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ABSTRACT

We show that J-trajectories in a locally conformal Kähler manifold with parallel anti Lee field are
of osculating order at most 3.
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1. Introduction

The classical theory of static electromagnetism is generalized to arbitrary dimensional Riemannian geometry.
A magnetic field is a closed two-form on a Riemannian manifold. A trajectory of the Lorentz equation

∇γ′γ′ = qφγ′

is called a magnetic trajectory. Here q is a constant (called the strength), φ is the Lorentz force corresponding to the
magnetic field and ∇ denotes the Levi-Civita connection.

More generally, let (M, g, F ) be a Riemannian manifold with a g-skew symmetric endomorphism field F .
Then a smooth curve γ in M is said to be a F -trajectory if it satisfies (cf. [6]):

∇γ′γ′ = qFγ′.

When M = (M,J, g) is an almost Kähler manifold, then J-trajectories are nothing but Kähler magnetic
trajectories with respect to the Kähler magnetic field Ω = g(·, J). One of the fundamental results on Kähler
magnetic field is that every (unit speed) Kähler magnetic trajectory in a Kähler manifold is a holomorphic
circle, that is, a Frenet curve of osculating order 2 with constant curvature and contant complex torsions. Based
on this fundamental result, global behaviors of circles in Kähler manifolds, especially complex space forms
have been studied intensively.

As is well known, complex manifolds do not have Kähler metrics, in general. For instance, compact complex
surfaces of odd first Betti number can not admit any Kähler metric compatible to the complex structure. As a
generalization or alternative of Kähler metrics, locally conformal Kähler metrics (LCK metrics, in short) have
been paid much attention of Differential Geometers. On an LCK manifold, there exist two characteristic vector
fields, called the Lee field and anti Lee field, respectively.

Differential geometric studies on J-trajectories in LCK manifolds, i.e., complex manifolds equipped with
LCK metric was initiated by Ateş, Munteanu and Nistor [6]. They studied J-trajectories in the product manifold
S3 ×R of the unit 3-sphere S3 and the real line R. The product manifold S3 ×R has naturally defined LCK
structure derived from the standard Sasakian structure of S3. In particular S3 ×R is a typical example of
Vaisman manifold, that is, an LCK manifold with parallel Lee field. Vaisman showed that the universal covering
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of a complete Vaisman manifold is holomorphically isometric to a product manifold N ×R, where N is a
homothetic change of a Sasakian manifold [29]. Motivated by Vaisman’s theorem and a work [6], we studied
J-trajectories in Vaisman manifolds in our previous work [15].

On the other hand, products of the form N ×R where N is a Kenmotsu manifold are LCK manifolds with
parallel anti Lee fields. Based on this fundamental fact, in this paper we study J-trajectories on LCK manifolds
with parallel anti Lee fields. In particular we study J-trajectories in the product manifolds of Kenmotsu
manifolds and the real line.

2. Preliminaries

2.1. LCK manifolds

Let M = (M, g, J) be a Hermitian manifold with Kähler form Ω:

Ω(X,Y ) = g(X,JY ).

Then M is said to be a locally conformal Kähler manifold (LCK manifold, in short) if there exits an open covering
{Uα}α∈Λ of M and a family of smooth functions σα : Uα → R such that

d(e−σαΩ) = 0 on Uα

for all α [28]. Namely the local conformal change (Uα, J |Uα , e−σαg) is Kähler.
In case Uα = M , then M is said to be a globally conformal Kähler manifold (GCK, in short).
On an LCK manifold ω = dσα is globally defined and satisfies

dΩ = ω ∧ Ω. (2.1)

The closed 1-form ω is called the Lee form.

Proposition 2.1. Let M be a Hermitian manifold of complex dimension n ≥ 2. Then

• In case n ≥ 3, if there exits a 1-form ω satisfying (2.1), then M is an LCK manifold with Lee form ω.
• In case n = 2, there exits a 1-form ω satisfying (2.1). If ω is closed then M is an LCK manifold with Lee form ω.

Remark 2.1. On an LCK manifold M , ω defines a de Rham cohomology class [ω] ∈ H1(M ;R). We can see that M
is GCK if and only if [ω] = 0.

Let us denote byB the vector field metrically dual to ω and call it the Lee field or Lee vector field. The vector field
A = JB is called the anti Lee field (or anti Lee vector field). For the anti Lee field A, we use the sign convention
of [23].

Even if the conformal change e−σαg of g is locally defined, the Levi-Civita connection ∇̂ of e−σαg is globally
defiend on M . The connection ∇̂ is called the Weyl connection of (M,J, g) and given by

∇̂XY = ∇XY −
1

2
(ω(X)Y + ω(Y )X − g(X,Y )B) .

Since ∇̂J = 0, we get

(∇XJ)Y =
1

2
(ω(JY )X − ω(Y )JX + g(X,Y )A− Ω(X,Y )B) . (2.2)

2.2. LCK manifolds with parallel Lee fields

Definition 2.1. An LCK manifold M is said to be a Vaisman manifold if its Lee form is parallel with respect to
the Levi-Civita connection.

Vaisman proved the following fundamental theorem.

