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Abstract

Soft set theory was introduced by Molodtsov in 1999 as a general mathemat-
ical tool for dealing with problems that contain uncertainity. In this paper,
we define concept of a soft lattice, soft sublattice, complete soft lattice, mod-
ular soft lattice, distributive soft lattice, soft chain and study their related
properties.

Keywords: Soft sets, soft sublattices, complete soft lattices, modular soft
lattices, distributive soft lattices, soft chain.

1 Introduction

Soft set theory [31] was firstly introduced by Molodtsov in 1999 as a general mathematical
tool for dealing with uncertainty. The operations of soft sets are defined by Maji et al.[30]
and redefined by Cagman and Enginoglu[6]. Recently, the properties and applications on
the soft set theory have been studied increasingly [2, 9, 17, 34, 38]. The algebraic structure
of soft set theory has also been studied in more detail [1, 4, 11, 18, 19, 21, 22, 23, 24, 25],
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and many interesting applications of soft set theory have been expanded by embedding
the ideas of fuzzy sets [4, 8, 12, 28, 35, 37].

The soft lattice structures are constructed by Nagarajan and Meenambigai [32] and Li
[27] over a soft set. In this paper, different than Li [27] and Nagarajan and Meenambigai
[32], we define soft lattices over a collection of soft sets by using Cagman and Enginoglu’s
[6] operations of the soft sets. We also give an algebraical and a set-theorical definition of
soft lattices and we prove that algebrical and set-theorical definitions are equivalent. In
addition, we introduce complete soft lattice, soft sublattice, soft chain, distributive soft
lattice, modular soft lattice and discuss their related properties.

2 Soft set theory

In this section, for subsequent discussions, we have presented the basic definitions and
results of soft set theory which are taken from earlier studies [6, 30, 31].

Throughout this work, U refers to an initial universe, P (U) is the power set of U , E
is a set of parameters and A ⊆ E.

Definition 2.1. A function fA : E → P (U) such that fA(x) = ∅ if x /∈ A, is called a soft
set over U .

The set of all soft sets over U is denoted by S(U).

Definition 2.2. Let fA ∈ S(U). If fA(x) = ∅ for all x ∈ E, then fA is called an empty
soft set, denoted by fΦ.

If fA(x) = U for all x ∈ A, then fA is called A-universal soft set, denoted by fÃ.
If A = E, then the A-universal soft set is called universal soft set denoted by fẼ.

Definition 2.3. Let fA, fB ∈ S(U). Then, fA is a soft subset of fB, denoted by fA⊆̃fB,
if fA(x) ⊆ fB(x) for all x ∈ E.

fA and fB are equal, denoted by fA = fB, if and only if fA(x) = fB(x) for all x ∈ E.

Remark 2.4. fA⊆̃fB does not imply that every element of fA is an element of fB.
Therefore the definition of classical subset is not valid for the soft subset. For example,
let U = {u1, u2, u3, u4} be a universal set of objects and E = {x1, x2, x3} be the set
of all parameters. If A = {x1} and B = {x1, x3}, and fA = {(x1, {u2, u4})}, fB =
{(x1, {u2, u3, u4}), (x3, {u1, u5})}, then for all e ∈ fA, fA(x) ⊆ fB(x) is valid. Hence
fA⊆̃fB. It is clear that, (x1, fA(x1)) ∈ fA but (x1, fA(x1)) /∈ fB.

Proposition 2.5. If fA, fB ∈ S(U), then

1. fA⊆̃fẼ

2. fΦ⊆̃fA

3. fA⊆̃fA

4. fA⊆̃fB and fB⊆̃fC ⇒ fA⊆̃fC
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Definition 2.6. Let fA ∈ S(U). Then, soft complement of fA is defined by f c̃
A = fAc̃

such that fAc̃(x) = f c
A(x) = U \ fA(x) for all x ∈ E.

Definition 2.7. Let fA, fB ∈ S(U). Then, soft union of fA and fB is defined by fA∪̃fB =
fA∪̃B such that fA∪̃B(x) = fA(x) ∪ fB(x) for all x ∈ E.

