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Abstract

In this paper, we investigate covariant and contravariant symbols of operators generated
by a representation of the integer group Z. Then we describe some properties (Existence,
Uniqueness, Boundedness, Compactnessi and Finite rank) of these operators and refor-
mulated some know results in terms of wavelet transform (covariant and contravariant
symbols).

1. Introduction

The notion of covariant and contravariant symbols of operators was introduced by Berezin in 1972 [1], as a generalization of a
Wick and anti-Wick operator symbols [2]. Then a general theory of quantization was developed by F. A. Berezin in [3]. The
construction of wavelet transform as covariant and contravariant symbols was realized with wavelets in Hilbert spaces [4].
Recently, in 2014 V. Kisil in his paper [5, Sec 4.2] studied Berezin covariant symbols as a special case of the covariant
transform. Also, he applied wavelets on operator algebras by means of symbols of operators [6], which is an extension of
the Berezin calculus. The purpose of the present paper is to describe some properties (existence, uniqueness, boundedness
and compactness) of operators which have covariant and contravariant symbols and reformulated some know results on these
operators.
The paper outline is as follows: In the second Section, we collects preliminary information from other works, which will be
used here. In particular, the concepts of covariant and contravariant symbols of operators. In the third Section, we describe
some proprieties of covariant and contravariant symbols of operators which generated by the representation of the integer
group. Then, we reformulate some know results on existence, uniqueness, boundedness and compactness of linear operators in
terms of wavelet transform. The final Section offers summary of our observations which lead to new directions for further
research.

2. Preliminaries

In this section we present some fundamental concepts and known results on boundedness and compactness of linear operators
in Hilbert spaces and wavelet transform on groups. We denoted by B(H ) the sets of all bounded linear operator A on Hilbert
space H . Let G be a group with a left Haar measure dµ and let π be a unitary irreducible representation of a group G by
operators πg,g ∈G in a Hilbert space H .

Definition 2.1. [6] Let ψ0 be a fixed vector in a space H , it is called a vacuum vector (mother wavelet). Then the set of
vectors ψg = π(g)ψ0 for g ∈G is called a family of coherent states (wavelets). We define wavelet transform as a mapping W
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from the Hilbert space to a space of functions over a group G via its representational coefficients W : H → L(G) : v 7→ v̂(g),
by

v̂(g) =
〈
π(g−1)v,ψ0

〉
= 〈v,π(g)ψ0〉=

〈
v,ψg

〉
. (2.1)

The wavelet transform W is a continuous linear mapping and the image of a vector is a bounded continuous function on G.
The linear space of all such images is denoted by W (G).

Definition 2.2. [6] The inverse wavelet transform is a mapping M : L1(G)→H : v̂(g) 7→M [v̂(g)] given by the formula:

M [v̂(g)] =
∫
G

v̂(g)π(g)dµ(g)ψ0 =
∫
G

v̂(g)ψg dµ(g), (2.2)

where the integral expresses an operator acting on vector ψ0.

An important observation [6] is that, two representations for groups G and G×G were defined correspondingly in the space
B(H ) of bounded linear operators H →H as follows:

π̂ : G→ B(B(H )) : A 7−→ π(g)−1Aπ(g)

π̆ : G×G→ B(B(H )) : A 7−→ π(g1)
−1Aπ(g2)

where A ∈ B(H ).
Let there be selected a vacuum vector h0 ∈H and a test functional l0 ∈H ∗ for π . Then there are canonically associated
vacuum vector p0 ∈ B(H ) and test functional f0 ∈ B∗(H ) defined as follows:

p0 : H −→H : h 7−→ p0h = 〈h, l0〉h0;

f0 : B(H )−→ C : A 7−→ 〈Ah0, l0〉 .

They define the following coherent states and transformations of the test functional

pg = π̂(g)p0 =
〈
·, lg
〉

hg, p(g1,g2) = π̆(g1,g2)p0 =
〈
·, lg1

〉
hg2 ,

fg = π̂
∗(g) f0 =

〈
·hg, lg

〉
, f(g1,g2) = π̆

∗(g1,g2) f0 =
〈
·hg1 , lg2

〉
,

where as usual we denote hg = π(g)h0, lg = π∗(g)l0.

