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Distributions of eigenvalues for
Sturm-Liouville problem under jump
conditions
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Abstract

This paper deals with the asymptotic estimates of eigenvalues for Sturm-
Liouville problems with two supplementary transmission conditions at one in-
terior point. By modifying some known techniques the existence and unique-
ness results of solutions are obtained for the considered problem.
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eigenfunction.

1 Introduction

A Sturm-Liouville differential equation on a finite interval together with boundary con-
ditions arises from the infinitesimal, vertical vibrations of a string with the ends subject
to various constraints. The coefficient (also called potential) function in the differential
equation is in a close relationship with the density of the string, and the eigenvalues of the
Sturm-Liouville problem are the square of the frequencies of oscillation of the string. The

'Mechanics-Mathematics Faculty, Baku State University, AZ1148 Baku, Azerbaijan
(e-mail: aliriyaziyyat@mail.ru)

2Corresponding Author, Department of Mathematics, Faculty of Arts and Science,
Gaziosmanpaga University, 60250 Tokat, Turkey (e-mail: kadriye.aydemir@gop.edu.tr)

81



Journal of New Results in Science 1 (2012) 81-89

related methods continue to give rise to Sturm-Liouville problems which model many phe-
nomena such as the earths seismic behavior, the propagation of sonar in the water stratified
by varying density, and the stability and velocity of large-scale waves in atmosphere [7].
The computation of eigenvalues plays a rather important role in both mathematical and
physical fields. In this paper we deal with one discontinuous eigenvalue problem which
consists of Sturm-Liouville equation,

Tu = —u"(x) + q(x)u(z) = Mu(x) (1)

on z € [-1,0) U (0, 1] subject to the transmission conditions at the inner point =0

u(+0) = au(=0), (2)

/' (+0) = pu/(-0) 3)
and the boundary conditions at the end points x = —1 and z =1

u(—1)=4'(1) =0, (4)

where the potential ¢(z) is real-valued, continuous in each interval [—1,0)

and (0,1] and has a finite limits g(Fc) ; o, 3 are real numbers; X is a complex eigenpara-
meter. Problems of this type arise from the method of separation of variables applied to
mathematical models for certain physical problems including heat conduction and wave
propagation, etc. [3]. Sturm-Liouville problems with impulse effects (also known as in-
terface conditions, transmission conditions, discontinuity conditions) arise in many appli-
cations (e.g., thermal conduction in a thin laminated plate made up of layers of different
materials). They have been the object of several investigations recently [1, 2, 4, 5, 6, 9] in
addition to an earlier attempt [10]. In this paper we obtain asymptotic formulas for the
eigenvalues and eigenfunctions of the second order boundary-value problem (2)-(3). For
second order differential equations, similar asymptotic formulas were obtained in [2, 4, 6].

2 Definition of Fundemental Solutions

In this section we shall define two basic solutions ¢(z, A) and x(z, A) by own technique as
follows. At first, let us consider the initial-value problem on the left part [—1,0) of the
considered interval [—1,0) U (0, 1]

—y" +q(z)y = Ny, z €[-1,0) (5)

By virtue of well-known existence and uniqueness theorem of ordinary differential equation
theory this initial-value problem for each A has a unique solution ¢ (x, A). Moreover this
solution is an entire function of A for each fixed « € [—1,0) ( see, [8]). By using this solution
we shall construct the initial-value problem on the right part (0, 1] of the considered interval
[-1,0) U (0,1] as

—y" +q(@)y =Xy, x € (0,~1] (7)
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62(+0.3) = agn (-0, ), 22N _ 000 (®)

Define a sequence of functions y,(z,A),n = 0,1,2,... on interval (0,1] by the following
equations:

0¢1(—0, )

yo(x7 A) = 6 ax

xr + 04¢1 (—0, )\)

yn(z, ) = yo(z, ) + /(:17 —2)(q(2) = Nyn—1(2,\)dz, n=1,2,... (9)
0

It is easy to see that each of y,(z, A) is an entire function of A for each = € (0, 1]. Consider
the series

Z Yn (2, A) — yn—1(z, ) (10)
Denoting

@1 = max |g(z)] and Y(A) = max [yo(z, )],
z€(c,b) z€(c,b]

we can show that

1
lyn (2, ) = yn-1(z, A)| < wy()\)((h + A" (@) (11)
for each n = 1,2,.... Because of this inequality the series (10) is uniformly convergent

with respect to the variable z on (0, 1], and with respect to the variable A on every closed
bar |A| < R. Let ¢2(x, A) be the sum of the series (10). Consequently ¢2(x, \) is an entire
function of A for each fixed x € (0, 1]. Since for n > 2

x

%@M—%A@M:/M@—quwﬂ—%damﬂ

0

and

Yn(@,A) = Y1 (2, A) = (g(2) = A)(yn-1(2,A) = yn—2(z, N))

the first and second differentiated series also converge uniformly with respect to x. Taking
into account the last equality we have

ey, N) = xA+§j (2, A) = yn_y (2, )
= m>—Mm@M
+§j N (n (@, A) = yn—1(z, \))

