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Abstract

A new analytical solution to the problem of deformation for a cross-ply, thick 
laminated composite shell in a rectangular plan form is presented. The 
solution methodology is based on boundary discontinuous generalized double 
Fourier series approach and used to solve a system of five highly coupled 
linear partial differential equations which are generated from Higher Order 
Shear Deformation Theory (HSDT). Boundary conditions are defined as 
follows; two opposite edges are SS3 and the others are SS1. The major result 
of the present study is to declare analytic solution functions of defined 
boundary discontinuity which is unavailable in the literature.

SÜREKSİZ SINIRLARA SAHİP, ÇİFT 
EĞRİLİKLİ, ÇAPRAZ KATLI LAMİNE 

KOMPOZİT KABUĞUN FOURIER ANALİZİ

Özetçe

Bu çalışmada, çapraz katlı, kalın, ortogonal kompozit kabuğun SS3-SS1 sınır 
şartları altında deformasyonunun belirlenebilmesi için yeni bir analitik çözüm 
sunulmuştur. Çözüm tekniği süreksiz sınırlar için düzenlenmiş çiftli Fourier 
serilerine dayanır ve Yüksek Mertebeli Deformasyon Teorileri kullanılarak 
oluşturulmuş kısmi diferansiyel denklemler kullanılır. Kullanılan sınır şartları; 
iki karşılıklı kenar için SS3 ve diğer kenarlar için ise SS1 olarak 
tanımlanmıştır. Çalışmanın başlıca sonucu henüz literatürde bulunmayan 
bahse konu sınır koşullarının analitik çözümüne ait kısmi diferansiyel 
denklemlerin belirlenmesidir.
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1. INTRODUCTION

Modern composites using fiber reinforced matrices of various types 
have created a revolution in high performance structures. Advances in the 
composite material development lead the multi-effectiveness of the material 
choice.  Especially the recent development in the combat scenarios shows 
that composite structures can be used for relevant advantages not only for 
the weight strength ratio. The necessity of multifunctional materials in the 
military equipments such as helicopters, planes, ships, multitasking vehicles 
etc. has caused the composite material researches to be grown. 

The stealth technology, for example, requires radar reflecting / 
absorbing mechanisms, acoustic absorbents or heat resistive insulators with 
highest electrical connectivity. Visby Class ships, as an example in the 
stealth technology, shall have primary focus. The multifunctional material 
philosophy against the need of multi tasking effectiveness force laminated 
plate researches to define proper solutions in real world situations. At that 
point laminated or sandwich composites can be seen the way of 
development in front of the expensive and restricted nano-science 
applications. Aircraft, naval or space vehicle designers always choose light 
weight materials which mean low fuel consumption and prefer easy to find 
materials not to increase procurement expenses. 

These flags can give the idea of industrial necessary materials which 
became lower weighted, multi layered (with flexibility of re-designing layer 
properties), suitable for tailoring (with flexibility of re-configuring layers), 
etc.  Kabir et al. has indicated that; the design flexibility inherent in 
composite laminates, known as tailoring, which is essentially exploiting the 
possibility of obtaining optimum design through a combination of structural 
/ material concepts, stacking sequence, ply orientation, choice of the 
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component phases, etc. to meet specific design requirements, is the single 
most important factor to commercial and military developments. [1]

Typically, analysis of laminated plates can be achieved by 
approximate numerical methods easily, such as finite elements method 
(FEM) which accuracy has been proven again and again by lots of 
researchers. However, it is hard to develop an analytical model for a 
specified problem. Derivation of analytical solutions involves many 
complexities, such as inplane anisotropy and asymmetry of lamination 
resulting in stretching-shear, bending-stretching couplings. Additional 
complexities arise by way of satisfying boundary conditions that can not be 
handled by traditional analytical approaches, such as Navier’s or Levy’s [1]. 
The present study is intended to capture some of these complexities arising 
from real life boundary conditions. 

2. LITERATURE REWIEV

Investigations of laminated composite plate usually utilize either the 
classical lamination theory (CLT) or the first order shear deformation theory 
(FSDT). Jones [2], Whitney [3], Kabir et al. [1] and Chaudhuri et al. [4] 
have presented Double Fourier series based analytical solutions to thin 
laminated anisotropic plate boundary value problems.