Definition 2.3. [6] The covariant symbol ã(g)(ã(g1,g2)) of an operator A acting on a Hilbert space H defined by h0 ∈H
and l0 ∈H ∗ is its wavelet transform with respect to the representation π̂(g),(π̆(g1,g2)) respectively and the functional f0,
they are defined by the formulas

ã(g) = (π̂(g)A, f0) =
〈
π(g)−1Aπ(g)h0, l0

〉
=
〈
Ahg, lg

〉
, (2.3)

ã(g1,g2) = (π̆(g1,g2)A, f0) =
〈
π(g1)

−1Aπ(g2)h0, l0
〉
=
〈
Ahg2 , lg1

〉
. (2.4)

Definition 2.4. [6] The contravariant symbol of an operator A is a function a(g) and (a(g1,g2)) such that A is the inverse
wavelet transform of a(g),a(g1,g2) correspondingly with respect to π̂(g), π̆(g1,g2), i.e.

A =
∫

G
a(g)π̂(g)p0 dµ(g) =

∫
G

a(g)pg dµ(g). (2.5)

A =
∫
G

∫
G

a(g1,g2)π̆(g1,g2)p0 dµ(g1)dµ(g2)

=
∫
G

∫
G

a(g1,g2)p(g1,g2) dµ(g1)dµ(g2), (2.6)

where the integral is defined in the weak sense.
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Now, we turn to the separable Hilbert space H isomorphic to l2(Z) which is the space of all square-summable complex
sequences on Z. Formally

l2(Z) =

{
x(n),n ∈ Z : x(n) ∈ C and ∑

n∈Z
|x(n)|2 < ∞

}
,

with the inner product and the norm, respectively,

〈x,y〉= ∑
n∈Z

x(n)y(n), ‖x‖=

(
∑
n∈Z
|x(n)|2

) 1
2

.

Let X
′

be a dual space (conjugate space), which is a normed vector space of all bounded linear functional from a normed
space X into the field C, with norm

‖ f‖= sup{| f (x)| : ‖x‖ ≤ 1} .

Also, if X
′

is the dual of a Banach space X . Then for all x ∈ X

‖x‖= max
{
| f (x)| : f ∈ X

′
,‖ f‖= 1

}
.

Definition 2.5. Let F(S,X) is denoted to the collection of functions S→ X for set S and a vector space X over C. The support
of f ∈ F(S,X) is

supp( f ) := {s ∈ S : f (s) 6= 0}= f−1(X\{0}).

The collection of functions S→ X having finite support is denoted

F00(S,X) := { f ∈ F(S,X) : supp( f )⊂⊂ S} ,

where ⊂⊂ denoted to a subset of finite cardinality. Also,

F(S) = F(S,C) and F00(S) = F00(S,C).

Proposition 2.6. [7, p.98] The necessary and sufficient condition that there exist a bounded linear operator A defined on H
such that 〈Aen,em〉= amn, is that, for any finite p and q and for arbitrary α1,α2, . . . ,αp; β1,β2, . . . ,βq, the inequality∣∣∣∣ p

∑
m

q

∑
n

amnαmβ̄n

∣∣∣∣≤M

√
p

∑
m
|αm|2

√
q

∑
n
|βn|2, (2.7)

holds, M being a fixed number.

Proposition 2.7. [8] A bounded operator A ∈ B(H ) is compact if and only if satisfies:

lim
n→∞

Aen = 0, (2.8)

for each orthonormal basis for H .

Proposition 2.8. [9, p.91] Let A be a finite rank linear operator in H into itself, then A is compact.

Definition 2.9. [10, p.442] Let H be a Hilbert space and let {Pm} be a resolution of the identity defined on H . Further, let
{λm} be a sequence of scalars. A transformation of the form

Av =
∞

∑
m=1

λmPmv, v ∈ DA, (2.9)

where

DA =

{
v ∈H : lim

N→∞

N

∑
m

λmPmv, exists

}
is said to be a weighted sum of projections.

Theorem 2.10. [10] Let A be a compact normal operator on a Hilbert space H . Then there is a resolution of the identity
{Pm} and a sequence of complex numbers {λm} such that A = ∑m λmPm, where the convergence is in terms of the uniform
operator norm topology.
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3. Covariant and contravariant symbols of operators generated by representation of the integer
group

One goal of this paper is to describe some proprieties of covariant and contravariant symbols of operators which generated by
the representation of the integer group. We can reformulate some know results on existence, uniqueness, boundedness and
compactness of linear operators in terms of covariant and contravariant symbols (wavelet transform).

