

ISSN: 1304-7981 http://jnrs.gop.edu.tr

Received: 11.07.2012 Editors-in-Chief: Naim Çağman
Accepted: 20.08.2012 Area Editor: Oktay Muhtaroğlu

Some Properties of Contra gb-continuous Functions

Metin Akdağ¹ Alkan Özkan²

Abstract

We introduce some properties of functions called contra gb-continuous function which is a generalization of contra b-continuous functions [3]. Some characterizations and several properties concerning contra gb- continuous functions are obtained.

Keywords: q-open, q-continuity, contra qb-continuity.

1 Introduction

In 1996, Donthev [16] introduced the notion of contra continuous functions. In 2007, Caldas, Jafari, Noiri and Simoes [10] introduced a new class of functions called generalized contra continuous (contra g-continuous) functions. They defined a function $f: X \to Y$ to be contra g- continuous if preimage every open subset of Y is g-closed in X. New types of contra generalized continuity such as contra αg -continuity [23] and contra gs-continuity [17] have been introduced and investigated. Recently, Nasef [30] introduced and studied so-called contra g-continuous functions. After that in 2009, Omari and

¹Corresponding Author, Cumhuriyet University, Faculty of Science, Department of Mathematics 58140 Sivas, Turkey (e-mail: makdag@cumhuriyet.edu.tr)

²Cumhuriyet University, Faculty of Science , Department of Mathematics 58140 Sivas, Turkey (e-mail: alkan_mat@hotmail.com)

Noorani [4] have studied further properties of contra b-continuous functions. The purpose of the present paper is to introduce some propeties of notion of contra generalized b-continuity (contra gb - continuity) via the concept of gb-open sets in [3] and investigate some of the fundamental properties of contra gb-continuous functions. It turns out that contra gb-continuity is stronger than contra $g\beta$ -continuity and weaker than both contra gp-continuity and contra gs-continuity [17].

2 Preliminaries

Throughout the paper, the space X and Y (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed unless otherwise stated. Let A be a subset of a space X. The closure and interior of A are denoted by cl(A) and int(A), respectively.

Definition 2.1. A subset A of a space X is said to be:

```
(a) regular open [33] if A = int(cl(A))
```

- (b) α -open [31] if $A \subset int(cl(int(A)))$
- (c) semi-open [24] if $A \subset cl(int(A))$
- (d) pre-open [28] or nearly open [19] if $A \subset int(cl(A))$
- (e) β -open [1] or semi-preopen [6] if $A \subset cl(int(cl(A)))$
- (f) b-open [7] or sp-open [18] or γ -open [19] if $A \subset cl(int(A)) \cup int(cl(A))$.

The family of all semi-open (resp. preopen, α -open, β -open, γ -open) sets of (X, τ) will be denoted by $SO(X, \tau)$ (resp. $PO(X, \tau)$, $\alpha O(X, \tau)$, $\beta O(X, \tau)$, $\gamma O(X, \tau)$). It is shown in [31] that $\alpha O(X, \tau)$ is a topology denoted by τ^{α} and it is stronger than the given topology on X. The complement of a regular-open (resp. semi-open, preopen, α -open, β -open, γ -open) set is said to be regular closed (resp. semi-closed, preclosed, α -closed, β -closed, γ -closed). The collection of all closed subsets of X will be denoted by C(X). We set $C(X,x) = \{V \in C(X) : x \in V\}$ for $x \in X$. We define similarly $\gamma O(X,x)$.

The complement of b-open set is said to be b-closed [7]. The intersections of all b-closed sets of X containing A is called the b-closure of A and is denoted by bcl(A). The union of all b-open sets X contained in A is called b-interior of A and is denoted by bint(A).

Definition 2.2. [30] A function $f:(X,\tau)\to (Y,\sigma)$ is called contra b-continuous if the preimage of every open subset of Y is b-closed in X.

Definition 2.3. [21] Let X be a space. A subset A of X is called a generalized b-closed set (simply; gb-closed set) if $bcl(A) \subset U$ whenever $A \subset U$ and U is open.

The complement of a generalized b-closed set is called generalized b-open (simply; gb-open). Every b-closed set is gb-closed, but the converse is not true. And the collection of all gb-closed (resp. gb-open) subsets of X is denoted by gbC(X) (resp. gbO(X)).

Example 2.4. [5] Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, \{a\}, X\}$, then the family of all b-closed set of X is $bC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ but the family of all gb-closed set of X is $gbC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, c\}, X\}$ then it is clear that $\{a, c\}$ is gb-closed but not b-closed in X.