Theorem 2.1. Let M be a complete Vaisman manifold. Then

• the Lee field B and anti Lee field A are infinitesimal automorphisms of (g, J) and
• the universal covering of M is a Riemannian product of R and an α-Sasakian manifold with |α| = |B|/2.
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2.3. LCK manifolds with parallel anti Lee fields

Since the Lee field B is metrically equivalent to the Lee form ω, the Vaisman property is equivalent to the
parallelism of B. Our interest is LCK manifolds with parallel anti Lee field. If ∇A = 0, then by (2.2), we have
[17]:

∇ω =
1

2

(
|B|2g − ω ⊗ ω − ω(J)⊗ ω(J)

)
. (2.3)

LCK manifolds with parallel anti Lee field are characterized as follows [17]:

Proposition 2.2 (Kashiwada). On an LCK manifoldM with parallel anti Lee fieldA, the distributionsD1 andD2 locally
generated by ω ◦ J = 0, respectively ω = 0 are integrable. Their leaves are non-compact totally geodesic real hypersurfaces
with an induced β-Kenmotsu structure and totally umbilical complex hypersurfaces on which the induced structure is
Kähler, where |B| = 2|β|.

Such LCK structures are naturally appear on the product of Kenmotsu manifolds and the real line.

2.4. Kenmotsu manifolds

For our use, here we recall basic materials on Kenmotsu manifolds [19].
Let N be a (2n− 1)-dimensional almost contact metric manifold with structure tensor field (ϕ, ξ, η, ḡ). These

structure tensor fields satisfy

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0, ḡ(ϕX,ϕY ) = ḡ(X,Y )− η(X)η(Y )

for all X , Y ∈ X(N).
The fundamental 2-form Φ of N is defined by

Φ(X,Y ) = ḡ(X,ϕY ).

Let us consider a Riemannian product manifold M = (N ×R, ḡ + dt2). We equip an almost complex structure
J on M by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
, X ∈ X(N), f ∈ C∞(M). (2.4)

Then (M,J) equipped with the product metric g = ḡ + dt2 is an almost Hermitian manifold with Kähler form
Ω = Φ− 2η ∧ dt.

An almost contact metric manifold N is said to be normal if J is integrable.

Definition 2.2. An almost contact metric manifold N is said to be a β-Kenmotsu manifold if

(∇Xϕ)Y = −β (Φ(X,Y )ξ + η(Y )ϕX) , ∇Xξ = β(X − η(X)ξ). (2.5)

Here β is a nozero constant. 1-Kenmotsu manifolds are referred as to Kenmotsu manifolds.

From this definition one can deduce that div ξ = 2β(n− 1). Hence β-Kenmotsu manifolds can not be
compact. In addition, β-Kenmotsu manifolds are normal and satisfy

dη = 0, dΦ = 2β η ∧ Φ.

The action of local flows generated by ξ on the structure tensor fields is described as

£ξg = 2β(g − η ⊗ η), £ξϕ = 0, £ξη = 0.

Thus g is not Killing vector field.

Example 2.1 (Warped product). Let Ñ = (Ñ , J̃ , g̃) be a Kähler manifold. We consider a warped product
N = R×f Ñ with base R and standard fiber Ñ . Let z be a coordinate of R. We choose the warping function
f(z) as f(z) = cez , where c 6= 0 is a constant. The warped product metric is denoted by ḡ = dz2 + f(z)2g̃.

We introduce an almost contact structure (ϕ, ξ, η) compatible to g̃ in the following manner:

ξ =
∂

∂z
, η = dz,
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On the tangent space T(z,p̃)N = TzR⊕ Tp̃Ñ of N = R×f Ñ at (z, p̃), we introduce a linear endomorphism ϕ(z,p̃)

by

ϕ(z,p̃)X =

{
0 on TzR,
exp(zξ)∗p̃ ◦ J̃∗p̃ ◦ exp(−zξ)∗p̃X, on Tp̃Ñ .

Then the correspondence p 7−→ ϕp is a smooth endomorphism field on N and (ϕ, ξ, η, ḡ) is a Kenmotsu
structure.

Kenmotsu [19] showed the following local structure theorem:

Theorem 2.2. Let N be a Kenmotsu manifold. Then for any point p̄ ∈ N there exists a neighborhood U of p and positive
number ε such that U is represented as a warped product U = (−ε, ε)×f Ñ with warping function f(w) = cew for some
c ∈ R× and Ñ is a Kähler manifold.

2.5.

Let us consider a Riemannian product M = N ×R of a β-Kenmotsu manifold N with the real line R. We
equip an almost complex structure J on M defined by (2.4). Then, since N is normal, M is a Hermitian
manifold. The exterior derivative dΩ of the Kähler form Ω of M = N ×R is computed as

dΩ = d(Φ− 2η ∧ dt) = 2β η ∧ Φ

On the other hand we notice that
η ∧ Ω = η ∧ (Φ− 2η ∧ dt) = η ∧ Φ.

Hence Ω satisfies
dΩ = (2βη) ∧ Ω.

This formula shows that M is an LCK manifold with Lee form ω = 2βη. The corresponding Lee field and anti
Lee field are B = 2βξ and A = 2β∂t, respectively. Thus if we choose β = ±1/2, then |B| = |A| = 1.

Since the metric g is the product one, Levi-Civita connection ∇ of g satisfies

∇AX = ∇XA = 0

for any X ∈ X(N). In particular ∇A = 0. Thus (M,J, g) is an LCK manifold with parallel anti Lee field. The
covariant derivative ∇J is computed as follows:

Proposition 2.3. Let M = N ×R be LCK manifold with β-Kenmotsu base manifold N . Then the covariant derivative
∇J is given by

1. For all X , Y ∈ X(N),

(∇XJ)Y = (∇Xϕ)Y + βg(ϕX,ϕY )∂t = −β (η(Y )ϕX + Φ(X,Y )ξ − g(ϕX,ϕY )∂t ) .