(Q(iﬂ) = Ag2(z, A),
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so ¢2(x, A) satisfies the equation (7). Moreover, since each y,(z,\) satisfies the initial
conditions (8), then the function ¢(x, ) defined by

o) = { ¢1(x,A) forz € [-1,0)

2(z, \) for z € (0,1]. (12)

satisfies equation (1), first boundary condition and the both transmission conditions (2)
and (3). Similarly let x2(z,\) be solutions of equation (1) on (0,1] subject to initial

conditions

8)(2 (1, )\)
ox
Again, by virtue of [8] this solution is entire function of A for fixed x. By applying the

same technique we can prove that there is an unique solution x1(z, \) of equation (1) on
[-1,0) satisfying the initial condition

x2(1,A) = -1, =0. (13)

_ 1 Ix1(=0,A) _ 109x2(+0,))
X1(=0,A) = aX2(+O,/\), o =5

. (14)

By applying the similar technique as in [4] we can prove that the solution xi(z,\) is
also an entire function of parameter A for each fixed x. Consequently, the function x(z, \)

defined as ( ) [ )
— Xl IaA I T e _1;O
X(@,A) = { xa2(x,N), x€(0,1]

satisfies the equation (1) on whole [—1,0) U (0, 1], the other boundary condition «/(1) =0
and the both transmission conditions (2) and (3).

3 Asymptotic Behaviour of Fundemental So-
lutions

Let A = s2. By applying the method of variation of parameters we can prove that the
next integral and integro-differential equations are hold for k¥ =0 and k = 1.

" A) = Ld 1 ! " A)d 15
@éf’l(fcv )——gwsm[s(ﬁ?*' )]‘i‘; wSIH[S(ZC—Z)]Q(Z)le(Zv )dz (15)
1

d* 1 d* Xo(+0,A) dF
wxl(x,)\) = Ewcossxxg(—i-o,)\)—i—Twsmsx
b L[ s @ gt Na (15
5 | gor sinls (@ —2)alz)xa(z A)dz

x
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for x € [-1,0) and

dk dk ﬁ¢/1(_07 )‘) dk :
w@(% ) = Q€08 sz (—0,\) + — g sinsz
1 [ dE
0

k k k
%Xg((b, A) = —dd? cos[s(z — 1)+ % / j? sin [s (z — 2)] q(2)x2(z, \)dz (18)

for x € (0,1]. Now we are ready to prove the following theorems.

Theorem 3.1. Let A = s?, Ims =t. Then

d* 1d k=2 |t|(z+1)
wqﬁ(%)\) = Lok s1n[s(x+1)]+0(|s| e ) (19)
wqﬁg(x,)\) = —g(asmsw cossx—i—ﬁcossw sin sz)

10 (|S|k—2 e|t|<w+1>) (20)

as |\ = oo (k=0,1). Each of this asymptotic equalities hold uniformly for x.

Proof. The asymptotic formula (19) follows immediately from the Titchmarsh’s Lemma
on the asymptotic behavior of ¢y (z) ([8], Lemma 1.7). But the corresponding formulas
for ¢o(x, A) need individual consideration.

Substituting (19) in (17) we have the next ”asymptotic integral equation”

x

k
o, N) = 1 /d_ sin [s (z — 2)] q(2)¢2(z, \)dz + O (Lemmn)

s ) dak BE

«
+ ——sinscossr — — cos ssinsz (21)
S 0Bs

It is easy to derive that

x

k
1/d— sin [s (x — 2)] q(2)p2(z, \)dz = O (ielf@“)) . (22)

s ) dx* s]2

Substituting the equation (22) in the equality (21) we obtain (20) for the case k = 0.
The case k = 1 of the eguality (20) follows at once on differentiating (17) and making the
same procedure as in the case k = 0. O

Similarly we can easily obtain the following Theorem for y;(z, \)(i = 1, 2).
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Theorem 3.2. Let A = s2, Ims =t. Then

d* d*

4 - _% _ k=1 jte—1)
e e cosls (@ = 1]+ 0 (Js"Heren) (23)
dk coss dF sins dF .
wX1(:C7)\) = _(TW Ccos ST + Tw SIHSZZ?)
+0 (|S|k—le\t\(l—m)) (24)

as |A| — oo (k=0,1). Each of this asymptotic equalities hold uniformly for x.