Chaudhuri and Kabir [5-8], Kabir and Chaudhuri [9] and Kabir [10-
11] have presented Double Fourier series based analytical solutions to 
various FSDT-based laminated plate boundary value problems. Superiority 
of the FSDT over the CLT in prediction of the transverse deflection of a 
moderately thick panel notwithstanding, the FSDT requires incorporation of 
a shear correction factor, due to the fact that the FSDT assumes a uniform 
transverse shear strain distribution through the thickness, which violates 
equilibrium conditions at the top and bottom surfaces of the panel [13]. 

The boundary discontinuous Fourier series theory has been 
expounded earlier by Hobson and Carslaw, and the method has been applied 
by other investigators, such as Green, Winslow and Whitney. The boundary 
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discontinuous Fourier method has never been applied to the problem of a 
plate / shell subjected to asymmetric (with respect to panel centerlines) 
boundary conditions, which along with the general lack of non-separable 
Fourier solution has so far remained an enigma in the literature [16]. The 
proper mathematical explanations of the boundary discontinuous type 
Fourier series approach to solution of completely coupled system of partial 
differential equations subjected to admissible general boundary conditions 
are available in Chaudhuri [16].

A higher order shear deformation theory of elastic shells is 
developed by Reddy [23] for laminated shells with orthotropic layers. The 
theory accounts for parabolic distribution of the transverse shear strains 
through thickness of the shell. Double curved shells with two radius have 
been examined by Reddy.

Recently, Oktem and Chaudhuri have declared their researches on 
doubly curved shells with discontinuity in the boundaries [17-22]. The 
shells have SS2-SS3, SS3-C4, All SS4, All SS1, etc.. boundaries. 

Second and higher order shear deformation plate theories use higher 
order polynomials in the expansion of the displacement components through 
the thickness of the plate. The higher order theories introduce additional 
unknowns that are often difficult to interpret in physical terms. Therefore, 
third order shear deformation theory (TSDT) has been accepted as the most 
accurate solution methodology between higher order theories, comparing 
with calculation complexity and accuracy. However, there are a number of 
third order plate theories in the literature which have been explained by 
Reddy [15]. 

3. STATEMENT OF THE PROBLEM

A Third Order displacement field for in-plane displacements is used 
[13].
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where u0,v0,w0 represents displacements of a point at the mid-surface (z = 
0), while  and ф1 and ф2 are rotations about x2 and x1 axes respectively. 

Three dimensional elasticity strain – displacement relations [15]:

0 0 2 2
1 1 1 1( )z K z K    (2a)

0 0 2 2
2 2 2 2( )z K z K    (2b)

0 2 1
4 4 4z K   (2c)

0 2 1
5 5 5z K   (2d)

0 0 2 2
6 6 6 6( )z K z K    (2e)

in which ε represents the components of strain at a point, while ε0 denotes 
their mid-surface counterparts. K0 represents changes of curvature and twist, 
while K2 denotes its counterparts due to the higher-order shear deformation 
effect.

The equilibrium equations derived using the principle of virtual work 
are given as follows [13] (the derivation process will not be reproduced here 
in the interest of brevity of the presentation):
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where q is the distributed transverse load, and N, M, P denote stress 
resultants, stress couples and second stress couples. Q represents the 
transverse shear stress resultants. 

Generalized stress resultants can be conveniently expressed in terms 
of strain components. For a cross-ply, orthogonal, doubly curved lamina:
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Substitution of Eqs.(4a-4e) to Eqs.(3a-3e) yields a system of five 
highly coupled fourth-order partial differential equations which are given 
below: 
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4. BOUNDARY CONDITIONS

SS1 type simply supported boundary conditions are prescribed at the 
edges x1=0,a:

u3 (0,x2) = u3 (a,x2) = 0 (6a)

ф2 (0,x2) = ф2 (a,x2) = 0 (6b)

M1 (0,x2) = M1 (a,x2) = 0 (6c)

N1 (0,x2) = N1 (a,x2) = 0 (6d)

N6 (0,x2) = N6 (a,x2) = 0 (6e)

SS3 type simply supported boundary conditions are prescribed at the 
edges x2=0,b:

u3 (x1,0) = u3 (x1,b) = 0 (7a)

N2 (x1,0) = N2 (x1,b) = 0 (7b)

u1 (x1,0) = u1 (x1,b) = 0 (7c)

M2 (x1,0) = M2 (x1,b) = 0 (7d)

ф1 (x1,0) = ф1 (x1,b) = 0 (7e)
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5. SOLUTION METHODOLOGY