3.1. Wavelet transforms for the integer group in l2 (Z) space

The subject of wavelet transform has arisen many times in many applied areas and we are not able to give a comprehensive
history and proper credit. One could mention important books [11, 12]. In the first part of this section, we look for wavelet
transformation in a separable Hilbert space l2(Z)) with an orthonormal basis {ek} ,k ∈ Z. Then the group Z of integers has a
unitary representation π on l2(Z), which is defined on the base as follows

π(m)ek = ek+m, m ∈ Z.

The adjoint representation is

π
∗(m)ek = ek−m, m ∈ Z.

Hence, e0 could be taken as a vacuum vector and test functional. Therefore, by Equation (2.1) the wavelet transform with a
vacuum vector ψ0 = e0 is

W (v) = v̂(m) = 〈v,π(m)e0〉= 〈v,em〉 . (3.1)

and by Equation (2.2) the inverse wavelet transform is

M [v̂(m)] = ∑
Z

v̂(m)π(m)e0 =
∞

∑
−∞

v̂(m)em. (3.2)

This is the Fourier series.
Inspired by the corresponding propositions, [13, Sec 4.1], we now equivalently reformulate the following:

Remark 3.1. The left regular representation Λ(m) of the group Z is the unitary representation by left shifts in the space l2 (Z)
by

Λ(m) : v(m)−→ v(−m+n) . (3.3)

Proposition 3.2. The wavelet transform W intertwines π and the left regular representation Λ (3.3) of Z:

W π(m) = Λ(m)W .

Proof. By Equations (3.1) and (3.3). We have

[W π(m)v] (n) = 〈π(m)v,π(n)e0〉 ,
= 〈v,π∗ (m)π(n)e0〉 ,
= 〈v,π∗ (m)en〉 ,
=

〈
v,e(−m+n)

〉
,

= [W v] (−m+n) ,

= Λ(m) [W v] (n) .

Corollary 3.3. The function space W(Z) is invariant under the representation Λ of Z.

Proposition 3.4. The inverse wavelet transform M intertwines Λ on L2(Z) and π on H :

M Λ(m) = π(m)M .
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Proof. By Equations (3.2) and (3.3). We have

M [Λ(m) v̂(n)] = M [v̂(−m+n)] ,

= ∑
n

v̂(−m+n)π (n)e0,

= ∑
n

v̂(−m+n)en,

= ∑
k

v̂(k)em+k,

= ∑
k

v̂(k)π (m)ek,

= π (m)∑
k

v̂(k)ek,

= π (m)M [v̂(k)] ,

where, k = n−m.

Corollary 3.5. The image M (L1(Z)) ⊂H of subspace under the inverse wavelet transform M is invariant under the
representation π .

Proposition 3.6. The image W (Z) of the wavelet transform W has a reproducing kernel K (m,n) = 〈wm,wn〉. The reproducing
formula is in fact a Discrete convolution:

v̂(n) = ∑
m∈Z

k (n,m) v̂(m) = ∑
m∈Z

ŵ0 (n−m) v̂(m) .

with a wavelet transform of the vacuum vector ŵ0 (n) = 〈w0,π (n)w0〉.

Proof. By Equation (3.1) and since π is an irreducible square integrable representation defined by the same admissible vector
w0 ([13, Sec 8.2]) we have

v̂(n) = 〈π(−n)v,w0〉,
= ∑

m∈Z
〈π(−k)π(−n)v,w0〉〈π(−k)w0,w0〉,

= ∑
m∈Z
〈π (−(k+n))v,w0〉〈π(k)w0,w0〉 ,

= ∑
m∈Z

v̂(n+ k) ŵ0 (−k) ,

= ∑
m∈Z

v̂(m) ŵ0 (n−m) .