Lemma 2.5. Let (X, τ) be a topological space.

- (a) The intersections of a b-open set and a gb-open set is a gb-open set.
- (b) The union of any family of gb-open sets is a gb-open set.

Proof. The statements are proved by using the same method as in proving the corresponding results for the class of b—open sets(see [7]).

3 Contra gb-continuous functions

In this section, we introduce some properties of continuity called contra gb-continuity which is weaker than both of contra gs-continuity and contra gp-continuity and stronger than contra $g\beta$ -continuity.

Definition 3.1. [3] A function $f:(X,\tau)\to (Y,\sigma)$ is called contra gb-continuous if the preimage of every open subset of Y is gb-closed in X.

Corollary 3.2. If a function $f:(X,\tau)\to (Y,\sigma)$ is contra b-continuous, then f is contra gb-continuous.

Proof. Obviuous

Note that the converse of the above is not necessary true as shows by the following example:

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, X\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is contra gb-continuous but not contra b-continuous, since $A = \{a, c\} \in \sigma$ but A is not b-closed in (X, τ) .

Definition 3.4. Let A be a subset of a space (X, τ) .

- (a) The set $\cap \{U \in \tau : A \subset U\}$ is called the kernel of A [29] and is denoted by ker(A). In [25] the kernel of A is called the Λ -set.
- (b) The set $\cap \{F \subset X : A \subset F, F \text{ is } gb\text{-}closed\}$ is called the gb-closure of A and is denoted by gbcl(A) [21].
- (c) The set $\cup \{G \subset X : G \subset A, G \text{ is gb-open}\}\$ is called the gb-interior of A and is denoted by gbint(A) [21].

Lemma 3.5. For an $x \in X$, $x \in gbcl(A)$ if and only if $U \cap A \neq \emptyset$ for every gb-open set U containing x.

Proof. (Necessity) Suppose there exists a gb-open set U containing x such that $U \cap A = \emptyset$. Since $A \subset X - U$, $gbcl(A) \subset X - U$. This implies $x \notin gbcl(A)$, a contradiction. (Sufficiency) Suppose $x \notin gbcl(A)$. Then there exists a gb-closed subset F containing A such that $x \notin F$. Then $x \in X - F$ and X - F is gb-open also $(X - F) \cap A = \emptyset$, a contradiction.

Lemma 3.6. [22] The following properties hold for subsets A, B of a space X:

- (a) $x \in ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$.
- (b) $A \subset ker(A)$ and A = ker(A) if A is open in X.
- (c) If $A \subset B$, then $ker(A) \subset ker(B)$.

Theorem 3.7. For a function $f:(X,\tau)\to (Y,\sigma)$, the following continuous are equivalent: (a) f is contra gb-continuous;

- (b) For every closed subsets F of Y, $f^{-1}(F) \in qbO(X,x)$;
- (c) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in gbO(X, x)$ such that $f(U) \subset F$;
- (d) $f(gbcl(A)) \subset ker(f(A))$ for every subset A of X;
- (e) $gbcl(f^{-1}(B)) \subset f^{-1}(ker(B))$ for every subset B of Y.

Proof. The implications $(a) \Leftrightarrow (b)$ and $(b) \Rightarrow (c)$ are obvious.

- $(c) \Rightarrow (b)$: Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in gbO(X,x)$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$ which is gb-open in X.
- $(b) \Rightarrow (d)$: Let A be any subset of X. Suppose that $y \notin ker(f(A))$. Then by Lemma 3.6 there exists $F \in C(Y,y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $gbcl(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(gbcl(A)) \cap F = \emptyset$ and $y \notin f(gbcl(A))$. This implies that $f(gbcl(A)) \subset ker(f(A))$.
- $(d) \Rightarrow (e)$: Let B be any subset of Y. By (d) and Lemma 3.6, we have $f(gbcl(f^{-1}(B))) \subset ker(f(f^{-1}(B))) \subset ker(B)$ and $gbcl(f^{-1}(B)) \subset f^{-1}(ker(B))$.
- $(e) \Rightarrow (a)$: Let V be any open set of Y. Then, by Lemma 3.6, we have $gbcl(f^{-1}(V)) \subset f^{-1}(ker(V)) = f^{-1}(V)$ and $gbcl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is gb-closed in X.

Definition 3.8. [4] A function $f:(X,\tau)\to (Y,\sigma)$ is called gb-continuous if the preimage of every open subset of Y is gb-open in X.