2. In particular, for all X , Y ∈ X(N),

(∇BJ)Y = 0, (∇XJ)B = −2β2ϕX.

3. For all X , Y ∈ X(N),

(∇AJ)Y = 0, (∇XJ)A = −1

2
|B|2X + 2β2η(X)ξ.

4. (∇AJ)A = 0. Hence ∇AJ = 0.

2.6.

Let us realize the hyperbolic 3-space H3(−β2) of constant curvature −β2 as a homogeneous Kenmotsu
manifold in the following manner. The hyperbolic 3-space H3(−β2) is identified with the solvable Lie group

 e−βz 0 x
0 e−βz y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 ⊂ GL3R (2.6)
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equipped with the left invariant metric

g = e2βz(dx2 + dy2) + dz2.

As a Riemannian manifold H3 is the warped product R×eβz R2. The group operation of H3(−β2) is given
explicitly by

(x, y, z) · (x̃, ỹ, z̃) = (x+ e−βzx̃, y + e−βz ỹ, z + z̃). (2.7)

Let us define a representation ρ of (R(z),+) over R2(x, y) by

ρ(z) =

(
e−βz 0

0 e−βz

)
.

Then as a Lie group, H3(−β2) is a semi-direct product Rnρ R2.
The Lie algebra h3(−β2) of H3(−β2) is

 −βw 0 u
0 −βw v
0 0 0

 ∣∣∣∣ u, v, w ∈ R

 .

Take an orthonormal basis

E1 =

 0 0 1
0 0 0
0 0 0

 , E2 =

 0 0 0
0 0 1
0 0 0

 , E3 =

 −β 0 0
0 −β 0
0 0 0

 .

We denote by ei the left invariant vector field on H3(−β2) which is obtained by left translation of Ei. Then we
have

e1 = e−βz
∂

∂x
, e2 = e−βz

∂

∂y
, e3 =

∂

∂z
, (2.8)

[e1, e2] = 0, [e2, e3] = β e2, [e3, e1] = −β e1. (2.9)

The Levi-Civita connection ∇ of H3(−β2) is described as

∇e1e1 = −β e3, ∇e1e2 = 0, ∇e1e3 = β e1,

∇e2e1 = 0, ∇e2e2 = −β e3, ∇e2e3 = β e2, (2.10)

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

These formulas show that the Lie algebra h3(−β2) is non-unimodular.
Define an endomorphism field ϕ by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

Next we put ξ = e3 and η = dz. Then (ϕ, ξ, η, ḡ) is a left invariant almost contact metric structure on H3(−β2).
One can check that (H3(−β2), ϕ, ξ, η, ḡ) is normal and satisfies

dη = 0, dΦ = 2βη ∧ Φ.

One can check that the structure (ϕ, ξ, η, ḡ) is normal. Hence H3(−β2) is β-Kenmotsu manifold if β 6= 0. In
particular, when β = −1, H3(−1) is a Kenmotsu manifold. The homogeneous β-Kenmotsu manifold H3(−β2)
is interpreted as the warped product H3(−β2) = R(z)×eβz E2(x, y).

3. J-trajectories on LCK manifolds

3.1. Frenet curves in almost Hermitian manifolds

Definition 3.1. If γ is a curve in a Riemannian manifold M , parametrized by arc length s, we say that γ is a
Frenet curve of osculating order r when there exist orthonormal vector fields E1, E2, · · · , Er along γ such that

γ′ = E1, ∇γ′E1 = κ1E2, ∇γ′E2 = −κ1E1 + κ2E3, · · · , (3.1)
∇γ′Er−1 = −κr−2Er−2 + κr−1Er, ∇γ′Er = −κr−1Er−1,

where κ1, κ2, · · · , κr−1 are positive C∞ functions of s. The function κj is called the j-th curvature of γ.
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A geodesic is regarded as a Frenet curve of osculating order 1. A circle is defined as a Frenet curve of osculating
order 2 with constant κ1. A helix of order r is a Frenet curve of osculating order r, such that all the curvatures
κ1, κ2, · · · , κr−1 are constant.

For Frenet curves in almost Hermitian manifolds, we recall the following notion:

Definition 3.2. Let γ(s) be a Frenet curve of osculating order r > 0 in an almost Hermitian manifold (M,J, g).
The complex torsions τij (1 ≤ i < j ≤ r) are smooth functions along γ defined by τij = g(Ei, JEj) (see [20]). A
helix of order r in (M,J, g) is said to be a holomorphic helix of order r if all complex torsions are constant. In
particular holomorphic helices of order 2 are called holomorphic circles.

For more informations on circles and helices in complex space forms, we refer to [1, 2, 3, 4, 20].

3.2. J-trajectory equation

Let γ(u) be a smooth curve in an almost Hermitian manifold M = (M,J, g). A curve γ(u) is said to be a
J-trajectory with strength q if it satisfies

∇γ′γ′ = qJγ′

for some constant q. One can see that every J-trajectory has constant speed. Thus hereafter we parametrize
J-trajectories by arc length parameter s.

Note that when M is an almost Kähler manifold, then its Kähler form Ω is referred as to the Kähler magnetic
field on M . J-trajectories are called Kähler magnetic trajectories with respect to the Kähler magnetic field Ω.

Now we start our investigation on curvature properties of J-trajectories in an LCK manifold M with parallel
anti Lee field.

