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Abstract
The purpose of the present paper is to introduce a new subclass of harmonic univalent functions by using
fractional calculus operator associated with q-calculus. Coefficient condition, extreme points, distortion
bounds, convolution and convex combination are obtained for this class. Finally, we discuss a class
preserving integral operator for this class.
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1. Introduction
A continuous complex-valued function f = u+ iv is said to be harmonic in a simply connected domain D if

both u and v are real harmonic in D. In any simply connected domain we can write f = h+ g where h and g are
analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for f
to be locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)|, z ∈ D. For detailed study one may refer to
Clunie and Sheil-Small [3] and Duren [5], (see also [9]).

Let SH represent the class of functions f = h+ g that are harmonic univalent and sense-preserving in the open
unit disk U = {z : |z| < 1} for which f(0) = fz(0)− 1 = 0. Then for f = h+ g ∈ SH we may express the analytic
functions h and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1.1)

Note that the class SH reduces to the class S of normalized analytic univalent functions if the co-analytic part of
its member is zero. For this class the function f(z) may be expressed as

f(z) = z +

∞∑
k=2

akz
k. (1.2)
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Further, we let V nH be the subclass of SH consisting of functions of form f = h+ gn, where

h(z) = z +

∞∑
k=2

|ak|zk, gn(z) = (−1)n
∞∑
k=1

|bk|zk, |b1| < 1. (1.3)

The following definitions of fractional derivatives and fractional integrals are due to Owa [11] and Srivastava
and Owa [18].

Definition 1.1. The fractional integral of order λ is defined for a function f(z) of the form (1.2) by

D−λz f(z) =
1

Γ(λ)

∫ z

0

f(ξ)

(z − ξ)1−λ
dξ,

where λ > 0, f(z) is an analytic functions in a simply connected region of the z-plane containing the origin and the
multiplicity of (z − ξ)λ−1 is removed by requiring log(z − ξ) to be real when (z − ξ) > 0.

Definition 1.2. The fractional derivative of order λ is defined for a function f(z) of the form (1.2) by

Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ξ)

(z − ξ)λ
dξ,

where 0 ≤ λ < 1, f(z) is an analytic functions in a simply connected region of the z-plane containing the origin and
the multiplicity of (z − ξ)−λ is removed as in Definition 1.1 above.

Definition 1.3. Under the hypothesis of Definition 1.2 the fractional derivative of order n + λ is defined for a
function f(z) by

Dn+λ
z f(z) =

dn

dzn
Dλ
z f(z), (1.4)

where 0 ≤ λ < 1 and n ∈ N0 = {0, 1, 2.....}.

In 2011, Dixit and Porwal [4] introduce a new fractional derivative operator for function of the form (1.2) as
follows

Ω0f(z) = f(z)

Ω1f(z) = Γ(1− λ)z1+λD1+λ
z f(z)

.......................

Ωnf(z) = Ω(Ωn−1f(z)).

Thus, we note that

Ωnf(z) = z +

∞∑
k=2

[φ(k, λ)]nakz
k, (1.5)

where

φ(k, λ) =
Γ(k + 1)Γ(1− λ)

Γ(k − λ)
.

It is worthy to note that for λ = 0,Ωnf(z) reduces to familiar Salagean operator introduced by Salagean in [16].
They define the above operator for function of the form f = h+ g, where h and g are the form (1.1) as follows

Ωnf(z) = Ωn (h(z)) + (−1)nΩn (g(z))

where

Ωn (h(z)) = z +

∞∑
k=2

[φ(k, λ)]nakz
k

and

Ωn (g(z)) =

∞∑
k=1

[φ(k, λ)]nbkz
k.
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The applications of q− calculus is a current and interesting topic of research in Geometric Function Theory. Very
recently, Srivastava [17] gave definitions and properties of q− calculus and fractional q− calculus in detail and its
applications in his survey-cum-expository review article. Several researchers e.g. see the work of Arif et al. [1],
Ahuja et al. [2], Jahangiri [8], Najafzadeh and Makinde [10], Porwal and Gupta [12] and Ravindar et al. [14, 15]
investigated various subclasses of univalent functions and obtain interesting results.