Soft intersection of fA and fB is defined by fA∩̃fB = fA∩̃B such that fA∩̃B(x) =
fA(x) ∩ fB(x) for all x ∈ E.

Proposition 2.8. If fA, fB, fC ∈ S(U), then

1. fA∪̃fA = fA

2. fA∪̃fΦ = fA

3. fA∪̃fẼ = fẼ

4. fA∪̃f c̃
A = fẼ

5. fA∪̃fB = fB∪̃fA

6. (fA∪̃fB)∪̃fC = fA∪̃(fB∪̃fC)

Proposition 2.9. If fA, fB, fC ∈ S(U), then

1. fA∩̃fA = fA

2. fA∩̃fΦ = fΦ

3. fA∩̃fẼ = fA

4. fA∩̃f c̃
A = fΦ

5. fA∩̃fB = fB∩̃fA

6. (fA∩̃fB)∩̃fC = fA∩̃(fB∩̃fC)

Proposition 2.10. [6] If fA, fB, fC ∈ S(U), then

1. fA∪̃(fB∩̃fC) = (fA∪̃fB)∩̃(fA∪̃fC)

2. fA∩̃(fB∪̃fC) = (fA∩̃fB)∪̃(fA∩̃fC)

3 Soft Lattices

In this section, the notion of soft lattices is introduced and several related properties and
some characterization theorems are investigated.

Definition 3.1. Let L ⊆ S(U), and g and f be two binary operations on L. If the set
L is equipped with two commutative and associative binary operations g and f which are
connected by the absorption law, then algebraic structure (L, g, f) is called a soft lattice.

Theorem 3.2. Let (L, g, f) be a soft lattice and fA, fB ∈ L. Then

fA f fB = fA ⇔ fA g fB = fB
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Proof.
fA g fB = (fA f fB) g fB

= fB g (fA f fB)
= fB g (fB f fA)
= fB

Conversely,
fA f fB = fA f (fA g fB)

= fA

Example 3.3. Let U = {u1, u2, u3, u4, u5, u6} and L = {fA1
, fA2

, fA3
, fA4

, fA5
} ⊆ S(U).

Assume that

fA1
= {(e1, {u1, u2, u3}), (e2, {u3, u5}), (e3, {u4, u6})}

fA2
= {(e1, {u1, u2, u3}), (e2, {u3, u5})}

fA3
= {(e1, {u1, u3}), (e3, {u4, u6})}

fA4
= {(e1, {u1, u3})}

fA5
= {(e1, {u1})}

Then (L, ∪̃, ∩̃) is a soft lattice. Tables of the operations are as follows, respectively;

∪̃ fA1
fA2

fA3
fA4

fA5

fA1
fA1

fA1
fA1

fA1
fA1

fA2
fA1

fA2
fA1

fA2
fA2

fA3
fA1

fA1
fA3

fA3
fA3

fA4
fA1

fA2
fA3

fA4
fA4

fA5
fA1

fA2
fA3

fA4
fA5

and
∩̃ fA1

fA2
fA3

fA4
fA5

fA1
fA1

fA2
fA3

fA4
fA5

fA2
fA2

fA2
fA4

fA4
fA5

fA3
fA3

fA4
fA3

fA4
fA5

fA4
fA4

fA4
fA4

fA4
fA5

fA5
fA5

fA5
fA5

fA5
fA5

The Hasse Diagram of it appears in Figure 1.

Theorem 3.4. (L, g, f) be a soft lattice and fA, fB ∈ L. Then a relation � that is
defined by

fA � fB ⇔ fA f fB = fA or fA g fB = fB

is an ordering relation on L.

Proof. 1. � is reflexive. fA � fA ⇔ fA f fA = fA.
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Figure 1: A soft lattice structure

2. � is antisymmetric. Let be fA � fB and fB � fA. Then from hypotesis,

fA = fA f fB

= fB f fA

= fB

3. � is transitive. Let be fA � fB and fB � fC . Then

fA f fC = (fA f fB) f fC

= fA f (fB f fC)
= fA f fB

= fA

from hypothesis fA � fC .