First we observe that the first curvature κ1 is constant |q| by comparing the J-trajectory equation and the
Frenet formula (3.1). The Frenet formula implies that the first normal vector field E2 is given by E2 = ±Jγ′. For
simplicity of description, hereafter we choose E2 = Jγ′ and q = κ1 > 0.

Remark 3.1. If a Frenet curve γ in an almost Hermitian manifold (M,J, g) is a J-trajectory, then

τ12 = g(E1, JE2) = −1.

In case M is a Kähler manifold, then every J-trajectory is a holomorphic circle. For global behaviours of circles
in complex projective space, we refer to an article [2] by Adachi, Maeda and Udagawa.

Now let γ(s) be a non-geodesic J-trajectory in an LCK manifold with E2 = Jγ′. Then by using the formula
(2.2) and Frenet equations, we have

2(∇γ′J)γ′ = 2κ2E3 = ω(E2)E1 − ω(E1)E2 +A. (3.2)

Note that (3.2) is rewritten as
2κ2E3 = A− g(A,E1)E1 − g(A,E2)E2. (3.3)

The equation (3.2) implies that when M is Kähler, κ2 = 0. This conclusion is consistent with the fact “every
J-trajectory of a Kähler manifold is a holomorphic circle" mentioned in Remark 3.1.

Moreover from (3.2) we notice that γ is of order 2 if and only if

A = g(A,E1)E1 + g(A,E2)E2.

Proposition 3.1. Let γ be a non-geodesic J-trajectory with strength q > 0 parametrized by arc length in an LCK manifold
M with parallel anti Lee field. Then the first and second curvatures of γ are given by

κ1 = q, κ2 =
1

2

√
|A|2 − ω(γ′)2 − ω(Jγ′)2 =

1√
2

√
(∇γ′ω)γ′. (3.4)

In particular κ1 is constant.

• The J-trajectory is a Frenet curve of osculating order 2 if and only if (∇γ′ω)γ′ = 0.
• Assume that a J-trajectory is of order r ≥ 3. If ω(γ′) = 0, then the second curvature κ2 is constant.

Proof. Under the parallelism of A, from (3.2) and (2.3), we have

4κ2
2 = |A|2 − ω(E1)2 − ω(E2)2 = |A|2 − g(A,E1)2 − g(A,E2)2 = 2(∇γ′ω)γ′. (3.5)
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This formula shows that κ2 = 0 if and only if (∇γ′ω)γ′ = 0.
Next assume that γ is of order r ≥ 3. By the parallelism of A, |A|2 is constant. Assume that κ2 6= 0.

Differentiating (3.5) by s, we get

8κ2κ
′
2 =− d

ds

2∑
i=1

g(A,Ei)
2 = −2

2∑
i=1

g(A,Ei)g(A,∇γ′Ei)

=− 2 {g(A,E1)g(A, κ1E2) + g(A,E2)g(A,−κ1E1 + κ2E3)}
=− 2g(A,E2)g(A, κ2E3) = −g(A,E2)g(A,ω(E2)E1 − ω(E1)E2 +A)

=− g(A,E2) {ω(E2)g(A,E1)− ω(E1)g(A,E2)}
=− g(A,E2)

{
|A|2 − g(A,E1)2 − g(A,E2)2

}
=− 4κ2

2 g(A,E2) = −4ω(γ′)κ2
2.

Thus κ2 is constant if and only if ω(γ′) = 0.

Now we arrive at the main result of this paper.

Theorem 3.1. Let γ be a non-geodesic J-trajectory with strength q > 0 parametrized by arc length in an LCK manifold
M with parallel anti Lee field. Then the order of γ is at most 3. All the complex torsions of γ are constant.

Proof. Assume that the order of γ is r ≥ 3 and κ2 6= 0. Then differentiating the left hand side of the equation
(3.3) along γ, we get

∇γ′(2κ2E3) = 2(κ′2E3 + κ2∇γ′E3) = 2
(
−κ2

2E2 + κ′2E3 + κ2κ3E4

)
.

Here we used the Frenet equations (3.1).
On the other hand, differentiating the right hand side of the equation (3.3) along γ, we get

∇γ′(A− g(A,E1)E1 − g(A,E2)E2)

=(g(A,E2)κ2 − g(A,E1)′)E1 − (g(A,E2)′ + g(A,E1)κ1)E2 − g(A,E2)κ2E3

=κ2ω(JE3)E2 + 2κ′2E3.

Here we used ∇A = 0 and the formula g(A,E2) = ω(γ′)κ2 = −2κ′2. Using (3.3) and (3.5), we get

∇γ′(A− g(A,E1)E1 − g(A,E2)E2) = −2κ2
2E2 + 2κ′2E3.

Henceforth we obtain κ2κ3E4 = 0.
The complex torsions are computed as

τ13 = g(E1, JE3) = −g(JE1, E3) = −g(E2, E3) = 0, τ23 = g(E2, JE3) = −g(JE2, E3) = g(E1, E3) = 0.

In our previous paper we proved that non-geodesic J-trajectories in a Vaisman manifold are Frenet curves
of osculating order at most 4 [15].

4. J-trajectories in the product manifolds

In this section we study J-trajectories in the product manifold M = N ×R with β-Kenmotsu base manifold.
Let γ(s) = (γ(s), t(s)) be a unit speed non-geodesic J-trajectory in M = N ×R, where γ(s) is a curve in an

almost contact metric manifold N . Then the unit tangent vector field T (s) = γ′(s) is expressed as

T (s) = γ′(s) = γ′(s) + t′(s)
∂

∂t
.

