RR 0.286383 0.246001 0.000502 —
0.99 8.918563 7.141924 2.508333 2.507115
RR 0.718888 0.648958 0.000486 —

Table 7. RR, EMSE values of the ML, ridge, PCR and r − k class estimators
when p = 12 and Gamma response

n γ2 ML Ridge PCR r − k

200 0.90 6.844589 4.885149 2.333045 2.329927
RR 0.659596 0.523059 0.001336 —
0.95 11.680592 6.570061 1.269806 1.268581
RR 0.891394 0.806915 0.000965 —
0.99 29.221371 7.414583 1.335053 1.334850
RR 0.954319 0.819970 0.000153 —

400 0.90 5.943753 5.274643 2.075884 2.075177
RR 0.650864 0.606575 0.000341 —
0.95 5.772376 4.909312 3.577512 3.572440
RR 0.381115 0.272314 0.001418 —
0.99 8.982236 5.243724 2.418714 2.415251
RR 0.731108 0.539402 0.001432 —

600 0.90 5.147963 4.841649 2.218392 2.217934
RR 0.569163 0.541905 0.000207 —
0.95 5.543631 5.061856 2.627509 2.626005
RR 0.526302 0.481217 0.000572 —
0.99 9.198872 6.611784 2.207942 2.206136
RR 0.760173 0.666333 0.000818 —

800 0.90 4.689527 4.502824 2.599765 2.599365
RR 0.445708 0.422726 0.000154 —
0.95 4.892099 4.624351 3.759408 3.758130
RR 0.231796 0.187317 0.000340 —
0.99 9.470270 7.376626 2.329244 2.327379
RR 0.754244 0.684493 0.000801 —

7. Conclusion
In the presence of multicollinearity it is obvious that the performance of the ML estima-

tor is poor in GLMs. Like its coefficients become unstable, along with an overestimated
covariance matrix, particularly, when the explanatory variables are linearly related to each
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other. In order to alleviate the alarming effects of multicollinearity in GLMs, a new es-
timator is presented in this study by combining the PCR and ridge estimators, which is
named as the r − k class estimator in GLMs. The performance of the newly developed
estimator is evaluated via simulation studies having response variables from Gamma and
Poisson distributions, along with a numerical example having a Poisson response. The
performance evaluation criterion was scalar MSE. From the results of numerical example,
it is observed that the performance of the proposed estimator and ridge estimator is af-
fected by the choice of the k value. However, it is to be noticed that, there have been
always an existing value of k, at which the r − k class estimator outperformed all of its
counterparts in terms of scalar MSE criterion. While the simulation results indicated that,
the proposed r − k class estimator is superior to its counterparts with respect to all the
aspects considered in the simulation studies. Consequently, it is observed that the levels of
multicollinearity and the number of explanatory variables are the most important factors,
which affect the performance of estimators. Whereas, the number of observations do not
seemed to be an important factor in determining the performance of estimators, when
compared to the levels of multicollinearity and number of the explanatory variables in the
study. Therefore, it is recommended that in the presence of multicollinearity, researchers
might use the biased estimators instead of ML estimator. Further, it is emphasized that
PCR and the proposed r − k class estimators can serve as better alternatives to ML
estimator in the presence of high multicollinearity.
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