Remark 3.9. The following two examples will show that the concept of gb-continuity and contra qb-continuity are independent from each other.

Example 3.10. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\tau = \{\emptyset, \{a\}, X\}$. Let $f: (X, \tau) \to (X, \tau)$ be defined by: f(a) = b and f(b) = a. It can be easily observed that f is contra gb-continuous. But f is not gb-continuous, since $\{a\}$ is open and its preimage $\{b\}$ is not gb-open.

Example 3.11. The identity function on the real line with the usual topology is continuous [23, Example 2] and hence gb-continuous. The inverse image of (0,1) is not gb-closed and the function is not contra gb-continuous.

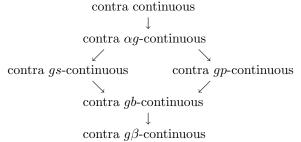
Definition 3.12. A subset A of a space (X, τ) is called

- (a) a generalized semiclosed set (briefly gs-closed) [8] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
- (b) an α -generalized closed set (briefly αg -closed) [25] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;

- (c) a generalized pre-closed set (briefly gp-closed) [26] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
- (d) a generalized β -closed set (briefly $g\beta$ -closed) [12] if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 3.13. A function $f:(X,\tau)\to (Y,\sigma)$ is called contra αg -continuous [23] (resp. contra gs-continuous [17], contra gp-continuous, contra $g\beta$ -continuous) if the preimage of every open subset of Y is αg -closed (resp. gs-closed, gp-closed, $g\beta$ -closed) in X.

We obtain the following diagram by using Definition $2.1,\,2.3,\,3.1,\,3.12$ and 3.13.



However, the converses are not true in general as shown by the following examples.

Example 3.14. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is contra αg -continuous but not contra continuous.

Example 3.15. Let $X = \{a, b\}$ with the indiscrete topology τ and $\sigma = \{\emptyset, \{a\}, X\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is contra gb-continuous but not contra gs-continuous, since $A = \{a\} \in \sigma$ but A is not gs-closed in (X, τ) .

Example 3.16. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}, X\}$. Define a function $f: (X, \tau) \to (X, \tau)$ as follows: f(a) = b, f(b) = a, f(c) = d and f(d) = c. Then f is contra gs-continuous. However, f is not contra gg-continuous, since $\{c, d\}$ is a closed set of (X, τ) and $f^{-1}(\{c, d\}) = \{c, d\}$ is not gg-open.

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $Y = \{1, 2\}$ be the Sierpinski space with the topology $\sigma = \{\emptyset, \{1\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by: f(a) = 1 and f(b) = f(c) = 2. Then f is contra gb-continuous but not contra gp-continuous.

Theorem 3.18. If a function $f: X \to Y$ is contra gb-continuous and Y is regular, then f is gb-continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing f(x). Since Y is regular, there exists an open set G in Y containing f(x) such that $cl(G) \subset V$. Since f is contra gb-continuous, so by Theorem 3.7 there exists $U \in gbO(X, x)$ such that $f(U) \subset cl(G)$. Then $f(U) \subset cl(G) \subset V$. Hence, f is gb-continuous.

Definition 3.19. A space (X, τ) is said to be:

- (a) gb-space if every gb-open set of X is open in X,
- (b) locally gb-indiscrete if every gb-open set of X is closed in X.

The following two results follow immediately from Definition 3.19.

Theorem 3.20. If a function $f: X \to Y$ is contra gb-continuous and X is gb-space, then f is contra continuous.

Proof. Let $V \in O(Y)$. Then $f^{-1}(V)$ is gb-closed in X. Since X is gb-space, $f^{-1}(V)$ is closed in X. Thus, f is contra continuous.

Theorem 3.21. Let X be locally gb-indiscrete. If a function $f: X \to Y$ is contra gb-continuous, then it is continuous.

Proof. Let $V \in O(Y)$. Then $f^{-1}(V)$ is gb-closed in X. Since X is locally gb-indiscrete space, $f^{-1}(V)$ is open in X. Thus, f is continuous.

Recall that for a function $f: X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G_f .

Definition 3.22. The graph G_f of a function $f: X \to Y$ is said to be contra gb-closed if for each $(x,y) \in (X \times Y) - G_f$ there exists $U \in gbO(X,x)$ and $V \in C(Y,y)$ such that $(U \times V) \cap G_f = \emptyset$.