Theorem 3.5. Let (L, g, f) be a soft lattice and fA, fB ∈ L. Then,

1. fA f fB � fA and fA f fB � fB

2. fA � fA g fB and fB � fA g fB

Proof. 1. By Definition 3.1,

(fA f fB) g fA = fA g (fA f fB) = fA

from Theorem 3.4. We get fA f fB � fA. It can be show that fA f fB � fB.

The proof 2 can be made similarly way.
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Theorem 3.6. Let (L, g, f) be a soft lattice and fA, fB, fC , fD ∈ L. Then

fA � fB and fC � fD ⇒ fA f fC � fB f fD

Proof. From hypothesis and Theorem 3.4, fA f fB = fA and fC f fD = fC

(fA f fC) f (fB f fD) = [(fA f fC) f fB] f fD

= [fA f (fC f fB)] f fD

= [fA f (fB f fC)] f fD

= [(fA f fB) f fC ] f fD

= (fA f fB) f (fC f fD)
= fA f fC

Then, from Theorem 3.4, fA f fC � fB f fD.

Theorem 3.7. Let (L, g, f) be a soft lattice and fA, fB, fC , fD ∈ L. Then,

fB � fA and fD � fC ⇒ fB g fD � fA g fC

Proof. Proof is made similarly to Theorem 3.6.

Example 3.8. From Example 3.3. fA2
⊆̃fA1

and fA4
⊆̃fA3

. Then fA2
∩̃fA4

⊆̃fA1
∩̃fA3

.

Lemma 3.9. Let (L, g, f) be a soft lattice and fA, fB ∈ L. Then, fA g fB and fA f fB

are the least upper and the greatest lower bound of fA and fB, respectively.

Proof. From Theorem 3.5, fA f fB and fA g fB are a lower bound and an upper bound
of fA and fB, respectively. Assume that, fA f fB is not a greatest lower bound of fA and
fB. Then, fC ∈ L is exist, such that fA f fB � fC � fA and fA f fB � fC � fB. Hence,
by Theorem 3.6, fC f fC � fA f fB. Thus fC � fA f fB. That is fC = fA f fB. This is
a contradiction.

For fA g fB the proof can be made similarly.

Theorem 3.10. A soft lattice is a poset.

Proof. The proof is obviously, from Lemma 3.9.

Theorem 3.11. Let L ⊆ S(U). Then, an algebraic structure (L, g, f,�) is a soft lattice.

Proof. For all fA, fB and fC ∈ L,

1. From Lemma 3.9,
fA f fB � fA and fA f fB � fB

from Theorem 3.6
fA f fB � fB f fA

Similarly,
fB f fA � fA f fB

Then, fA f fB = fB f fA. By the same way, the proof of fA g fB = fB g fA can
be made.
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2. From Theorem 3.5,

(fA f fB) f fC � fA f fB � fB and (fA f fB) f fC � fC

from Theorem 3.6,

(fA f fB) f fC � fB f fC (1)

Also

(fA f fB) f fC � fA f fB � fA (2)

from (1) and (2)
(fA f fB) f fC � fA f (fB f fC).

Similarly,
fA f (fB f fC) � (fA f fB) f fC

Then,
(fA f fB) f fC = fA f (fB f fC)

By the same way, the proof of fA g (fB g fC) = (fA g fB) g fC can be made.

3. From Theorem 3.5,
fA � (fA g fB) and fA � fA,

and from Theorem 3.6,
fA � (fA g fB) f fA

Similarly,
(fA g fB) f fA � fA.

Then, fA f (fA g fB) = fA. By the same way, the proof of fA g (fA f fB) = fA

can be made.

Note 3.12. According to this theorem, a soft lattice (L, g, f) has the same character with
(L, g, f,�). Therefore, we shall identify any soft lattice (L, g, f) with (L, g, f,�) and
use these two concepts as interchangeable.

Lemma 3.13. Let L ⊆ S(U). Then, soft inclusion relation ⊆̃ that is defined by

fA⊆̃fB ⇔ fA∪̃fB = fB or fA∩̃fB = fA

is an ordering relation on L.