3.2. Covariant and contravariant symbols

Berezin symbols and coherent states are a useful tool in quantum theory and have a lot of essentially diferent definitions
[14]-[16]. In particular, they were described by Berezin, concerning so-called covariant and contravariant (or Wick and
anti-Wick) symbols of operators (see, for example, [17]-[19]). In the second part of this section as the first applications, we
describe the covariant and contravariant symbols of operators which realizes the unitary irreducible representations of Z on
Hilbert spaces l2 (Z). By Equations (2.3) and (2.4) the covariant symbol ã(m), ã(m,n) of an operator A ∈ l2 (Z) is its wavelet
transform with respect to the representation π̂(m), π̆(m,n), i.e.

ã(m) = (π̂(m)A,e0) =
〈
π(m)−1Aπ(m)e0,e0

〉
= 〈Aem,em〉= amm, (3.4)

ã(m,n) = (π̆(m,n)A,e0) =
〈
π(m)−1Aπ(n)e0,e0

〉
= 〈Aen,em〉= amn, (3.5)

where amn is a matrix representation in orthonormal basis ek.
Now, by Equation (2.5) A is the inverse wavelet transform of a(m) with respect to π̂(m), where the function a(m) is the
contravariant symbol of an operator A, i.e.

A = ∑
m∈Z

a(m)π̂(m)p0 = ∑
m∈Z

a(m)pm, (3.6)
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Aek = ∑
m∈Z

a(m)pmek = ∑
m∈Z

a(m)em ·δkm = a(k)ek,

where δkm is the Kronecker delta. Similarly, by (2.6) the inverse wavelet transform of a(m,n) with respect to π̆(m,n) is

A = ∑
n∈Z

∑
m∈Z

a(m,n)π̆(m,n)p0 = ∑
n∈Z

∑
m∈Z

a(m,n)p(m,n) (3.7)

Aek = ∑
n∈Z

∑
m∈Z

a(m,n)p(m,n)ek = ∑
n∈Z

a(k,n)en.

Remark 3.7. (i) The coherent states pm and p(m,n) are a rank-one operators,
(ii) The formula (3.5) yields a representation of A as an infinite matrix.

3.3. Some proprieties of covariant and contravariant symbols

The Berezin symbol of an operator provides important information about the operators, in particular, that, the Berezin symbol
uniquely determines the operator (i.e., A = 0 if and only if Ã = 0), (see, for example, [20]-[24]). In the third part of this section
we will classify some proprieties of covariant and contravariant symbols of operators in B(l2 (Z)). Also, we will discuss further
questions and reformulate some know results on existence, uniqueness, boundedness and compactness of these operators in
terms of covariant and contravaraint symbols of operators: First, does every operator on l2(Z) have covariant symbols (3.4)
and (3.5)? If yes, is it unique? If not, how to characterize operators which do have? This question is answered by the following
proposition.

Proposition 3.8. For every bounded operator A on l2(Z)), there exists a unique covariant symbol given by formula (3.5).

Proof. Let A be a bounded operator on l2(Z). Since l2(Z) contains an orthonormal basis {en} (they span l2(Z) ). Also the set{
en ∈ l2(Z) : Aen = ∑

m
amnem = bm ∈ l2(Z)

}
,

which is subset of DA domain of A. Therefore, any bounded operator on l2(Z) can be represent as a matrix amn = 〈Aen,em〉=
ã(m,n), which is (3.5). To prove uniqueness of covariant symbols ã(m,n). From Riesz representation theorem on l2(Z), one
simply notes that, there is one element Aen ∈ l2(Z), such that 〈Aen,em〉= ã(m,n). Hence, ã(m,n) is unique.

Remark 3.9. The formula (3.4) is a special case of (3.5) where m = n.

The second question was about the contravariant symbol. Does any operator on l2(Z) have contravariant symbols (3.6) and
(3.7)? If yes, is it unique? If not, how to characterize operator which do have?
Not every operator A on l2(Z) has a contravariant symbol satisfying (3.6). For example, let A be the operator of multiplication
by t on L2 [0,1] defined by (Av)(t) = tv(t). A is a self-adjoint, bounded operator and has no eigenvalue. Therefore it does not
have contravariant symbol a(m) which satisfies (3.6).

Proposition 3.10. For every compact normal operator A on l2(Z), there exists a unique contravariant symbol a(m)) satisfying
formula (3.6).