The arc length parametrization condition is

ḡ(γ′(s), γ′(s)) + t′(s)2 = 1. (4.1)
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The acceleration vector field is computed as

∇γ′γ′ = ∇γ′γ′ + t′′(s)
∂

∂t
.

On the other hand, we have

Jγ′ = ϕγ′ − t′ξ + η(γ′)
∂

∂t
. (4.2)

From these we deduce the following proposition [15]:

Proposition 4.1. An arc length parametrized curve γ(s) is a J-trajectory in M = N ×R with almost contact metric
base manifold N if and only if it satisfies

∇γ′γ′ = q(ϕγ′ − t′ξ), t′′ = qη(γ′). (4.3)

In particular, when t(s) = constant, then the J-trajectory equation reduces to almost Legendre ϕ-trajectory
equation for γ (see Appendix).

Now let us assume that the base manifold is a β-Kenmotsu manifold.

Proposition 4.2. Let γ be a non-geodesic J-trajectory with strength q 6= 0 parametrized by arc length in M = N ×R
with β-Kenmotsu base manifold N . Then γ has the curvatures

κ1 = |q|, κ2 = |βϕγ′|.

Proof. From Proposition 3.1, we have 2κ2
2 = (∇γ′ω)γ′. Next since ω = 2βη, we get

(∇γ′ω)γ′ = 2β(∇γ′η)γ′ = 2β2(ḡ(γ′, γ′)− η(γ′)2) = 2β2ḡ(ϕγ′ϕγ′).

Let θ(s) be the angle function between ξ and γ′. Then we have η(γ′) = |γ′| cos θ. The second curvature κ2 is
rewritten as

κ2 = |β sin θ γ′|

in terms of θ.
Here we compute the derivative of cos θ. We may consider the case cos θ 6= 0 and sin θ 6= 0. By using the

formulas
d

ds
η(γ′) = −qt′, d

ds
|γ′| = −qt

′η(γ′)

|γ′|
,

we get
d

ds
cos θ = − qt′

|γ′|3
(|γ′|2 − η(γ′)2) = −qt

′ sin2 θ

|γ′|2
.

Proposition 4.3. Let γ = (γ, t) be a J-trajectory with strength q > 0 parametrized by arc length in M = N ×R with
β-Kenmotsu base manifold N . Assume that |γ′| 6= 0 and sin θ 6= 0. Then θ is constant if and only if t is constant. In such
a case cos θ = 0.

5. J-trajectories in H3 × R

5.1.

In this section we describe J-trajectories in the LCK manifold M4(β) = H3(−β2)×R. The LCK manifold
M4(β) is realized as R4(x, y, z, t) with metric

e2βz(dx2 + dy2) + dz2 + dt2

and complex structure
Je1 = e2, Je2 = −e1, Je3 = e4, Je4 = −e3.

Here
e1 = e−βz

∂

∂x
, e2 = e−βz

∂

∂y
, e3 =

∂

∂z
, e4 =

∂

∂t
.
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The left invariant orthonormal frame field {e1, e2, e3, e4} satisfies

∇e1e1 = −β e3, ∇e1e2 = 0, ∇e1e3 = β e1, ∇e1e4 = 0,

∇e2e1 = 0, ∇e2e2 = −β e3, ∇e2e3 = β e2, ∇e2e4 = 0, (5.1)

∇e3e1 = ∇e3e2 = ∇e3e3 = ∇e3e4 = 0,

∇e4e1 = ∇e4e2 = ∇e4e3 = ∇e4e4 = 0.

Note that M4(β) is realized as a solvable Lie group


e−βz 0 x 0
0 e−βz y 0
0 0 1 0
0 0 0 et


∣∣∣∣∣∣∣∣ x, y, z, t ∈ R

 ⊂ GL4R

Moreover M4(β) is also regarded as a warped product

R2(z, t)×f R2(x, y)

with warping function f(z, t) = exp(βz). The Lee form is ω = 2β dt. The corresponding Lee field and anti Lee
fields are B = 2βξ and A = 2β∂t, respectively.

5.2.

Let γ(s) = (γ(s), t(s)) = (x(s), y(s), z(s), t(s)) be a J-trajectory in M4(β). We express the unit tangent vector
field T (s) = γ′(s) as

T (s) = T1(s)e1 + T2(s)e2 + T3(s)e3 + T4(s)e4,

where
T1(s) = eβz(s)x′(s), T2(s) = eβz(s)y′(s), T3(s) = z′(s), T4(s) = t′(s).

The unit speed condition is

T1(s)2 + T2(s)2 + T3(s)2 + T4(s)2 = e2βz(s)(x′(s)2 + y′(s)2) + z′(s)2 + t′(s)2 = 1.

By using the table (5.1), J-trajectory equation is deduced as the system

T ′1 + βT3T1 = −qT2, T ′2 + βT3T2 = qT1, T ′3 − β(T 2
1 + T 2

2 ) = −qT4, T ′4 = qT3. (5.2)

The second curvature κ2 is computed as

κ2(s) = |βϕγ′(s)| = |β|
√
T1(s)2 + T2(s)2 = |β| eβz(s)

√
x′(s)2 + y′(s)2. (5.3)

Example 5.1 (Trajectories of order 2). From (5.3) equation one can see that γ is of order 2 if and only if x(s) and
y(s) are constant. Here we determine J-trajectories with q > 0 and κ2 = 0. Such a J-trajectory is expressed as

γ(s) = (x0, y0, z(s), t(s))

for some constants x0 and y0. The system (5.2) is reduced to

T ′3 = −qT4, T ′4 = qT3.