Proof. For all fA, fB and fC ∈ L,

1. ⊆̃ is reflexive. fA⊆̃fA

2. ⊆̃ is antisymetric. fA⊆̃fB and fB⊆̃fA ⇔ fA = fB

3. ⊆̃ is transitive. fA⊆̃fB and fB⊆̃fC ⇒ fA⊆̃fC

11
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Corollary 3.14. Let (L, ∪̃, ∩̃, ⊆̃) is a soft lattice.

Definition 3.15. Let (L, g, f,�) be a soft lattice and fA ∈ L.
If fA � fB for all fB ∈ L, then fA is called the minimum element of L.
If fB � fA for all fB ∈ L, then fA is called the maximum element of L.

Definition 3.16. Let (L, g, f,�) be a soft lattice. If fB � fA or fA � fB for all
fA, fB ∈ L, then L is called a soft chain.

Example 3.17. Let U = {u1, u2, u3, u4, u5, u6}. L = {fA1
, fA2

, fA3
, fA4

, fA5
} and

fA1
= {(e1, {u1, u2, u3}), (e2, {u3, u5}), (e3, {u4, u6})}

fA2
= {(e1, {u1, u2, u3}), (e2, {u3, u5})}

fA3
= {(e1, {u1, u3}), (e3, {u4, u6})}

fA4
= {(e1, {u1, u3})}

fA5
= {(e1, {u1})}

Although, for S = {fA1
, fA3

, fA4
, fA5

}, (S, ∪̃, ∩̃, ⊆̃) is a soft chain, (L, ∪̃, ∩̃, ⊆̃) is not
soft chain because fA2

and fA3
can not comparable.

Definition 3.18. Let (L, g, f,�) be a soft lattice. If every subsets of L have both a
greatest lower bound and a least upper bound, then it is called complete soft lattice.

Example 3.19. Let U = {u1, u2, u3} and L = {fA1
, fA2

, fA3
, fA4

} such that,
fA1

= {(e1, {u1})}
fA2

= {(e1, {u1, u2}), (e2, {u3})}
fA3

= {(e1, {u1, u2}), (e2, {u2, u3})},
fA4

= fφ

Then (L, ∪̃, ∩̃, ⊆̃) is a complete soft lattice. Because each finite subset of L has a greatest
lower bound and a least upper bound.

Definition 3.20. (L, g, f,�) be a soft lattice and S ⊆ L. If S is a soft lattice with the
operations of L, then S is called a soft sublattice of L.

Theorem 3.21. Let (L, g, f,�) be a soft lattice and S ⊆ L. If fA f fB ∈ S and
fA g fB ∈ S for all fA, fB ∈ S, then S is a soft sublattice.

Proof. It is clear from Definition 3.20.

Corollary 3.22. Every soft chain is a soft sublattice.

Corollary 3.23. Every soft lattice is a soft sublattice of itself.

Proof. Let S be a soft chain. Since any two elements of S is comparable, fA f fB ∈ S
and fA g fB ∈ S, for all fA, fB ∈ S. Thus S is a soft sublattice.

Example 3.24. S, given in Example 3.17, is a soft sublattice.

12
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Definition 3.25. Let (L, g, f,�) be a soft lattice and fA, fB and fC ∈ L. If

(fA g fB) f (fA g fC) � fA g (fA f fC)

or
fA f (fA g fC) � (fA f fB) g (fA f fC),

then L is called a one-side distributive soft lattice.

Theorem 3.26. Every soft lattice is a one-side distributive soft lattice.

Proof. Let fA, fB, fC ∈ L. From Theorem 3.2 and 3.5, we have
fA f fB � fA and fA f fB � fB � fB g fC . Since fA f fB � fA and fA f fB � fB g fC ,
then

fA f fB = (fA f fB) f (fA f fB) � fA f (fB g fC) (3)

and also we have fA f fC � fA and fA f fC � fC � fB g fC . Since fA f fC � fA and
fA f fC � fB g fC , then

fA f fC = (fA f fC) f (fA f fC) � fA f (fB g fC) (4)

From (3) and (4), we get the result,

(fA f fB) g (fA f fC) � fA f (fB g fC)

Definition 3.27. Let (L, g, f,�) be a soft lattice. If L satisfies the following axioms, it
is called distributive soft lattice:

fA f (fB g fC) = (fA f fB) g (fA f fC)

fA g (fB f fC) = (fA g fB) f (fA g fC)

for all fA, fB and fC ∈ L.