Now, we recall the concept of q-calculus which was first introduced by Jackson [6, 7]. For k∈N , the q− number
is defined as follows:

[k]q =
1− qk

1− q
, 0 < q < 1. (1.6)

Hence, [k]q can be expressed as a geometric series
∑k−1
i=0 q

i, when k → ∞ the series converges to 1
1−q . As q→1,

[k]q→k and this is the bookmark of a q− analogue the limit as q→1 recovers the classical object.
The q− derivative of a function f is defined by

Dq(f(z)) =
f(qz)− f(z)

(q − 1)z
, q 6=1, z 6=0

and Dq(f(0)) = f ′(0) provided f ′(0) exists.
For a function h(z) = zk observe that

Dq(h(z)) = Dq(z
k) =

1− qk

1− q
zk−1 = [k]qz

k−1.

Then
limq→1Dq(h(z)) = limq→1[k]qz

k−1 = kzk−1 = h′(z)

where h′ is the ordinary derivative.
The q− Jackson definite integral of the function f is defined by∫ z

0

f(t)dqt = (1− q)z
∞∑
n=0

f(zqn)qn, z∈C.

Now, we let RH(n, q, β, λ) denote the subclass SH consisting of functions f = h+ g of the form (1.1) that satisfy
the condition

<

{
Ωn (Dq(h(z))) + (−1)nΩn (Dq(g(z)))

z

}
< β, (1.7)

for some β(1 < β ≤ 2), 0 < q < 1, λ(0 ≤ λ ≤ 1), n ∈ N and z ∈ U .
We further let RH(n, q, β, λ) denote the subclass of RH(n, q, β, λ) consisting of functions f = h+ gn ∈ SH such

that h and gn are of the form (1.3).
If f(z) is of the form (1.2) then the classes RH(n, q, β, λ) and RH(n, q, β, λ) reduce to the classes R(n, q, β, λ) and

R(n, q, β, λ) By specializing the parameter we obtain the following known subclasses studied earlier by various
researchers.

1. RH(n, 0, β, λ) ≡ RH(n, β, λ) and RH(n, 0, β, λ) ≡ RH(n, β, λ) studied by Porwal and Aouf [13].

2. R(1, 0, β, 0) ≡ R(β) studied by Uralegaddi et al. [19].

In the present paper, we study the coefficient bounds, distortion bounds, extreme points, convolution condition,
convex combinations and discuss a class preserving integral operator.

2. Main Results
First, we give a sufficient coefficient condition for functions in RH(n, q, β, λ).

Theorem 2.1. Let f = h+ g be such that h and g are given by (1.1). Furthermore, let
∞∑
k=2

[φ (k, λ)]
n

[k]q |ak|+
∞∑
k=1

[φ (k, λ)]
n

[k]q |bk| ≤ β − 1. (2.1)

Then f is sense-preserving, harmonic univalent in U and f ∈ RH (n, q, β, λ).
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Proof. If z1 6= z2, then

∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣
= 1−

∣∣∣∣∣∣∣∣∣∣

∞∑
k=1

bk(zk1 − zk2 )

(z1 − z2) +

∞∑
k=2

ak(zk1 − zk2 )

∣∣∣∣∣∣∣∣∣∣
> 1−

∞∑
k=1

k|bk|

1−
∞∑
k=2

k|ak|

≥ 1−

∞∑
k=1

[φ (k, λ)]
n

[k]q
β − 1

|bk|

1−
∞∑
k=2

[φ (k, λ)]
n

[k]q
β − 1

|ak|

≥ 0,

which proves univalence.