From this reduced system we get

(T3(s), T4(s)) = (R cos(qs),−R sin(qs))

for some nonzero constant R. Thus the J-trajectory γ(s) satisfying the initial condition γ(0) = (x0, y0, z0, t0) is(
x0, y0, z0 +

R

q
sin(qs), t0 +

R

q
(cos(qs)− 1)

)
.

This is a circle in the totally geodesic flat plane R2(z, t). Note that this circle is a holomorphic circle in
H3(−β2)×R. The contact angle θ of γ is a non-constant and given by θ(s) = qs.
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Example 5.2 (Helical J-trajectories). Next we look for J-trajectories with q > 0 and constant κ2 > 0. From
Proposition 3.1, κ2 is a positive constant if and only if ω(γ′) = 0. Note that γ is almost Legendre.

In the present case, we have ω(γ′) = 2βT3(s) = 2βz′(s). Thus z(s) = z0. In this case the system (5.2) is reduced
to

T ′1 = −qT2, T ′2 = qT1, β(T 2
1 + T 2

2 ) = qT4, T ′4 = 0.

Thus the J-trajectory γ(s) satisfying the initial condition γ(0) = (x0, y0, z0, t0) is(
x0 +

√
qR

β
(cos(qs)− 1), y0 +

√
qR

β
sin(qs), z0, t0 +Rs

)
,

where R is a non-zero constant such that R/β > 0. The J-trajectory is a holomorphic helix with κ1 = q and
κ2 =

√
q|R|.

5.3.

Let us return general situation. The case T 2
1 + T 2

2 = 0 was treated in Example 5.1, we may consider the case
T 2

1 + T 2
2 6= 0. From the first and second equations of (5.2), we get

T1T
′
1 + T2T

′
2 = −βT3(T 2

1 + T 2
2 ).

The case T 2
1 + T 2

2 = 0 was treated in Example 5.1, we may consider the case T 2
1 + T 2

2 6= 0. We get

(T 2
1 + T 2

2 )′

T 2
1 + T 2

2

= −2βT3.

Integrating this equations, we have

log(T 2
1 + T 2

2 ) = −2βz(s) + constant.

Thus we may write
T1(s)2 + T2(s)2 = r2 exp (−2βz(s))

for some positive constant r. This fact implies that

x′(s)2 + y′(s)2 = r2 exp(−4βz(s)).

The functions T1 and T2 is expressed as

T1(s) = r exp(−βz(s)) cosψ(s), T2(s) = r exp(−βz(s)) sinψ(s) (5.4)

for some function ψ(s).
If cosψ = 0, then T1 = 0 and hence the J-trajectory equations (5.2) become

qT2 = 0, T ′2 = −βT3T2, T ′3 − β(T 2
1 + T 2

2 ) = −qT4, T ′4 = qT3.

Thus q should be 0. Hence γ is a geodesic (see Appendix B).
Assume that cosψ 6= 0, then by using the first and second equations of (5.2), we have

1

cos2 ψ

dψ

ds
=

d

ds
tanψ =

d

ds

(
T2

T1

)
=
T ′2T1 − T2T

′
1

T 2
1

=
q(T 2

1 + T 2
2 )

T 2
1

= q(1 + tan2 ψ) =
q

cos2 ψ
.

These computation imply that ψ′ = q. Hence we obtain ψ(s) = qs+ ψ0 for some constant ψ0.

Theorem 5.1. Let z(s) be a solution to the second order ordinary differential equation:

d2z

ds2
= −q2z + βr2e−2βz + C, (5.5)

where C is a constant. Then the curves (x(s), y(s), z(s), t(s)) defined by

x(s) =r

∫
exp(−2βz(s)) cos(qs+ ψ0) ds,

y(s) =r

∫
exp(−2βz(s)) sin(qs+ ψ0) ds,

t(s) =q

∫
z(s) ds+ Cs+ t0

is a J-trajectory in H3(−β2)×R.
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Proof. The third equation
T ′3 = β(T 2

1 + T 2
2 )− qT4,

of (5.2) is rewritten as
d2z

ds2
= β(T 2

1 + T 2
2 )− qT4 = βr2e−2βz − qT4.

From the fourth equation of (5.2), we have

T4(s) = qz(s) + C,

where C is a constant. Hence we obtain (5.5).

Remark 5.1. In this section we investigate J-trajectories in the solvable Lie group M4(β) = H3 ×R3. The
solvable Lie group model (2.6) of the hyperbolic 3-space belong to the following two-parameter family of
solvable Lie groups:

S(α, β) =


 e−αz 0 x

0 e−βz y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

In fact H3(−β2) = S(β, β).
Solvmanifolds with LCK structures have been studied extensively. de Andrés, Cordero, Fernández, and

Mencía [5] gave an interesting family of 4-dimensional solvable Lie groups equipped with LCK structure.
Let G(k, n) be the connected solvable Lie group consisting of matrices of the form

ekz 0 0 0 x
−nyekz 1 0 0 t

0 0 e−kz 0 y
0 0 0 1 z
0 0 0 0 1

 ,

where k ∈ R satisfies cosh k ∈ Z+ \ {1} and n ∈ Z.
Take a left invariant one-forms

ϑ1 = dx− kxdz, ϑ2 = dy + kydz, ϑ3 = dz, ϑ4 = dt+ knxydz + nxdy.