The particular solution to the boundary-value problem of a HSDT-
based cross-ply plate is assumed as follows:

1 1 2
0 1

cos sinmn
m n

u U x x 
 

 

  0 ≤ x1 ≤ a ; 0 ≤ x2 ≤ b (8a)

2 1 2
1 0

sin cosmn
m n

u V x x 
 

 

  0 < x1 < a ; 0 ≤ x2 ≤ b (8b)

3 1 2
1 1

sin sinmn
m n

u W x x 
 

 

  0 ≤ x1 ≤ a ; 0 ≤ x2 ≤ b (8c)

1 1 2
0 1

cos sinmn
m n

X x x  
 

 

  0 ≤ x1 ≤ a ; 0 ≤ x2 ≤ b (8d)

2 1 2
1 0

sin cosmn
m n

Y x x  
 

 

  0 ≤ x1 ≤ a ; 0 ≤ x2 ≤ b (8e)

where

,
m n

a b

    (9)

It may be noted that the assumed solution functions, given by Eqs. (8a 
– 8e), satisfy the SS3 type simply supported conditions at the edges, x2 =0,b. 
The total number of unknown Fourier Coefficients introduced in Eqs. (8a –
8e) numbers 5mn+2m+2n.

The next operation is substituting Eqs (8a – 8e) into Eqs. (5a – 5e). 
The procedure for differentiation of these functions is based on Lebesque 
integration theory that introduces boundary Fourier coefficients arising from 
discontinuities of the particular solutions at the edges x1 =0,a. As has been 
noted by Chaudhuri [16], the boundary Fourier coefficients serve as 
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complementary solution to the problem under investigation [17-22]. The 
partial derivatives, which can not be obtained by termwise differentiation, 
are given as follows;

 

2,1 0 1 0 0 0 2
1 1

2 1
1 1

1 1 1
os( ) ( ) ( )

4 2 2

( ) ( )

m m m n
m n

mn n m n m
m n

u e C x V e f e Cos x

Cos x Cos x V e f

    

    

 

 

 

 

      
 

  

 
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(10)

 2,12 2 2 1
1 1 1

1
( ) ( ) ( )

2 n mn n m n m
n m n

u e Sin x Sin x Cos x V e f       
  

  

      (11)

 

2,11 1 0 0 0
1

1 2
1 1

1
( ) ( )

2

( ) ( )

m m m
m

mn n m n m
m n

u Sin x V e f

Sin x Cos x V e f
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

 

 
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where

 2 2 2 2 2 2

0

4
( ; ) ( , ) (0, ) ( )

b

n ne f u a x u x Cos x dx
ab

   (13)

(0,1),
( ; )

(1,0),m m

m odd

m even
 

 
   

(14)

Introduction of the displacement functions and their appropriate 
partial derivatives into the governing partial differential equations will 
supply the following 5mn+2m+2n linear algebraic equations:
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11 66 1
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1 2 2 2
1 1 2 9

2 1

( )

( )
( ) ( ) 0

( )

( )

mn mn

mn

m n mn

mn n m n m

A A U f V

a f a W
Cos x Sin x

a a X

f Y f e f

  

  
 

 

   

 

 

   
 
     
  
    

 (15a)

2 2
1 66 22

3 3 2
6 8 3

1 2 2 2
1 1 2 9 7

66

( )

( )
( ) ( ) 0

( )

( )

mn mn

mn

m n mn mn

n m n m

f U A A V

a a f W
Sin x Cos x

f X a a Y

A e f

  

   
 

  

  

 

 

   
 
     
   
   

 (15b)

3 2
4 8 1

2 3
8 8 6

4 2 2 4
15 14 12 11

2 2
1 2 7 6

1 1 3 2
4 9 10

2 3
5 10 13

8

( )

( )

(

( ) ( ) )

( )

( )

( )

mn

mn

mn
m n

mn

mn

n m n m

a f a U

f a a V

f f f f

Sin x Sin x f f W q

f f f X

f f f Y

f e f

  

   

   

   

  

   

  

 

 

  
 
   
          
     
   
 
   

 (15c)

2 2
2 9

1

3 2
2 6 7

1 2 2 2
1 1 3 5 8

4

1

( )

( )
( ) ( ) 0

( )

( )

mn

mn

mn

m n mn

mn

n m n m

a a U

e V

e e e W
Cos x Sin x

e e e X

e Y

e e f

 