Note that f is sense-preserving in U . This is because

|h′(z)| ≥ 1−
∞∑
k=2

k|ak||z|k−1

> 1−
∞∑
k=2

k|ak|

≥ 1−
∞∑
k=2

[φ (k, λ)]
n

[k]q
β − 1

|ak|

≥
∞∑
k=1

[φ (k, λ)]
n

[k]q
β − 1

|bk|

≥
∞∑
k=1

k|bk|

>

∞∑
k=1

k|bk||z|k−1

≥ |g′(z)| .

Now, we show that f ∈ RH (n, q, β, λ). Using the fact that Re ω < β, if and only if, |ω − 1| < |ω + 1 − 2β|, it
suffices to show that

∣∣∣∣∣∣∣∣
Ωn (Dq(h(z))) + (−1)nΩn (Dq(g(z)))

z
− 1

Ωn (Dq(h(z))) + (−1)nΩn (Dq(g(z)))

z
− (2β − 1)

∣∣∣∣∣∣∣∣ < 1, z ∈ U.
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We have ∣∣∣∣∣∣∣∣∣
z +

∑∞
k=2 [φ (k, λ)]

n
[k]q akz

k + (−1)n
∑∞
k=1 [φ (k, λ)]

n
[k]q bkz

k

z
− 1

z +
∑∞
k=2 [φ (k, λ)]

n
[k]q akz

k + (−1)n
∑∞
k=1 [φ (k, λ)]

n
[k]q bkz

k

z
− (2β − 1)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑∞
k=2 [φ (k, λ)]

n
[k]q akz

k−1 + (−1)n
z

z

∑∞
k=1 [φ (k, λ)]

n
[k]q bkz

k−1

2 (β − 1)−
∑∞
k=2 [φ (k, λ)]

n
[k]q akz

k−1 − (−1)n
z

z

∑∞
k=1 [φ (k, λ)]

n
[k]q bkz

k

∣∣∣∣∣∣∣
≤

∑∞
k=2 [φ (k, λ)]

n
[k]q |ak| |z|

k−1
+
∑∞
k=1 [φ (k, λ)]

n
[k]q |bk| |z|

k−1

2 (β − 1)−
∑∞
k=2 [φ (k, λ)]

n
[k]q |ak| |z|

k−1 −
∑∞
k=1 [φ (k, λ)]

n
[k]q |bk| |z|

k−1

≤
∑∞
k=2 [φ (k, λ)]

n
[k]q |ak|+

∑∞
k=1 [φ (k, λ)]

n
[k]q |bk|

2 (β − 1)−
∑∞
k=2 [φ (k, λ)]

n
[k]q |ak| −

∑∞
k=1 [φ (k, λ)]

n
[k]q |bk|

which is bounded above by 1 by using (2.1) and so the proof is complete.
The harmonic univalent functions of the form

f(z) = z +

∞∑
k=2

β − 1

[φ (k, λ)]
n

[k]q
xkz

k +

∞∑
k=1

β − 1

[φ (k, λ)]
n

[k]q
ykzk, (2.2)

where 1 < β ≤ 2, 0 < q < 1, 0 ≤ λ ≤ 1, n ∈ N and
∑∞
k=2 |xk| +

∑∞
k=1 |yk| = 1, show that the coefficient bound

given by (2.1) is sharp. It is worthy to note that the function of the form (2.2) belongs to the class RH (n, β, λ) for all∑∞
k=2 |xk|+

∑∞
k=1 |yk| ≤ 1 because coefficient inequality (2.1) holds.

Theorem 2.2. Let fn be given by (1.3). Then fn ∈ RH (n, q, β, λ) if and only if
∞∑
k=2

[φ (k, λ)]
n

[k]q |ak|+
∞∑
k=1

[φ (k, λ)]
n

[k]q |bk| ≤ β − 1.