4 Distribution of Eigenvalues and Asymptotic
Behavior of Eigenfunctions

It is well-known from ordinary differential equation theory that the Wronskians W[e¢1 (), x1(A\)]«
and Wp2(A), x2(A\)]. are independent of variable z. By using (8) and (14) we have

wi(d) = %(—0@)% _ Xl(_m)w
_ 1 Ox2(+0,\) Ao (+0, )
- a—6(¢2(+0, /\)T — x2(+0, /\)T)
= a—lﬁ’u&()\)

for each A € C. It is convenient to introduce the notation
w(A) = afwi(A) = wa(N). (25)

Now by modifying the standard method we prove that all eigenvalues of the problem
(1) — (4) are real.

Theorem 4.1. The eigenvalues of the boundary-value-transmission problem (1) — (4) are
real.

Proof. Let Ao be eigenvalue and yg be eigenfunction corresponding to this eigenvalue. By
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two partial integration we have

0 - 1 1 -
/ (/\oyo(ﬂf))yo(fl?)dx+a—ﬁ/o ((Moyo(x))yo(x)dx

-1

0 1
- / (ryoxx)mdﬁa—lﬁ / (ry0) ()0 (@) de

—1

0 L 1t L
/_ ()T + / yo(x) o) @)dex + Wyo, 7 —0]

1
—Wlyo. 705 1] —

1
— Wlyo,yo0; -1 — Wlyo,7o0; +0
[y07y07 ]+ 046 046 [y07y07+ ]
0 . 1t -
— [ w@ T @ + o [ (o @ids + W7 -0)
—1 0
1 1
- Wlyo,9o; —1] + 5Wlyo,70; 1] — —Wlyo,To; +0 26
[y05y07 ]+ Oéﬁ [y05y07 ] aﬁ [y05y05+ ] ( )
From the boundary boundary conditions (2)-(3) it is follows obviously that
W(y()v%; _1) =0 and W(ym%; 1) =0. (27)
The direct calculation gives
1
W(y07%; _O) = _W(y(b%; +0) (28)

af
Substituting (27) and (28) in (26) we have the equality
0
()\0—)\_0)[/( dff'*‘—/ (yo(x))*dz] = 0
-1

Thus, we get A9 = )\g since a8 > 0. Consequently all eigenvalues of the problem (1) — (4)
are real. O

Corollary 4.2. Let u(z) and v(z) be eigenfunctions corresponding to distinct eigenvalues.
Then they are orthogonal in the sense of the following equality

/_01 u(z)v(z)de + — of / = 0. (29)

Since the Wronskians of ¢a(x, A) and y2(x, A) are independent of x, in particular, by
putting x = 1 we have

w(d) = d2(1,)x5(1, ) — d5(1, M)xa(1,A)
= (L) (30)

Let A = s?, Ims = t. By substituting (20) in (30) we obtain easily the following asymptotic
representation

w()\) = —asin®s + Bcos’ s + O (16%) (31)
S

Now we are ready to derived the needed asymptotic formulas for eigenvalues and eigen-
functions.
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Theorem 4.3. The boundary-value-transmission problem (1)-(4) has an precisely numer-
able many real eigenvalues, Ao, A1, Aa... for which the following asymptotic erpression is

hold
+ _ p 1
sy =mnxarctany/—+ O | — (32)
« n

Proof. By applying the well-known Rouche Theorem which asserts that if f(z) and g(2)
are analytic inside and on a closed contour I', and |g(2)| < |f(z)| onT then f(z) andf(z)+
g(z) have the same number zeros inside I' provided that the zeros are counted with mul-
tiplicity on a sufficiently large contour, it follows that w(\) has the same number of zeros

where s, = {s, s} }.

inside the contour as the leading term wg(A\) = —asin?s + Bcos?s in (31). Hence, if
Ao < A1 < Aq... are the zeros of w(A) and s, = A,, we have the needed asymptotic
formulas (32). O

Using this asymptotic formulas for eigenvalues we can derive that the corresponding
eigenfunctions may be expressed by the formula

sin(7mn + arctan \/g)(x +1)+0(%) forze[-1,0)

bn(z) = asin(mn £ arctan \/g) cos[(mn £ arctan \/g)x]
— B cos(mn + arctan \/E) sin[(7n £ arctan \/g):v]

[e3

+0 (L), for z € (0,1]
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