  
 

 


  

 

 

  
 
 
      
   
 
 
   

 (15d)



Boundary Discontinuous Fourier Analysis of 
A Doubly Curved Cross-Ply Laminated Composite Shell

162

1

2 2
9 7

2 3
12 7 10

1 2
1 1 4

2 2
5 9 11

9

( )

( )
( ) ( ) 0

( )

( )

mn

mn

mn

m n mn

mn

n m n m

e U

a a V

e e e W
Sin x Cos x

e X

e e e Y

a e f



 

   
 



 

  

 

 

 
 
  
       
   
 
   

 (15e)

2 2
2 66 0 9 0 1

1

1
( ) 0

2n n n
n

Sin x A U a X f e   




     
 

 (15f)

2 2
1 66 0 9 0 66 0 0

1

1
( ) ( ) 0

2m m m m
m

Sin x A V a Y A e f    




      
 

 (15g)

2 2
2 9 0 8 5 0 1

1

1
( ) ( ) 0

2n n n
n

Sin x a U e e X e e   




      
 

 (15h)

2 2
1 9 0 11 5 0 9 0 0

1

1
( ) ( ) ( ) 0

2m m m m
m

Sin x a V e e Y a e f     




       
 

 (15i)

The remaining equations are supplied by the geometric and natural 
boundary conditions. Satisfying the geometric boundary conditions given by 
Eqs. (7c) such that u1 should vanish at the edges, x2=0,b and equating the 
the coefficients yield the following algebraic equations:
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0m mn
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The rest of the equations are obtained from satisfying the natural 
boundary conditions. Satisfying N6=0 at these edges (x1=0,a) yield the 
following equations:
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In which H =1 and H =(-1)m, represents the condition of N6=0, at the 
edges x1=0,a  respectively. Other constants have been defined at [17-22].

6. CONCLUSION

A heretofore unavailable boundary discontinuous Fourier solution to 
the problem of deformation of a finite dimensional general cross-ply thick 
rectangular shell is presented. Unlike the conventional Navier and Levy type 
approaches which can provide only particular solutions, the present method 
is general enough to provide the complete (particular as well as 
complementary) solution for any arbitrary combination of admissible 
boundary conditions with relative ease [22]. SS3-SS1 discontinuity has been 
solved analytically, therefore researchers shall complete analytic modeling 
and computer aided numeric solution.   
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Abstract


A new analytical solution to the problem of deformation for a cross-ply, thick laminated composite shell in a rectangular plan form is presented. The solution methodology is based on boundary discontinuous generalized double Fourier series approach and used to solve a system of five highly coupled linear partial differential equations which are generated from Higher Order Shear Deformation Theory (HSDT). Boundary conditions are defined as follows; two opposite edges are SS3 and the others are SS1. The major result of the present study is to declare analytic solution functions of defined boundary discontinuity which is unavailable in the literature.


SÜREKSİZ SINIRLARA SAHİP, ÇİFT EĞRİLİKLİ, ÇAPRAZ KATLI LAMİNE KOMPOZİT KABUĞUN FOURIER ANALİZİ


Özetçe


Bu çalışmada, çapraz katlı, kalın, ortogonal kompozit kabuğun SS3-SS1 sınır şartları altında deformasyonunun belirlenebilmesi için yeni bir analitik çözüm sunulmuştur. Çözüm tekniği süreksiz sınırlar için düzenlenmiş çiftli Fourier serilerine dayanır ve Yüksek Mertebeli Deformasyon Teorileri kullanılarak oluşturulmuş kısmi diferansiyel denklemler kullanılır. Kullanılan sınır şartları; iki karşılıklı kenar için SS3 ve diğer kenarlar için ise SS1 olarak tanımlanmıştır. Çalışmanın başlıca sonucu henüz literatürde bulunmayan bahse konu sınır koşullarının analitik çözümüne ait kısmi diferansiyel denklemlerin belirlenmesidir.


Keywords: Laminated composite plate, HSDT, boundary-discontinuity, Fourier analysis, doubly curved shell


Anahtar Kelimeler : Lamine kompozit levha, sinir süreksizliği, Fourier analizi, HSDT, çift eğrilikli kabuk.