Proof. Since RH (n, q, β, λ) ⊂ RH (n, q, β, λ), we only need to prove the "only if" part of the theorem. To this end,
for functions fn of the form (1.3), we notice that the condition

<

{
Ωn (Dq(h(z))) + (−1)nΩn (Dq(g(z)))

z

}
< β

is equivalent to

<

{
1 +

∞∑
k=2

[φ (k, λ)]
n

[k]q akz
k−1 + (−1)n

z

z

∞∑
k=1

[φ (k, λ)]
n

[k]q bkz
k−1

}

≤ 1 +

∞∑
k=2

[φ (k, λ)]
n

[k]q |ak| |z|
k−1

+

∞∑
k=1

[φ (k, λ)]
n

[k]q |bk| |z|
k−1

< β, z ∈ U.

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values of z to be real and let
z → 1−, we obtain

∞∑
k=2

[φ (k, λ)]
n

[k]q |ak|+
∞∑
k=1

[φ (k, λ)]
n

[k]q |bk| ≤ β − 1,

which is the required condition.
The harmonic univalent functions of the form

fn(z) = z +

∞∑
k=2

β − 1

[φ (k, λ)]
n

[k]q
xkz

k + (−1)n
∞∑
k=1

β − 1

[φ (k, λ)]
n

[k]q
ykzk, (2.3)

where 1 < β ≤ 2, 0 < q < 1, 0 ≤ λ ≤ 1, n ∈ N, xk ≥ 0, yk ≥ 0 and
∑∞
k=2 xk +

∑∞
k=1 yk ≤ 1 belongs to the class

RH (n, q, β, λ).
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Theorem 2.3. If f ∈ RH(n, q, β, λ), then

|f(z)| ≤ (1 + |b1|)r +

(
1− λ

2

)n
1

(1 + q)
(β − 1− |b1|)r2, |z| = r < 1

and

|f(z)| ≥ (1− |b1|)r −
(

1− λ
2

)n
1

(1 + q)
(β − 1− |b1|)r2, |z| = r < 1.

Proof. Let f ∈ RH(n, q, β, λ). Taking the absolute value of f , we have

|f(z)| ≤ (1 + |b1|)r +

∞∑
k=2

(|ak|+ |bk|)rk

≤ (1 + |b1|)r +

∞∑
k=2

(|ak|+ |bk|)r2

≤ (1 + |b1|)r +

(
1− λ

2

)n
1

(1 + q)

∞∑
k=2

(
2

1− λ

)n
(1 + q)(|ak|+ |bk|)r2

≤ (1 + |b1|)r +

(
1− λ

2

)n
1

(1 + q)

∞∑
k=2

[φ(k, λ)]n[k]q(|ak|+ |bk|)r2

≤ (1 + |b1|)r +

(
1− λ

2

)n
1

(1 + q)
(β − 1− |b1|)r2

and

|f(z)| ≥ (1− |b1|)r −
∞∑
k=2

(|ak|+ |bk|)rk

≥ (1− |b1|)r −
∞∑
k=2

(|ak|+ |bk|)r2

≥ (1− |b1|)r −
(

1− λ
2

)n
1

(1 + q)

∞∑
k=2

(
2

1− λ

)n
(1 + q)(|ak|+ |bk|)r2

≥ (1− |b1|)r −
(

1− λ
2

)n
1

(1 + q)

∞∑
k=2

[φ(k, λ)]n[k]q(|ak|+ |bk|)r2

≥ (1− |b1|)r −
(

1− λ
2

)n
1

(1 + q)
(β − 1− |b1|)r2.

Theorem 2.4. Let f ∈ clcoRH(n, q, β, λ), if and only if

f(z) =

∞∑
k=1

(λkhk(z) + γkgk(z)), (2.4)

where h1(z) = z

hk(z) = z +
β − 1

[φ(k, λ)]n[k]q
zk, (k = 2, 3, ...)

gk(z) = z + (−1)n
β − 1

[φ(k, λ)]n[k]q
zk, (k = 1, 2, 3, ...)

and
∞∑
k=1

(λk + γk) = 1, λk ≥ 0 and γk ≥ 0.