Then g = (ϑ1)2 + (ϑ2)2 + (ϑ3)2 + (ϑ4)2 is a left invariant Riemannian metric on G(k, n). Denote by
{E1, E2, E3, E4} the left invariant orthonormal frame field metrically dual to {ϑ1, ϑ2, ϑ3, ϑ4}. Then

JE1 =
nλ

k
E4, JE2 = E3, JE3 = − k

nλ
E1, JE4 = −E2.

is a left invariant g-orthogonal complex structure on G(k, n). The resulting homogenous Hermitian manifold
G(k, n) is LCK if n 6= 0. Note that G(k, n) is represented as a semi-direct product H nρ R2

H =

{(
e−kz y

0 1

) ∣∣∣∣ y, z ∈ R
}

with abelian group R2(x, t) via the representation

ρ

(
e−kz y

0 1

)
=

(
ekz 0
−nyekz 1

)
.

The LCK solvable Lie group G(k, n) admits a compact quotient G(k, n)/Γ (k, n) [5] (see also [26, Theorem 2,
Remark 3.1]). Moreover there exits a compact quotient S(−k, k))/Γ (k) so that G(k, n)/Γ (k, n)→ S(−k, k)/Γ (k)
is a principal circle bundle (see [9, §2.4]).

Kamishima [16] proved that the compact quotient M(k, 1) = G(k, 1)/Γ is holomorphically isometric to Inoue
surface equipped with the LCK structure introduced by Tricerri [27]. Note that M(k, 1) is not Vaisman.
Moreover M(k, 1) is holomorphically isometric to a compact quotient of Sol41. Here Sol41 is one of the model
spaces of 4-dimensional geometries, see [10, 30]. Wall proved that Sol41 admits no compatible Kähler structure
[30, Theorem 1.2].

Kasuya proved that Oeljeklaus-Toma manifolds [21] (of type (s, 1)) are solvmanifolds and have no Vaisman
structures [18]. Note that Oeljeklaus-Toma manifolds of type (1, 1) are Inoue surfaces.

It would be interesting to study J-trajectories in LCK solvmanifolds, especially periodic J-trajectories in
G(k, n)/Γ (k, n).
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A. ϕ-trajectories on Kenmotsu manifolds

A.1.

Let N be an almost contact metric manifold with Levi-Civita connection ∇. A curve γ(u) in N is said to be a
ϕ-trajectory if it satisfies

∇γ′γ′ = q̄ϕγ′

for some constant q̄. In case the fundamental 2-form Φ is closed, then ϕ-trajectories are called contact magnetic
curves. One can see that ϕ-trajectories have constant speed.

Let γ(s) be a constant speed ϕ-trajectory with strength q in a β-Kenmotsu manifold N . Denote by θ(s) the
angle function of γ′(s) and ξ:

cos θ(s) =
g(γ′(s), ξ)

|γ′(s)|
=
η(γ′(s))

|γ′(s)|
The angle function θ(s) is called the contact angle of γ. A curve γ is said to be a slant curve if θ is constant [14].
In particular, curves with cos θ = 0 are called almost Legendre curves or almost contact curves.

Now let us investigate the contact angle of a constant speed ϕ-trajectory γ. Denote the speed of γ by a > 0.
Then we get

0 =ḡ(qϕγ′, ξ) = ḡ(∇γ′γ′, ξ) = η(γ′)′ − ḡ(γ′,∇γ′ξ) = η(γ′)′ − βη(γ′)2

=(a cos θ)′ − β a2 cos2 θ = −aθ′(sin θ)− βa2 cos2 θ.

Hence we obtain
(sin θ) θ′ = −aβ cos2 θ.

From this equation we deduce the following fact.

Proposition A.1. Let N be a β-Kenmotsu manifold. A constant speed curve ϕ-trajectory γ(s) is a slant curve, then
sin θ = 0 or cos θ = 0. In the former case, q = 0 and γ is a geodesic.

Remark A.1. Pandey and Mohammad claimed that every ϕ-trajectory in a Kenmotsu manifold is slant. In
addition they claimed the existence of helical ϕ-trajectories with constant contact angle so that sin θ 6= 0 and
cos θ 6= 0 in [24]. In the proof of [24, Theorem 1], they used K-contact property. However Kenmotsu manifolds
can not satisfy the contact metric condition Φ = dη since dη = 0.

A.2.

Now let us investigate ϕ-trajectories in the hyperbolic 3-space H3(−β2).
Let γ(s) = (x(s), y(s), z(s)) be a constant speed curve in H3(−β2). Then we have

T (s) = γ′(s) = x′(s)
∂

∂x
+ y′(s)

∂

∂y
+ z′(s)

∂

∂z
= eβz(s)x′(s)e1 + eβz(s)y′(s)e2 + z′(s)e3.

We put
T1(s) = eβz(s)x′(s), T2(s) = eβz(s)y′(s), T3(s) = z′(s).

By the constant speed condition, we may put

T1(s)2 + T2(s)2 + T3(s)2 = a2

for some positive constant a.
Let θ(s) be a angle function of γ′(s) and ξ:

cos θ(s) =
g(γ′(s), ξ)

|γ′(s)|
=

T3(s)√
T1(s)2 + T2(s)2 + T3(s)2

=
z′(s)√

e2βz(s)(x′(s)2 + y′(s)2) + z′(s)2
.