Lemma 3.23. The graph G_f of a function $f: X \to Y$ is contra gb-closed in $X \times Y$ if and only if for each $(x,y) \in (X \times Y) - G_f$ there exist $U \in gbO(X,x)$ and $V \in C(Y,y)$ such that $f(U) \cap V = \emptyset$.

Theorem 3.24. If a function $f: X \to Y$ is contra gb-continuous and Y is Urysohn, then G_f is contra gb-closed in the product space $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open sets H_1, H_2 such that $f(x) \in H_1$, $y \in H_2$ and $cl(H_1) \cap cl(H_2) = \emptyset$. From hypothesis, there exists $V \in gbO(X,x)$ such that $f(V) \subset cl(H_1)$. Therefore, we obtain $f(V) \cap cl(H_2) = \emptyset$. This shows that G_f is contra gb-closed.

Theorem 3.25. If $f: X \to Y$ is gb-continuous and Y is T_1 , then G_f is contra gb-closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is gb-continuous, there exists $U \in gbO(X,x)$ such that $f(U) \subseteq V$. Therefore, we obtain $f(U) \cap (Y - V) = \emptyset$ and $(Y - V) \in C(Y,y)$. This shows that G_f is contra gb-closed in $X \times Y$.

Definition 3.26. [16] A space X is said to be strongly S-closed if every closed cover of X has a finite subcover.

Theorem 3.27. If (X, τ_{gb}) is a topological space and $f: X \to Y$ has a contra gb-closed graph, then the inverse image of a strongly S-closed set A of Y is gb-closed in X.

Proof. Assume that A is a strongly S-closed set of Y and $x \notin f^{-1}(A)$. For each $a \in A$, $(x,a) \notin G_f$. By Lemma 3.23 there exist $U_a \in gbO(X,x)$ and $V_a \in C(Y,a)$ such that $f(U_a) \cap V_a = \emptyset$. Then $\{A \cap V_a : a \in A\}$ is a closed cover of the subspace A, since A is strongly S-closed, then there exists a finite subset $A_0 \subset A$ such that $A \subset \bigcup \{V_a : a \in A_0\}$. Set $U = \bigcap \{U_a : a \in A_0\}$, but (X, τ_{gb}) is a topological space, then $U \in gbO(X,x)$ and $f(U) \cap A \subset f(U_a) \cap [\bigcup \{V_a : a \in A_0\}] = \emptyset$. Therefore, $U \cap f^{-1}(A) = \emptyset$ and hence $x \notin gbcl(f^{-1}(A))$. This show that $f^{-1}(A)$ is gb-closed.

Theorem 3.28. Let Y be a strongly S-closed space. If (X, τ_{gb}) is a topological space and $f: X \to Y$ has a contra gb-closed graph, then f is contra gb-continuous.

Proof. Suppose that Y is strongly S-closed and G_f is contra gb-closed. First we show that an open set of Y is strongly S-closed. Let U be an open set of Y and $\{V_i : i \in I\}$ be a cover of U by closed sets V_i of U. For each $i \in I$, there exists a closed set K_i of X such that $V_i = K_i \cap U$. Then the family $\{K_i : i \in I\} \cup (Y - U)$ is a closed cover of Y. Since Y is strongly S-closed, there exists a finite subset $I_0 \subset I$ such that $Y = \bigcup \{K_i : i \in I_0\} \cup (Y - U)$. Therefore, we obtain $U = \bigcup \{V_i : i \in I_0\}$. This shows that U is strongly S-closed. By Theorem 3.27, $f^{-1}(U)$ is gb-closed in X for every open U in Y. Therefore, f is contra gb-continuous.

Theorem 3.29. Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra gb-continuous, then f is contra gb-continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. Since g is contra gb-continuous. It follows that $f^{-1}(U) = g^{-1}(X \times U)$ is an gb-closed in X. Thus, f is contra gb-continuous.

Theorem 3.30. $f: X \to Y$ is contra gb-continuous, $g: X \to Y$ contra continuous, and Y is Urysohn, then $E = \{x \in X : f(x) = g(x)\}$ is gb-closed in X.

Proof. Let $x \in X - E$. Then $f(x) \neq g(x)$. Since Y is Urysohn, there exists open sets V and W such that $f(x) \in V$, $g(x) \in W$ and $cl(V) \cap cl(W) = \emptyset$. Since f is contra gb-continuous, then $f^{-1}(cl(V))$ is gb-open in X and g is contra continuous, then $g^{-1}(cl(W))$ is open in X. Let $U = f^{-1}(cl(V))$ and $G = g^{-1}(cl(W))$. Then U and G contain x. Set $A = U \cap G$ is gb-open in X. And $f(A) \cap g(A) \subset f(U) \cap g(G) \subset cl(V) \cap cl(W) = \emptyset$. Hence $f(A) \cap g(A) = \emptyset$ and $A \cap E = \emptyset$ where A is gb-open therefore $x \notin gbcl(E)$. Thus E is gb-closed in X.