In particular the extreme points of RH(n, q, β, λ) are {hk} and {gk}.
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Proof. For functions f of the form (2.4) we may write

f(z) =

∞∑
k=1

{λkhk(z) + γkgk(z)}

= z +

∞∑
k=2

(
β − 1

[φ(k, λ)]n [k]q

)
λkz

k + (−1)n
∞∑
k=1

(
β − 1

[φ(k, λ)]n [k]q

)
γkz

k.

Then

∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

(
β − 1

[φ(k, λ)]n [k]q
λk

)
+

∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

(
β − 1

[φ(k, λ)]n [k]q
γk

)
=

∞∑
k=2

λk +

∞∑
k=1

γk = 1− λ1 ≤ 1,

and so f ∈ clco RH(n, q, β, λ).

Conversely, suppose that f ∈ clco RH(n, q, β, λ).

Set

λk =
[φ(k, λ)]n [k]q

β − 1
|ak|, (k = 2, 3, 4, ...)

and

γk =
[φ(k, λ)]n [k]q

β − 1
|bk|, (k = 1, 2, 3, ...).

Then note that by Theorem 2.2,
0 ≤ λk ≤ 1, (k = 2, 3, 4, . . .)

and
0 ≤ γk ≤ 1, (k = 1, 2, 3, . . .).

We define λ1 = 1 −
∞∑
k=2

λk −
∞∑
k=1

γk and note that by Theorem 2.2, λ1 ≥ 0. Consequently, we obtain f(z) =

∞∑
k=1

{λkhk(z) + γkgk(z)} as required.

For our next theorem, we need to define the convolution of two harmonic functions. For harmonic function of
the form

fn(z) = z +

∞∑
k=2

|ak|zk + (−1)n
∞∑
k=1

|bk|zk

and

Fn(z) = z +

∞∑
k=2

|Ak|zk + (−1)n
∞∑
k=1

|Bk|zk

we define their convolution

(fn ∗ Fn)(z) = fn(z) ∗ Fn(z) = z +

∞∑
k=2

|akAk|zk + (−1)n
∞∑
k=1

|bkBk|zk, (2.5)

using this definition, we show that the class RH(n, q, β, λ) is closed under convolution.

Theorem 2.5. For 1 < β ≤ α ≤ 2, let fn ∈ RH(n, q, β, λ) and Fn ∈ RH(n, q, α, λ).
Then (fn ∗ Fn)(z) ∈ RH(n, q, β, λ) ⊆ RH(n, q, α, λ).

Proof. Let fn(z) = z+

∞∑
k=2

|ak|zk+(−1)n
∞∑
k=1

|bk|zk be inRH(n, q, β, λ) andFn(z) = z+

∞∑
k=2

|Ak|zk+(−1)n
∞∑
k=1

|Bk|zk

be in RH(n, q, α, λ). Then the convolution (fn ∗ Fn)(z) is given by (2.5). We wish to show that the coefficients of
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fn ∗ Fn satisfy the required condition given in Theorem 2.2. For Fn(z) ∈ RH(n, q, α, λ), we note that |Ak| ≤ 1 and
|BK | ≤ 1. Now, for the convolution function (fn ∗ Fn)(z) we have

∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|akAk|+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bkBk| ≤
∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bk|

≤ 1, (since f ∈ RH(n, q, β, λ)).

Therefore (fn ∗ Fn)(z) ∈ RH(n, q, β, λ) ⊆ RH(n, q, α, λ).

Theorem 2.6. The class RH(n, q, β, λ) is closed under convex combination.

Proof. For i = 1, 2, 3... let fni
(z) ∈ RH(n, q, β, λ) where fi(z) is given by

fni(z) = z +

∞∑
k=2

|aki |zk + (−1)n
∞∑
k=1

|bki |zk.

Then by Theorem 2.2, we have

∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|aki |+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bki | ≤ 1.

For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fni
may be written as

∞∑
i=1

tifi(z) = z +

∞∑
k=2

( ∞∑
i=1

ti|aki |

)
zk + (−1)n

∞∑
k=1

( ∞∑
i=1

ti|bki |

)
zk.