Proof. Let A be a compact normal operator on l2(Z). Then by Theorem 2.10 there is a resolution of the identity {Pm} where
Pm is an orthogonal projection and a measurable complex-valued function a(m) on Z (weighted function) such that the operator
A can be expressed as weighted sums (2.9)

A = ∑
m∈Z

a(m)Pm,

which is (3.6). It is easily to prove uniqueness of the contravariant symbol a(m). We omit it here.

Remark 3.11. Formula (3.7) in the second question still needs more discussion.

The third question, how to see from a covariant or contravariant symbol of operator if it is finite rank?
Not all operator on l2(Z) which have a covariant symbol satisfying (3.5) are of finite rank. For example, let A be the identity
operator I which has the covariant symbol I(m,n) = 〈Ien,em〉= δmn. But Ien = en. Therefore rak(I) = dim(Im(I)) = ∞. Then
I is not finite rank operator.

Proposition 3.12. If the covariant symbol which satisfy (2.6) equal zero for any m < m1 or m > m2 and for all n, then A is a
finite rank operator on l2(Z).
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Proof. Let the covariant symbol ã(m,n) = 〈Aen,em〉= amn = 0, for any m < m1 or m > m2 and for all n. Since A define on
l2(Z). Then there exists a complete orthonormal basis em ∈ l2(Z) such that the range of A is spanned by em1 ,em1+1, ....,em2 .
So A has a finite rank.

Also, not all operators on l2(Z) which have a contravariant symbol satisfying (3.7) are of finite rank. For example, let A be the
identity operator I which has the contravariant symbol δmn such that

Iv = ∑
m

∑
n

δmnPmnv = ∑
m
〈v,em〉em.

But Iv = v. Therefore rak(I) = dim(Im(I)) = ∞. Then I is not a finite rank operator.

Proposition 3.13. If an operator A on l2 (Z) has the contravariant symbol a(m,n) which satisfies (3.7) such that a(m,n) = 0
for any m < m1 or m < m2 and for all n, then A is a finite rank operator.

Proof. Let A on l2(Z) have the contravariant symbol a(m,n) satisfying (3.7) such that a(m,n) = 0 for any m < m1 or
m < m2 and for all n. Then there exists a complete orthonormal basis {em} ∈ l2(Z) such that the range of A is spanned by
em1 ,em1+1, ....,em2 . Now by (3.7)

A =
m2

∑
m=m1

∑
n∈Z

a(m,n)〈.,en〉em.

Then A is a finite rank operator.

Proposition 3.14. A bounded operator A ∈ B(H ) is compact if and only if the covariant symbol amn for a fixed n makes a l2

function on Z such that its norm tends to 0 as n−→ ∞.

Proof. Let A be a compact linear operator from l2(Z) into itself and (en) a complete orthonormal set in l2(Z), therefore
Aen = ∑m∈Z amn em.
Then by proposition 2.7 Equation (2.8).

⇔ lim
n→∞

Aen = 0,

⇔ lim
n→∞

∑
m∈Z

amn em = 0,

⇔ lim
n→∞

∑
m∈Z
|amn|2 = 0,

⇔ lim
n→∞
‖an‖= 0,

where an = amn, for a fixed n, with the norm ‖an‖=
(

∑m∈Z |amn|2
) 1

2
.

Proposition 3.15. Let for an operator A, there exist a basis em such that the covariant symbol amn = 0, for any m < m1 or
m > m2 and for all n, then A is compact.

Proof. For an operator A let there exist a basis em such that the covariant symbol amn 6= 0 only for m1 ≤ m ≤ m2, then the
range of A is spanned by em1 ,em1+1, . . . ,em2 . Therefore A has finite rank. Finally, by proposition 2.8 A is compact.

Proposition 3.16. Let A be an operator acting on a Hilbert space H and the covariant symbol amn of A belong to the Banach
space F

′
00(Z×Z) with norm

‖amn‖ := sup{|〈amn, lmn〉| : lmn ∈F00(Z×Z),‖lmn‖2 = 1} . (3.8)

Then the operator A is bounded if and only if the covariant symbol amn is bounded in F
′
00(Z×Z).