Theorem 3.28. (L, ∪̃, ∩̃, ⊆̃) is a soft distributive lattice.

Proof. Since soft intersection is distributive over soft union operation, the proof is trivial

Example 3.29. Let U = {u1, u2, u3, u4, u5, u6} and L = {f∅, fA1
, fA2

, fA3
, fA4

, fA5
}

Then, L ⊆ S(U) is a soft lattice with the operations ∪̃ and ∩̃. Assume that,

fA1
= {(e1, {u1, u2, u3, u4}), (e2, {u3, u5}), (e3, {u1, u3, u4})}

fA2
= {(e1, {u1, u2, u4}), (e2, {u3, u5}), (e3, {u1, u3})}

fA3
= {(e1, {u1, u2, u3}), (e2, {u3, u5}), (e3, {u1, u4})}

fA4
= {(e1, {u4}), (e3, {u1, u3})}

fA5
= {(e1, {u1, u2}), (e2, {u3, u5})}

f∅ = ∅

(L, ∪̃, ∩̃, ⊆̃) is a soft distributive lattice. The Hasse Diagram of it appears in Figure 2.
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Figure 2: A soft distributive lattice structure

Definition 3.30. Let (L, g, f,�) be a soft lattice. Then L is called soft modular lattice,
If it satisfies the following axiom,

fC � fA ⇒ fA f (fB g fC) = (fA f fB) g fC

for all fA, fB and fC ∈ L.

Theorem 3.31. A distributive soft lattice, is a soft moduler lattice.

Proof. It is clear from Definition 3.27.

Note that, modular soft lattice may not be a distributive soft lattice

Proof. Let (L, g, f,�) be a distributive soft lattice. Then fA f (fB g fC) = (fA f fB) g

(fA f fC). Hence, from Theorem 3.4, fC � fA ⇒ fA f (fB g fC) = (fA f fB) g fC .

Corollary 3.32. (L, ∪̃, ∩̃, ⊆̃) is a soft moduler lattice.

Example 3.33. Let U = {u1, u2, u3, u4, u5} and L = {f∅, fA1
, fA2

, fA3
, fA4

} .Then L is
a soft lattice with the operations ∪̃ and ∩̃. Assume that,

fA1
= {(e1, {u1, u2}), (e2, {u3}), (e3, {u2, u4}), (e4, {u5})}

fA2
= {(e1, {u1, u2}), (e2, {u3})}

fA3
= {(e3, {u2, u4})}

fA4
= {(e4, {u1, u5})}

f∅ = ∅

(L, ∪̃, ∩̃, ⊆̃) is a soft modular lattice. The Hasse Diagram of it appears in Figure 3.
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Figure 3: A soft moduler lattice structure

Theorem 3.34. Let (L, g, f,�) be a modular soft lattice. Then

fA � fB ⇒ fA � fB f (fA g fC)

for all fA, fB and fC ∈ L.

Proof. The theorem is clearly from Definition 3.30.

Example 3.35. Assume that, (L, ∪̃, ∩̃, ⊆̃) is given as a modular soft lattice. Then

fA⊆̃fB ⇒ fA⊆̃fB∩̃(fA∪̃fC).

Note that, modular soft lattice may not be a distributive soft lattice.

Example 3.36. In Example 3.33, since fA2
∩ (fA3

∪ fA4
) 6= (fA2

∩ fA3
) ∪ (fA3

∩ fA4
),

although (L, ∪̃, ∩̃, ⊆̃) is a modular soft lattice, it is not a distributive soft lattice.

4 Conclusion

The soft set theory has been applied to many fields from theoretical to practical. In
this study, we defined the concept of soft lattice as an algebraic structure and as a set-
theoretic and shown that these definitions are equivalent. We then investigated several
related properties and some characterization theorems.
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