Then by Theorem 2.2, we have

∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

( ∞∑
i=1

ti|aki |

)
+

∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

( ∞∑
i=1

ti|bki |

)

=

∞∑
i=1

ti

( ∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|aki |+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bki |

)

≤
∞∑
i=1

ti = 1.

Therefore
∞∑
i=1

tifni
(z) ∈ RH(n, q, β, λ).

3. A Family of Class Preserving Integral Operator

Let f(z) = h(z) + g(z) ∈ SH be given by (1.1) then F (z) defined by relation

F (z) =
c+ 1

zc

∫ z

0

tc−1h(t)dt+
c+ 1

zc

∫ z

0

tc−1g(t)dt, (c > −1). (3.1)

Theorem 3.1. Let f(z) = h(z) + g(z) ∈ SH be given by (1.3) and f(z) ∈ RH(n, q, β, λ) then F (z) be defined by (3.1) also
belong to RH(n, q, β, λ).
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Proof. Let

f(z) = z +

∞∑
k=2

|ak|zk + (−1)n
∞∑
k=1

|bk|zk

be in RH(n, q, β, λ) then by Theorem 2.2, we have

∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bk| ≤ 1. (3.2)

By definition of F (z) we have

F (z) = z +

∞∑
k=2

c+ 1

c+ k
|ak|zk + (−1)n

∞∑
k=1

c+ 1

c+ k
|bk|zk.

Now
∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

(
c+ 1

c+ k
|ak|
)

+

∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

(
c+ 1

c+ k
|bk|
)
≤
∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bk|

≤1.

Thus F (z) ∈ RH(n, q, β, λ).

Definition 3.1. Let f = h+ g be defined by (1.1). Then, the q-Jackson integral operator Fq is defined by the relation

Fq(z) =
[c]q
zc+1

∫ z

0

tch(t)dqt+
[c]q
zc+1

∫ z

0

tcg(t)dqt, (3.3)

where [c]q is the q-number defined by (1.6).

Theorem 3.2. Let f(z) = h(z)+g(z) be given by (1.3) and f(z) ∈ RH(n, q, β, λ) where 1 < β ≤ 2, 0 < q < 1, 0 ≤ λ < 1.
Then Fq defined by (3.3) is also in the class RH(n, q, β, λ).

Proof. Let

f(z) = z +

∞∑
k=2

|ak|zk + (−1)n
∞∑
k=1

|bk|zk

be in RH(n, q, β, λ). Then by Theorem 2.2, the condition (3.2) is satisfied.
From the representation (3.3) of Fq , it follows that,

Fq(z) = z +
∞∑
k=2

[c]q
[k + c+ 1]q

|ak|zk + (−1)n
∞∑
k=1

[c]q
[k + c+ 1]q

|bk|zk.

Since

[k + c+ 1]q − [c]q =

k+c∑
i=0

qi −
c−1∑
i=0

qi =

k+c∑
i=c

qi > 0

[k + c+ 1]q > [c]q or
[c]q

[k + c+ 1]q
< 1.

Now

∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

[c]q
[k + c+ 1]q

|ak|+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

[c]q
[k + c+ 1]q

|bk| ≤
∞∑
k=2

[φ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[φ(k, λ)]n [k]q
β − 1

|bk| ≤ 1.

Thus the proof of Theorem 3.2 is established.
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4. Conclusion
This paper deals with a new class of harmonic univalent functions defined by using q− calculus. Coefficient

condition, extreme points, distortion bounds, convolution and convex combination are determined for this class.
We also study a class preserving integral operator for this class.

Motivated by a recently-published survey-cum-expository review article by Srivastava [17], the interested
reader’s attention is drawn toward the possibility of investigating the basic (or q−) extensions of the results which
are presented in this paper. However, as already pointed out by Srivastava [17], their further extensions using the
so-called (p, q)− calculus will be rather trivial and inconsequential variations of the suggested extensions which are
based upon the classical q− calculus, the additional parameter p being redundant or superfluous (see, for details,
[[17], p. 340]).
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