In case θ is constant, then γ is said to be a slant curve [14]. If γ is slant, then z′(s) = a cos θ. From this we get
z(s) = (a cos θ)s+ z0. Next, by the constant speed condition, T1(s)2 + T2(s)2 = a2 sin2 θ. Thus (T1(s), T2(s)) is
represented as (a sin θ cosψ(s), a sin θ sinψ(s)) for some function ψ(s).
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Proposition A.2 ([8]). Any slant curve in H3(−β2) is represented as a sin θ
∫ s

0
exp(−β((a cos θ)u+ z0) cos θ) cosψ(u)du+ x0

a sin θ
∫ s

0
exp(−β((a cos θ)u+ z0) cos θ) sinψ(u)du+ y0

(a cos θ)s+ z0

 .

In particular, Legendre curves are parametrized as(
±a
∫ s

0

e−βz0 cosψ(u)du+ x0, ±a
∫ s

0

e−βz0 sinψ(u)du+ y0, z0

)
.

Now let γ be a ϕ-trajectory. Note that γ has constant speed a > 0.
The acceleration vector field is

∇̄γ′γ′ = (T ′1 + βT3T1)e1 + (T ′2 + βT3T2)e2 + (T ′3 − βT 2
1 − βT 2

2 )e3.

The ϕ-trajectory equation is the system

T ′1 + βT3T1 = −qT2, T ′2 + βT3T2 = qT1, T ′3 − β(T 2
1 + T 2

2 ) = 0.

If γ is a slant ϕ-trajectory, then T 2
1 + T 2

2 = 0. Hence both x(s) and y(s) are constant. The velocity is T = T3e3. On
the other hand we notice that |T | = a = |T3| = a| cos θ|. Hence cos θ = ±1.

Thus γ is a vertical geodesic parametrized as

(x0, y0,±as+ z0)

with velocity γ′ = ±aξ.

Proposition A.3. The only slant ϕ-trajectories in H3(−β2) are vertical geodesics. In particular there are no almost
Legendre ϕ-trajectories.

B. Geodesics in M4(β)

In this section we study geodesics in the LCK manifold M4(β) = H3(−β2)×R.
From (5.2), γ(s) = (x(s), y(s), z(s), t(s)) is a geodesic if and only if

T ′1 + βT3T1 = 0, T ′2 + βT3T2 = 0, T ′3 − β(T 2
1 + T 2

2 ) = 0, T ′4 = 0. (B.1)

Remark B.1. Since M4(β) is represented by M4(β) = R2(z, t)×exp(βz) R2(x, y) as a warped product, one can
deduce the geodesic equations (B.1) by applying the following proposition [22, p. 208]:

Proposition B.1. Let (B, gB) and (F, gF ) be Riemannian manifolds. Take a warped product M = B ×f F . Then a unit
speed curve γ(s) = (γB(s), γF (s)) in M is a geodesic if and only if it satisfies

∇Bγ′
B
γ′B = f gF (γ′F , γ

′
F ) gradB f, ∇Fγ′

F
γ′F = − 2

f(γ)

d

ds
f(γ) γ′F . (B.2)

Here ∇B and ∇F are Levi-Civita connections of B and F , respectively. The function

f(γ)4 gF (γ′F , γ
′
F ) (B.3)

is a conserved quantity of a geodesic γ.

First of all we notice that t(s) = t0 + cs for some constant c because of the fourth equation of (B.1). Next, the
conserved quantity (B.3) is e4βz(T 2

1 + T 2
2 ). Put r = e2βz

√
T 2

1 + T 2
2 ≥ 0. Then T1 and T2 are expressed as

T1(s) = r exp(−2βz(s)) cosψ(s), T2(s) = r exp(−2βz(s)) sinψ(s)

for some function ψ(s). In other words, we retrieve (5.4).
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Example B.1 (Horizontal line). In case T 2
1 + T 2

2 = 0, i.e., r = 0, we get

T ′3 = 0, T 2
3 + T 2

4 = 1.

Hence T3 and T4 are expressed as
T3(s) = cosµ, T4 = sinµ

for some constant µ. Thus we obtain

γ(s) = (x0, y0, z0 + (cosµ)s− 1, t0 + (sinµ)s).

This is a line in the totally geodesic plane {(x0, y0, z, t) | z, t ∈ R}. In other words, γ(s) is a line horizontal with
respect to the Riemannian submersion R2(z, t)×eβz R2(x, y)→ R2(z, t).

Next we study geodesics with T 2
1 + T 2

2 6= 0. Then from the third equation of (B.1), we get

T ′3(s) = βr2 exp(−2βz(s)).

This equation is rewritten as
d2z

ds2
= βr2 e−2βz. (B.4)

This ODE is a special one of the Toda lattice [13, 25]. The ODE (B.4) is also called 1-dimensional Liouville equation
or Bratu equation [7, 11, 12].

Assume that cosψ 6= 0, then by using the first and second equations of (B.1), we have

1

cos2 ψ

dψ

ds
=

d

ds
tanψ =

d

ds

(
T2

T1

)
=
T ′2T1 − T2T

′
1

T 2
1

= 0.

Hence ψ(s) is a constant. In case cosψ(s) is identically zero, then ψ(s) is a constant ±π/2. Hence we conclude
that ψ(s) is a constant and denote it by µ.

Proposition B.2. Let z(s) be a solution to the Toda lattice (B.4) then the curve γ(s) = (x(s), y(s), z(s), t0) defined by

x(s) = r cosµ

∫
exp(−2βz(s)) ds, y(s) = r sinµ

∫
exp(−2βz(s)) ds,

is a geodesic in H3(−β2)×R.

For simplicity we choose β = 4 and r =
√

2, then the general solution to the Toda lattice (B.4) satisfying the
initial condition z(0) = z0 is given by [13, 25]:

z(s) =
1

2
log cosh(2e−2z0s) + z0.
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