1. IntroductIon



Modern composites using fiber reinforced matrices of various types have created a revolution in high performance structures. Advances in the composite material development lead the multi-effectiveness of the material choice.  Especially the recent development in the combat scenarios shows that composite structures can be used for relevant advantages not only for the weight strength ratio. The necessity of multifunctional materials in the military equipments such as helicopters, planes, ships, multitasking vehicles etc. has caused the composite material researches to be grown. 


The stealth technology, for example, requires radar reflecting / absorbing mechanisms, acoustic absorbents or heat resistive insulators with highest electrical connectivity. Visby Class ships, as an example in the stealth technology, shall have primary focus. The multifunctional material philosophy against the need of multi tasking effectiveness force laminated plate researches to define proper solutions in real world situations. At that point laminated or sandwich composites can be seen the way of development in front of the expensive and restricted nano-science applications. Aircraft, naval or space vehicle designers always choose light weight materials which mean low fuel consumption and prefer easy to find materials not to increase procurement expenses. 


These flags can give the idea of industrial necessary materials which became lower weighted, multi layered (with flexibility of re-designing layer properties), suitable for tailoring (with flexibility of re-configuring layers), etc.  Kabir et al. has indicated that; the design flexibility inherent in composite laminates, known as tailoring, which is essentially exploiting the possibility of obtaining optimum design through a combination of structural / material concepts, stacking sequence, ply orientation, choice of the component phases, etc. to meet specific design requirements, is the single most important factor to commercial and military developments. [1]


Typically, analysis of laminated plates can be achieved by approximate numerical methods easily, such as finite elements method (FEM) which accuracy has been proven again and again by lots of researchers. However, it is hard to develop an analytical model for a specified problem. Derivation of analytical solutions involves many complexities, such as inplane anisotropy and asymmetry of lamination resulting in stretching-shear, bending-stretching couplings. Additional complexities arise by way of satisfying boundary conditions that can not be handled by traditional analytical approaches, such as Navier’s or Levy’s [1]. The present study is intended to capture some of these complexities arising from real life boundary conditions. 


2. LIterature RewIev


Investigations of laminated composite plate usually utilize either the classical lamination theory (CLT) or the first order shear deformation theory (FSDT). Jones [2], Whitney [3], Kabir et al. [1] and Chaudhuri et al. [4] have presented Double Fourier series based analytical solutions to thin laminated anisotropic plate boundary value problems.


Chaudhuri and Kabir [5-8], Kabir and Chaudhuri [9] and Kabir [10-11] have presented Double Fourier series based analytical solutions to various FSDT-based laminated plate boundary value problems. Superiority of the FSDT over the CLT in prediction of the transverse deflection of a moderately thick panel notwithstanding, the FSDT requires incorporation of a shear correction factor, due to the fact that the FSDT assumes a uniform transverse shear strain distribution through the thickness, which violates equilibrium conditions at the top and bottom surfaces of the panel [13]. 


The boundary discontinuous Fourier series theory has been expounded earlier by Hobson and Carslaw, and the method has been applied by other investigators, such as Green, Winslow and Whitney. The boundary discontinuous Fourier method has never been applied to the problem of a plate / shell subjected to asymmetric (with respect to panel centerlines) boundary conditions, which along with the general lack of non-separable Fourier solution has so far remained an enigma in the literature [16]. The proper mathematical explanations of the boundary discontinuous type Fourier series approach to solution of completely coupled system of partial differential equations subjected to admissible general boundary conditions are available in Chaudhuri [16].


A higher order shear deformation theory of elastic shells is developed by Reddy [23] for laminated shells with orthotropic layers. The theory accounts for parabolic distribution of the transverse shear strains through thickness of the shell. Double curved shells with two radius have been examined by Reddy.


Recently, Oktem and Chaudhuri have declared their researches on doubly curved shells with discontinuity in the boundaries [17-22]. The shells have SS2-SS3, SS3-C4, All SS4, All SS1, etc.. boundaries. 


Second and higher order shear deformation plate theories use higher order polynomials in the expansion of the displacement components through the thickness of the plate. The higher order theories introduce additional unknowns that are often difficult to interpret in physical terms. Therefore, third order shear deformation theory (TSDT) has been accepted as the most accurate solution methodology between higher order theories, comparing with calculation complexity and accuracy. However, there are a number of third order plate theories in the literature which have been explained by Reddy [15]. 



3. STATEMENT OF THE PROBLEM



A Third Order displacement field for in-plane displacements is used [13].
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where u0,v0,w0 represents displacements of a point at the mid-surface (z = 0), while  and ф1 and ф2 are rotations about x2 and x1 axes respectively. 