Theorem 3.31. Let $\{X_i : i \in I\}$ be any family of topological spaces. If $f : X \to \Pi X_i$ is a contra gb-continuous function. Then $P_i \circ f : X \to X_i$ is contra gb-continuous for each $i \in I$, where P_i is the projection of ΠX_i onto X_i .

Proof. We shall consider a fixed $i \in I$. Suppose U_i is an arbitrary open set in X_i . Then $P_i^{-1}(U_i)$ is open in ΠX_i . Since f is contra gb-continuous, $f^{-1}(P_i^{-1}(U_i)) = (P_i o f)^{-1}(U_i)$ is gb-closed in X. Therefore $P_i o f$ is contra gb-continuous.

Theorem 3.32. If $f: X \to Y$ is a contra gb-continuous function and $g: Y \to Z$ is a continuous function, then $g \circ f: X \to Z$ is contra gb-continuous.

Proof. Let $V \in O(Y)$. Then $g^{-1}(V)$ is open in Y. Since f is contra gb-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is gb-closed in X. Therefore, $gof: X \to Z$ is contra gb-continuous.

Definition 3.33. A function $f: X \to Y$ is said to be:

- (a) [21] gb-irresolute if the preimage of a gb-open subset of Y is a gb-open subset of X, (b) pre-qb-open if image of every qb-open subset of X is qb-open.
- **Theorem 3.34.** Let $f: X \to Y$ be surjective gb-irresolute and pre-gb-open and $g: Y \to Z$ be any function. Then $gof: X \to Z$ is contra gb-continuous if and only if g is contra gb-continuous.

Proof. The "if" part is easy to prove. To prove the "only if" part, let $gof: X \to Z$ be contra gb-continuous and let F be a closed subset of Z. Then $(gof)^{-1}(F)$ is a gb-open subset of X. That is $f^{-1}(g^{-1}(F))$ is gb-open. Since f is pre-gb-open $f(f^{-1}(g^{-1}(F)))$ is a gb-open subset of Y. So, $g^{-1}(F)$ is gb-open in Y. Hence g is contra gb-continuous. \square

4 Applications

Definition 4.1. A topological space X is said to be:

- (a) gb-normal if each pair of non-empty disjoint closed sets can be separated by disjoint gb-open sets,
- (b) ultranormal [32] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 4.2. If $f: X \to Y$ is a contra gb-continuous, closed injection and Y is ultranormal, then X is gb-normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is ultranormal $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 , respectively. Hence $F_1 \subset f^{-1}(V_1)$, $F_2 \subset f^{-1}(V_2) \in gbO(X)$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is gb-normal.

Definition 4.3. [9] A topological space X is said to be gb-connected if X is not the union of two disjoint non-empty gb-open subsets of X.

Theorem 4.4. A contra gb-continuous image of a gb-connected space is connected.

Proof. Let $f: X \to Y$ be a contra gb-continuous function of a gb-connected space X onto a topological space Y. If possible, let Y be disconnected. Let A and B form a disconnectedness of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \emptyset$. Since f is contra gb-continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty gb-open sets in X. Also, $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Hence X is non-gb-connected which is a contradiction. Therefore Y is connected.

Theorem 4.5. Let X be gb-connected and Y be T_1 . $f: X \to Y$ is a contra gb-continuous, then f is constant.

Proof. Since Y is T_1 space, $v = \{f^{-1}(y) : y \in Y\}$ is disjoint gb-open partition of X. If $|v| \geq 2$, then X is the union of two non-empty gb-open sets. Since X is gb-connected, |v| = 1. Therefore, f is constant.