Proof. Let A be an operator acting on a Hilbert space H . Let its covariant symbol amn be bounded in a Banach space
F
′
00(Z×Z) with norm ‖amn‖ and

lmn = α⊗ β̄ ∈F00(Z×Z)∼= F00(Z)⊗F00(Z),

then by proposition 2.6 and Equation (3.8), we have

|〈amn, lmn〉| ≤ ‖amn‖‖lmn‖2∣∣〈amn,α⊗ β̄
〉∣∣ ≤ ‖amn‖‖α⊗β‖2∣∣∣∣∣∑m,n

amnαmβ̄n

∣∣∣∣∣ ≤ M ‖α‖2 ‖β‖2 .
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Thus, A is bounded.
Conversely, let A be a bounded linear operator acting on a Hilbert space H and amn its covariant symbol in a Banach space
F
′
00(Z×Z) with norm (3.8), then by necessary condition of proposition 2.6 amn satisfies the inequality (2.7), i.e∣∣∣∣ p

∑
m

q

∑
n

amnαmβ̄n

∣∣∣∣≤M ‖α‖2 ‖β‖2 ,

therefore by equation (3.8) ∣∣〈amn,α⊗ β̄
〉∣∣ ≤ M ‖α‖2 ‖β‖2

|〈amn, lmn〉| ≤ M ‖lmn‖2 .

Then amn is bounded in F
′
00(Z×Z).

Proposition 3.17. The mapping σ : A 7−→ σA(m,n) of operators to their covariant symbols is an algebra homomorphism from
the algebra of operators on H to the algebra of infinite matrices on W (Z), i.e.

σA1A2(m,k) = ∑
n∈Z

σA1(m,n)σA2(n,k).

Proof. By (3.5), we have

σA1A2(m,k) = 〈A1A2em,en〉,
= 〈A1A2π (m)h0,π (n) l0〉,
= 〈π (m)A1A2π

−1 (n)h0, l0〉,
= 〈A2π

−1 (n)h0,A∗1π
∗ (m) l0〉,

= ∑
n
〈π (k)A2π

−1 (n)h0, l0〉,〈π (k)h0,A∗1π
∗ (m) l0〉,

= ∑
n
〈π (m)A1π

−1 (k)h0, l0〉〈π (k)A2π
−1 (n)h0, l0〉,

= ∑
n
〈A1em,ek〉〈A2ek,en〉,

= ∑
n

σA1(m,n)σA2(n,k).

Finally, is there a relationship between the covariant and contravariant symbols of these operators?

Proposition 3.18. If an operator A on l2(Z) has a contravariant symbol a(m) which satisfies (3.6), then the covariant symbol
of A which satisfies (3.4) is

ã(m) = a(m).

Proof. Let an operator A on l2(Z) have a contravariant symbol a(m) which satisfies (3.6), that is

A = ∑
k

a(k)pk.

Then

Aem = ∑
k

a(k)pkem = ∑
k

a(k)〈em,ek〉ek = a(k)ek

Now by (3.4)

ã(m) = 〈Aem,em〉= 〈a(k)ek,em〉
= ∑

n
a(k)ek(n)ēm(n) = a(m).



124 Fundamental Journal of Mathematics and Applications

Proposition 3.19. If an operator A on l2(Z) has a contravariant symbol a(m,n) which satisfies (3.7), then the covariant
symbol of A which satisfies (3.5) is

ã(m,n) = a(n,m).

Proof. Let the operator A on l2(Z) have a contravariant symbol a(m,n) which satisfies (3.7), that is

A = ∑
j
∑

i
a(i, j)p(i, j).

Then

Aen = ∑
j
∑

i
a(i, j)p(i, j)en = ∑

j
∑

i
a(i, j)〈en,ei〉e j = ∑

j
a(n, j)e j

Now by (3.5)

ã(m,n) = 〈Aen,em〉=

〈
∑

j
a(n, j)e j,em

〉
= ∑

k
∑

j
a(n, j)e j(k)ēm(k)

= ∑
k

a(n,k)ek(m) = a(n,m).

4. Conclusion

In this paper, we introduced the concepts of covariant and contravariant symbols of operators which generated by a representa-
tion of the integer group Z. Then we described some properties of covariant and contravariant symbols in B(l2 (Z)). Also,
we reformulated some know results on (existence, uniqueness, boundedness and compactness) of these operators in terms of
wavelet transform (covariant and contravariant symbols). Finally, the full investigation to find similar conditions for bounded
and compact in term of covariant and contravariant symbols generated by another groups is left for further work.
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