Three dimensional elasticity strain – displacement relations [15]:
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in which ε represents the components of strain at a point, while ε0 denotes their mid-surface counterparts. K0 represents changes of curvature and twist, while K2 denotes its counterparts due to the higher-order shear deformation effect.


The equilibrium equations derived using the principle of virtual work are given as follows [13] (the derivation process will not be reproduced here in the interest of brevity of the presentation):
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where q is the distributed transverse load, and N, M, P denote stress resultants, stress couples and second stress couples. Q represents the transverse shear stress resultants. 



Generalized stress resultants can be conveniently expressed in terms of strain components. For a cross-ply, orthogonal, doubly curved lamina:
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Substitution of Eqs.(4a-4e) to Eqs.(3a-3e) yields a system of five highly coupled fourth-order partial differential equations which are given below: 
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4. BOUNDARY CONDITIONS



SS1 type simply supported boundary conditions are prescribed at the edges x1=0,a:


		u3 (0,x2) = u3 (a,x2) = 0

		(6a)



		ф2 (0,x2) = ф2 (a,x2) = 0

		(6b)



		M1 (0,x2) = M1 (a,x2) = 0

		(6c)



		N1 (0,x2) = N1 (a,x2) = 0

		(6d)



		N6 (0,x2) = N6 (a,x2) = 0

		(6e)






SS3 type simply supported boundary conditions are prescribed at the edges x2=0,b:


		u3 (x1,0) = u3 (x1,b) = 0

		(7a)



		N2 (x1,0) = N2 (x1,b) = 0

		(7b)



		u1 (x1,0) = u1 (x1,b) = 0

		(7c)



		M2 (x1,0) = M2 (x1,b) = 0

		(7d)



		ф1 (x1,0) = ф1 (x1,b) = 0

		(7e)





5. SOLUTION METHODOLOGY


The particular solution to the boundary-value problem of a HSDT-based cross-ply plate is assumed as follows:
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		0 ≤ x1 ≤ a ;

		0 ≤ x2 ≤ b
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		0 < x1 < a ;

		0 ≤ x2 ≤ b
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		0 ≤ x1 ≤ a ;
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		0 ≤ x1 ≤ a ;

		0 ≤ x2 ≤ b
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		0 ≤ x1 ≤ a ;

		0 ≤ x2 ≤ b
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where
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It may be noted that the assumed solution functions, given by Eqs. (8a – 8e), satisfy the SS3 type simply supported conditions at the edges, x2 =0,b. The total number of unknown Fourier Coefficients introduced in Eqs. (8a – 8e) numbers 5mn+2m+2n.



The next operation is substituting Eqs (8a – 8e) into Eqs. (5a – 5e). The procedure for differentiation of these functions is based on Lebesque integration theory that introduces boundary Fourier coefficients arising from discontinuities of the particular solutions at the edges x1 =0,a. As has been noted by Chaudhuri [16], the boundary Fourier coefficients serve as complementary solution to the problem under investigation [17-22]. The partial derivatives, which can not be obtained by termwise differentiation, are given as follows;
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where
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Introduction of the displacement functions and their appropriate partial derivatives into the governing partial differential equations will supply the following 5mn+2m+2n linear algebraic equations:
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The remaining equations are supplied by the geometric and natural boundary conditions. Satisfying the geometric boundary conditions given by Eqs. (7c) such that u1 should vanish at the edges, x2=0,b and equating the the coefficients yield the following algebraic equations:
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The rest of the equations are obtained from satisfying the natural boundary conditions. Satisfying N6=0 at these edges (x1=0,a) yield the following equations:
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In which 

[image: image66.wmf]H


=1 and 

[image: image67.wmf]H


=(-1)m, represents the condition of N6=0, at the edges x1=0,a  respectively. Other constants have been defined at [17-22].



6. CONCLUSION



A heretofore unavailable boundary discontinuous Fourier solution to the problem of deformation of a finite dimensional general cross-ply thick rectangular shell is presented. Unlike the conventional Navier and Levy type approaches which can provide only particular solutions, the present method is general enough to provide the complete (particular as well as complementary) solution for any arbitrary combination of admissible boundary conditions with relative ease [22]. SS3-SS1 discontinuity has been solved analytically, therefore researchers shall complete analytic modeling and computer aided numeric solution.   
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