References

- [1] Abd El-Monsef ME., El-Deed SN and Mahmoud RA., β -open sets and β -continuous mappings. Bull Fac Sci: Assiut Univ.,12 (1983) 77-90.
- [2] Abd El-Monsef ME. and Nasef AA., On multifunctions, Chaos, Solitons & Fractals, 12:23 (2001) 87-94.
- [3] Al-Omari A. and Noorani SMd., Decomposition of continuity via b-open set, Bol. Soc. Paran. Mat., 26 (1-2) (2008) 53-64.
- [4] Al-Omari A. and Noorani SMd., Some properties of contra b—continuous and almost contra b—continuous functions, European J. of Pure and App. Math., 2 (2009) 213-30.
- [5] Al-Omari A. and Noorani SMd., On generalized b-closed sets. Bull Malays Math Sci Soc., (2) 32 (1) (2009) 19-30.
 - [6] Andrijevic D., Semi-preopen sets. Mat Vesnik, 38 (1) (1986) 24-32.
 - [7] Andrijevic D., On b-open sets. Mat. Vesnik, 48 (1996) 59-64.
- [8] Arya, S.P. and Noiri, T., Characterizations of s-normal spaces, Indian J. Pure. App. Math., 21 (8) (1990) 717-719.
- [9] Benchalli S.S. and Bansali P.M., gb-Compactness and gb-Connectedness, $10\ (2011)\ 465-475$
- [10] Caldas M, Jafari S. Noiri, T. and Simoes, M., A new generalization of contracontinuity via Levine's g-closed sets, Chaos, Solitons and Fractals, 32 (2007) 1597-1603.
- [11] Caldas M. and Jafari S., Some properties of contra β -continuous function. Mem. Fac Sci Kochi Univ: (Math), 22 (2001) 19-28.
- [12] Caldas M. and Jafari S., Weak and strong forms of β -irresoluteness. The Arabian Journal For Science and Engineering, 31 (2005) 1A.
- [13] Cao J., Ganster M. and Reilly I., On generalized closed set, Topology and App., 123 (2002) 37-46.
- [14] Cao J., Greenwood S. and Reilly I., Generalized closed sets: a unified approach, Applied Generalized Topology, 2 (2001) 179-189.
- [15] Di Maio G. and Noiri T., On s-closed spaces. Indian J Pure App Math Sci, 18/3 (1987) 226-33.
- [16] Dontchev J., Contra-continuous functions and strongly S-closed spaces. Int Math Math Sci, 19 (1996) 303-10.
- [17] Dontchev J. and Noiri T., Contra semi continuous functions. Math Pannonica, 10 (1999) 159-68.
- [18] Dontchev J. and Przemski M., On the various decompositions of continuous and some weakly continuous functions. Acta Math Hungar, 71 (1-2) (1996) 109-20.

- [19] El-Atik AA., A study of some types of mappings on topological spaces. M. Sci. thesis, Tanta Univ., Egypt, 1997.
- [20] Ganster M. and Reilly I., Locally closed sets and LC-continuous functions. Int Math Math Sci, 3 (1989) 417-24.
- [21] Ganster M. and Steiner M., On $b\tau$ -closed sets. App Gen Topol., 2 (8) (2007) 243-247.
- [22] Jafari S. and Noiri T., Contra super-continuous functions. Annales Univ Sci Budapest, 42 (1999) 27-34.
- [23] Jafari S. and Noiri T., Contra α -continuous functions between topological spaces, Iranian Int. J. Sci., 2 (2) (2001) 153-167
- [24] Levine N., Semi-open sets and semi-continuity in topological spaces. Amer Math Monthly, 70 (1963) 36-41.
- [25] Maki H., Generalized Λ -sets and the associated closure operator. The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement: 1 October (1986) 139-46.
- [26] Maki, H., Devi, R. and Balachandran, K., Associated topologies of generalized α -closed sets and α -generalized sets, Men Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994) 51-63.
- [27] Maki, H., Umehara, J. and Noiri, T., Every topology space is pre- $T_{\frac{1}{2}}$, Men. Fac. Sci. Kochi Univ. Ser. A, Math., 17 (1996) 33-42.
- [28] Mashhour AS, Abd El-monsef ME. and El-Deeb SN., On precontinuous and weak precontinuous mappings. Proc Math Phys Soc Egypt, 53 (1982) 7-53.
- [29] Mrsevic M., On pairwise R_0 and pairwise R_1 bitopological spaces. Bull Math Soc Sci Math RS Roumanie, 30 (78) (1986) 141-8.
- [30] Nasef AA., Some properties of contra γ -continuous functions. Chaos, Solitons and Fractals, 24 (2005) 471-477.
 - [31] Njastad O., On some classes of nearly open sets. Pacific J Math., 15 (1965) 961-70.
- [32] Staum R., The algebra of bounded continuous functions into a nonarchimedean field. Pacific J Math, 50 (1974) 169-85.
 - [33] Willard S., General topology, Addison Wesley, 1970.